ASIC/FPGA Chip Design

Verification

Mahdi Shabany

Department of Electrical Engineering
Sharif University of technology

© M. Shabany, ASIC/FPGA Chip Design

Verification

J Exponential increase in the complexity of ASIC implies need for sophisticated
verification methods to be incorporated in the ASIC design process.

 Catch the bug as early as possible

» So catch it in simulation smsp saves time and money.
» Imagine respin of a chip if the same bug is caught in Silicon

[Verification:

A process that ensures conformance of a
design to predefined expectations

© M. Shabany, ASIC/FPGA Chip Design

Verification

 Types of Verification:

> Functional:
= Functional verification of RTL

» Gate-level simulation:
* To verify that the synthesized netlist matches the expected functionality

» Formal Verification (equivalence checking):
= To make sure that the gate level netlist is equivalent to the RTL

» Timing Verification:
= To verify that the design can run at speed

© M. Shabany, ASIC/FPGA Chip Design

Functional Verification

1 Two general methods:

» Graphical and manually:
" Inserting inputs and clock manually and run graphical simulations using CAD
tools such as Quartus or ISE I~ st o

o Good for simple designs ;
o Suitable for early evaluations

» Automated:
= Writing testbench to run the simulation/verification automatically
o Suitable for large designs
o Suitable for stress testing

© M. Shabany, ASIC/FPGA Chip Design

Testbench (Functional Verification)

 Testbench is a Verilog module to simulate a Design Under Test (DUT)

[Testbench:

» A Verilog module

» Instantiates the DUT

» Apply stimulus (data) to the DUT

» Monitors the results to verify that the test was successful (i.e., the output of
the DUT conformed to expectations)

Testbench
Stimulus
Test generator -
g& Design Under Test
Monitoring (BUT)
Results

© M. Shabany, ASIC/FPGA Chip Design

Testbench

¢ The Verilog HDL is used to model a simulation test bench
¢ The test bench is a module, which contains:
¢ An instance of the top level of the design
¢ Procedures to describe the input stimulus
¢ Procedures to describe output verification

stimulus design models verification
f

/

/ﬁodule addbit (a,b,ci,sum,co);

initial input a, b, ci; initial
output sum, co; begin
Smonitor
D behavioral or RTL (sum, co) ;
or structural model end

endmodule

© M. Shabany, ASIC/FPGA Chip Design

Testbench (Functional Verification)

[Simulation of Verilog designs takes the following steps:

» Compilation & Elaboration:
" The simulator reads the design description, processes compiler directives, and
builds a data structure that defines the design hierarchy.

» Initialization:
" The simulator initializes module parameters, storage elements and nets.
= When simulation starts at time zero, the simulator propagates these changes and
executes the statements in each initial and always block up to a timing control.

» Simulation:
" The simulator processes events and applies them to the DUT
» The results are displayed and/or saved for investigation

© M. Shabany, ASIC/FPGA Chip Design

Verilog Simulation Commands:

1 The Verilog includes compiler directives and system tasks to control
the simulation of a Verilog mode

» <directive> compiler directives:
= Executed prior to simulation time zero
® |nstructions to simulators on how to compile models
= Always start with a ~ accent grave (the “back tic”)

“include "timescale "define

» S<task> system tasks:
= Executed during simulation (i.e.: to display values)
= Used as programming statements
= Always start with a S dollar sign

smonitor Sdisplay Stime

© M. Shabany, ASIC/FPGA Chip Design

Compiler Directives (Include Files)

Use “include files to ensure project-wide consistency of common source.

“include "defines.inc" -4 // defines.inc
module clkgen (clk) ; “timescale 1 ns / 10 ps
output clk; reg clk; “define PERIOD 20

always begin “define TIMEOUT 10000000

("PERIOD/2) clk = 0;
("PERIOD/2) clk = 1;
end
initial begin
(" TIMEOUT) Defines a constant to be used hereafter
sdisplay ("TIMEOUT
ERROR") ;
$finish; <€ Terminates the simulation
end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Compiler Directives (Time Scale)

1 “timescale is used to define time delay unit/precision :

"timescale 10ns/1ns

Unit/Precision Delay SpeC|f|cat|on Time Delayed

1 ns/ 1ns
10 ns/ 1ns #3 30ns Delay is 3*10ns (time unit)
10 ns/ 1ns #3.2 32ns 3.2 is multiplied by 10
10 ns/ 1ns #3.36 34ns

