
© M. Shabany, ASIC/FPGA Chip Design

ASIC/FPGA Chip Design

Mahdi Shabany

Department of Electrical Engineering

Sharif University of technology

Verification

© M. Shabany, ASIC/FPGA Chip Design

Verification

 Exponential increase in the complexity of ASIC implies need for sophisticated
verification methods to be incorporated in the ASIC design process.

 Catch the bug as early as possible

 So catch it in simulation saves time and money.
 Imagine respin of a chip if the same bug is caught in Silicon

 Verification:

A process that ensures conformance of a
design to predefined expectations

© M. Shabany, ASIC/FPGA Chip Design

Verification

 Types of Verification:

 Functional:
 Functional verification of RTL

 Gate-level simulation:

 To verify that the synthesized netlist matches the expected functionality

 Formal Verification (equivalence checking):
 To make sure that the gate level netlist is equivalent to the RTL

Timing Verification:

 To verify that the design can run at speed

© M. Shabany, ASIC/FPGA Chip Design

Functional Verification

 Two general methods:

 Graphical and manually:
 Inserting inputs and clock manually and run graphical simulations using CAD
tools such as Quartus or ISE

o Good for simple designs
o Suitable for early evaluations

 Automated:
 Writing testbench to run the simulation/verification automatically

o Suitable for large designs
o Suitable for stress testing

© M. Shabany, ASIC/FPGA Chip Design

Testbench (Functional Verification)

 Testbench is a Verilog module to simulate a Design Under Test (DUT)

 Testbench:

 A Verilog module
 Instantiates the DUT
 Apply stimulus (data) to the DUT
 Monitors the results to verify that the test was successful (i.e., the output of
 the DUT conformed to expectations)

Test generator

&

Monitoring

Design Under Test

(DUT)

Testbench

Stimulus

Results

© M. Shabany, ASIC/FPGA Chip Design

Testbench

© M. Shabany, ASIC/FPGA Chip Design

Testbench (Functional Verification)

 Simulation of Verilog designs takes the following steps:

 Compilation & Elaboration:

 The simulator reads the design description, processes compiler directives, and
 builds a data structure that defines the design hierarchy.

 Initialization:
 The simulator initializes module parameters, storage elements and nets.
 When simulation starts at time zero, the simulator propagates these changes and
 executes the statements in each initial and always block up to a timing control.

 Simulation:

 The simulator processes events and applies them to the DUT
 The results are displayed and/or saved for investigation

© M. Shabany, ASIC/FPGA Chip Design

Verilog Simulation Commands:

 The Verilog includes compiler directives and system tasks to control
 the simulation of a Verilog mode

 `<directive> compiler directives:

 Executed prior to simulation time zero
 Instructions to simulators on how to compile models
 Always start with a ` accent grave (the “back tic”)

 $<task> system tasks:

 Executed during simulation (i.e.: to display values)
 Used as programming statements
 Always start with a $ dollar sign

`include `timescale `define

$monitor $display $time

© M. Shabany, ASIC/FPGA Chip Design

Compiler Directives (Include Files)

Defines a constant to be used hereafter

Terminates the simulation

© M. Shabany, ASIC/FPGA Chip Design

Compiler Directives (Time Scale)

Unit/Precision Delay Specification Time Delayed Comments

1 ns/ 1ns #3 3ns

10 ns/ 1ns #3 30ns Delay is 3*10ns (time unit)

10 ns/ 1ns #3.2 32ns 3.2 is multiplied by 10

10 ns/ 1ns #3.36 34ns

10 ns/ 10ns #3.2 30ns

10 ns/ 100ps #3.748 37.5ns 3.748 is multiplied by 10 and
rounded to 2 decimal place

1 ns/ 1ns #3.22 3ns

 `timescale is used to define time delay unit/precision :

`timescale 10ns/1ns

© M. Shabany, ASIC/FPGA Chip Design

System Tasks ($display)

 $time: Returns the current simulation time as a 64-bit unsigned integer

 The returned value is scaled to the time unit of the module that invoked it

 $display: Immediately displays the values of its arguments

Example:

$display (“format string”, argument list)

$display (“Reset is = %b and Clock is = %b \n”, Reset, Clk)

Reset is = 1 and Clock is = 0

Reset is = 1 and Clock is = 1

Reset is = 0 and Clock is = 0

Reset is = 0 and Clock is = 1

© M. Shabany, ASIC/FPGA Chip Design

System Tasks ($display)

 $display: supports multiple default radixes

 $displayb (binary)

 $displayd (