10 ns/ 10ns #3.2 30ns

10 ns/ 100ps #3.748 37.5ns 3.748 is multiplied by 10 and

rounded to 2 decimal place

1 ns/ 1ns #3.22 3ns

© M. Shabany, ASIC/FPGA Chip Design

System Tasks (Sdisplay)

1 Stime: Returns the current simulation time as a 64-bit unsigned integer
» The returned value is scaled to the time unit of the module that invoked it

1 Sdisplay: Immediately displays the values of its arguments

Sdisplay (“format string”, argument list)

s*Example:

Sdisplay (“Reset is = %b and Clock is = %b \n”, Reset, Clk)

Reset i1s = 1 and Clock is = 0
Reset i1s = 1 and Clock is =1
Reset is = 0 and Clock is = 0
Reset i1s = 0 and Clock is =1

© M. Shabany, ASIC/FPGA Chip Design

System Tasks (Sdisplay)

 Sdisplay: supports multiple default radixes

» Sdisplayb (binary)

» Sdisplayd (decimal)

» Sdisplayh (hexadecimal)

» Sdisplayo (octal)
O Formatters and Escaped literals can be used inside the format string.
[Formatters can be used to overrides the default radix

» Formatters:

o\©
o
o\°
Q

o\°
=
o\°
0.
o\°
(—'-
o\©
O

o\°
n

» Escaped literals:

\” (double quote) \n (new line) \\ (backslash) \t (tab)

© M. Shabany, ASIC/FPGA Chip Design

System Tasks (Smonitor)

d Smonitor: to monitor changes in the signal values in its argument list

» Continuously monitors the variables in its argument list and displays the formatted

arguments at the end of each simulation time in which any of signals changes value

Smonitor (“format string”, argument list)

[Only one Smonitor system task can be active. Any subsequent invocation of
Smonitor starts monitoring the new signal arguments and discontinues monitoring
the previous signal arguments.

[Smonitoroff and Smonitoron system tasks can be used to restrict monitoring to

intervals of time, rather than monitoring entire remainder of simulation session.

[The Smonitor system task accepts the same formatters/argument list as Sdisplay.

© M. Shabany, ASIC/FPGA Chip Design

File Open/Close

[The stimulus can be read from a file and then applied to the DUT

1 A file can be opened for reading or writing, and the syntax is as below:

file =
file =

Sfopen("filename",r); // For reading
Sfopen("filename",w); // For writing

 All fopen options:

llr" or llrb"

Open for reading

«“ »

w” or “wb”

Truncate to zero length or create for writing

lla" or lla b”

Append (open for writing at end of file)

llr+"’ Ilr+b”' or llrb+"

Open for update (reading and writing)

lla+"’ lla+b”, or llab+"

Append; Open or create for update at end-of-file

[A file can be closed as follows:

file = Sfclose("filename”);

© M. Shabany, ASIC/FPGA Chip Design

Initial Construct

M Initial: Same as always except that whatever that is inside it executes only once
» Used for initialization at the beginning of the testbench

» Any signal assigned a value inside it should be of type variable (e.g., reg)

module test ();
“timescale 1ns/1ns;

Top module instantiation
reg Clk, Reset, in;

wire Out: 0 5 10 15 20 25 30
’ [| [| [| [
Requires begin-end :
for multiple statements) Moore DUT(in, Clk, Reset, Out); Clic I | | | | L
initial . | i i | | |
begi n : | | | | |
egin —
dCIk =1'b0; in = 1’b0; Reset = 1'b1; Reset | | | | |
en ' ' ' ' ' '
initial #10 Reset = 1'b0;
always #5 Clk = ~Clk; < A clock with 10ns period
initial #7in=1'bl;, Executes only once (as opposed to always)
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Creating Clock

clk

0 10 30 50

SRR
Clk BRRRREKRIS

40

60

L REARRHKHKL K]
C K BRSREEELES!
..........’...’...,..‘

0 20 40 60

“timescale 1ns/1ns;

reg Clk;
always
begin
#10Clk = 1;
10 Clk = 0;
end

“timescale 1ns/1ns;
reg Clk;
initial #10Clk = 1;
always #10 Clk = ~Clk

“timescale 1ns/1ns;
reg Clk;
initial
begin
#20Clk=1;
forever begin
#10Clk =0;
#10Clk = 1;
end
end

“timescale 1ns/1ns;
reg Clk;
initial
begin
#20Clk = 1;
forever begin
#5Clk =0;
15 Clk = 1;
end
end

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

(d Common stimulus application techniques are:

» In-line stimulus, applied from an initial block
» Stimulus applied from a loop or always block

» Stimulus applied from an array of vectors or integers

© M. Shabany, ASIC/FPGA Chip Design

In-Line Stimulus

In-line stimulus has the following characteristics:
m You list the variables only when their values change
m You can easily define complex timing relationships between signals

m The testbench can become very long for tests of real designs

module inline tb;
wire [7:0] results;
reg [7:0] data bus, addr;
DUT ul (results, data bus, addr);

lnltlal.‘ﬁb £
#10 addr = 8'h0l: fork-join construct is used to
#10 data bus = 8'h23; execute them all in parallel

#20 data bus = 8'h45;
#30 addr = 8'h67;

#30 data bus = 8'h89;
#40 data bus = 8'hAB;

i45 Sfinish;

endmodule

© M. Shabany, ASIC/FPGA Chip Design

In-Loop Stimulus

Stimulus applied from a loop has the following characteristics:
m For each iteration you assign a new stimulus vector
m The timing relationships between signals are regular in nature

m The testbench is compact

module loop tb;
wire [7:0] response;
reg [7:0] stimulus;
reg clk;
integer 1i;
DUT ul (response, stimulus);
initial clk = 0;
always begin
#10 clk
#10 clk
end
initial begin
for (1 = 0; 1 <= 255; 1 =1 + 1)
@ (negedge clk) stimulus = 1i; —|N-LOOP stimulus
#20 Sfinish;
end
endmodule

1;
0;

© M. Shabany, ASIC/FPGA Chip Design

Random Stimulus

[Srandom: Returns a 32-bit sighed integer random value

Initial repeat (13) #5 Clk =~Clk;
Initial repeat (10) #6 In = Srandom;

“In” receives random data
10 times every 6 time units

Initial forever @(posedge Clk) #3 In2 = Srandom

dThere are two ways to terminate simulations
> Sstop:

3 time units after the posedge
Clk, In2 gets a new data
(No overlapping b/w data and Clk)

= A stopped simulation can be resumed after termination

> Sfinish:

m A finished simulation can NOT be resumed after termination

Initial #180 Sstop; le—

Both terminate simulation after 180 time units

Initial #180 Sfinish;

© M. Shabany, ASIC/FPGA Chip Design

Task Construct in Testbench

Use Verilog tasks in your testbench to encapsulate repeated operations.

clock
data_valid |
data_read
cpu_data < o—
task cpu read;
begin
#30 data valid = 1;
wait (data read == 1) ;

#20 cpu data = data in; Clock period: 20 time units

walt (data read == 0);
#20 cpu data = 8'hzz;
#30 data valid = 0;
end
endtask

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

(d Make sure you understand the timing transitions:

reg [10:0] Count;
reg [3:0] A; '

always @ (posedge CIk) Clk

begin
if (IRst)
A <=4'b0;

—_—

else if (Count == 3) Rst

A<=4'b2;
end

—

always @ (posedge Clk) Count

w

I

begin
if (!Rst)

Count <= 11'b0;
else

o

N

B LT, TRty PR

Count <= Count + 1;
end

© M. Shabany, ASIC/FPGA Chip Design

codeceecccccPp@eccccccchanaae

----------Ix-------- Pooocoe

cdecclheccccpgoccacncchacaas

coeceecccccPpgeccccccchanaae

Applying Stimulus

O If another block wants to sample “SUM” value, it has to sample it when or
after Count is 4.

Clk ! L@ ' ;
reg [3:0] a, b; :
wire [3:0] SUM; Count (2 Y5
always @ (posedge Clk) : 5

if (Count==1) : : : : : : :
a : ; : :

else if (Count == 3)

VOREORSOROROONS:

b <= 4’b1010; ' ; .
end b xlx 1010 ; 1010 ;

assign SUM = a+b;

7V

S 0K ORSODRONRS

1111 § 1111 §

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

s Example:

module Counter(clk, reset, out);
input clk, reset;

output [2:0] out;

reg [2:0] count;

always @ (posedge clk)
begin
if (reset)
count <= 0;
else if (count == 3'b111)
count <= 3'b000;
else
count <= count +3'b1;
end
assign out = count;
endmodule

Module

‘timescale 1 ps/ 1 ps
module Counter_tb();
reg clk, reset;

wire [2:0] out;

Counter il (.clk(clk),.out(out),.reset(reset));

initial
clk=0;
always
begin
#5clk =1;
#5 clk = 0;

end

Smonitor("Reset is = %b and Clock is =
%b \n", Reset, Clk);

endmodule

Testbench

© M. Shabany, ASIC/FPGA Chip Design

File Reading for Verification

1 Sreadmemb: Reads a file in binary and stores it in a reg variable
> Sreadmemh :reads in in hex

$readmemb (“file name”, reg name, [start add, [finish add]]);

module Count_tb (); initial _
“timescale 1ns/1ns; begln
reg Clk, Reset; indx = 0;
wire Out; Sreadmemb(“TB.txt”, InReg);
integer indx; Sdisplay(“Running Testbench”);
parameter N = 100; repeat (N)
reg [1:0] InReg [N-1:0]; begin
reg [1:0] DummyReg; DummyReg = InReg[indx];
Clk = DummyReg[0];
test DUT(Clk, Reset, Out); Reset = DummyReg|[1];
#5 index = indx + 1;
end
Smonitor(“Output is %b”, Out);
end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

s Example:

Module

‘timescale 1ns / 1ps
module adder(a,b,c);
input [1:0] a;

input [1:0] b;

output [2:0] c;

assign c=a+b;

endmodule

Testbench

timescale 1ns / 1ps

module TestBench();

reg Clk;

reg [1:0] aa;// aa and bb can be n-bit variables
reg [1:0] bb;

wire [2:0] out;

// Pointers should be defined as integer
integer op1, op2, op_out, k, j;

initial // Opening files for read and write
begin

Clk=0;

opl=Sfopen ("a.txt","r");

op2=Sfopen ("b.txt","r");
op_out=Sfopen ("Result.txt","w");

end

always #10 Clk<=~Clk;

always @(posedge Clk)

begin

k <= Sfscanf (op1, "%b \n", aa);

j <= Sfscanf (op2, "%b \n",bb);

end

adder add1(.a(aa),.b(bb),.c(out));
always @(posedge Clk) begin

Sfwrite (op_out,"%b \n",out);

end

endmodule

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

s Example:

10 10 100
11 00 011
11 00 011
01 11 100
00 10 010
10 11 101
01 01 010
11 00 011
00 10 010
00 11 011
a.txt b.txt Result.txt

© M. Shabany, ASIC/FPGA Chip Design

Example: Code (4-bit Ripple-Carry Counter)

module ripple_carry_counter (g, clk, module D_FF (q, d, clk, reset);
reset); output g;
output [3:0] q; input d, clk, reset;
input clk, reset; reqq;
T_FF tff0 (q[0], clk, reset); always @ (posedge reset or negedge clk)
T_FF tff1 (g[1], q[0], reset); if (reset)
T_FF tff2 (q[2], q[1], reset); q=1,b0;
T_FF tff3 (q[3], q[2], reset); //module D_FF with synchronous reset
endmodule else
q=d;

module T_FF (q, clk, reset); endmodule;

output q;
input clk, reset;
wire d;

D_FF dff0 (q, d, clk, reset);

not nl (d, q); //not is Verilog provided
primitive

endmodule

// module D_FF with synchronous
reset

Module

© M. Shabany, ASIC/FPGA Chip Design

Example: Testbench

module stimulus; //monitor the outputs

req clk; initial
re.q reset; Smonitor(Stime, “output q = %d”, q);
wnre [3:0]. q) endmodule
//instantiate the design block;
Ripple_carry _counter r1(q, clk, reset);
//control the clk signal that drives the design block //cycle time = 10
initial
clk = 1’b0; //set clk to O Testbench
always

#5 clk = ~clk; //toggle clk every 5 time units

//control the clk signal that drives the design block
//reset the arrested from 0 to 20 and from 200 to 220.
initial

begin

reset = 1'b1;

#15 reset = 1'b0;

#180 reset = 1'b1;

#10 reset = 1'b0;

#20 Sfinish; //terminate the simulation

© M. Shabany, ASIC/FPGA Chip Design

Example : Results

O outputq =20

20 outputg =1
30 outputq =2
40 output g = 3
S50 outputg =4
60 outputg =5
70 outputg =6
80 outputq =7

90 output g =8

Result
100 outputg =9

110 output g = 10
120 output g = 11
130 outputq =12
140 output g = 13
150 output g = 14
160 output g = 15
170 outputg =0
180 outputg =1
190 output g =2
195 outputg =0
210 outputg =1
220 outputgq =2

© M. Shabany, ASIC/FPGA Chip Design

Simulation Tool: Modelsim

] We use Modelsim as the simulation tool for our testbenches

[Modelsim can also compile the design

1 The tutorial for Modelsim should be read and done with the files provided on
the course website.

© M. Shabany, ASIC/FPGA Chip Design

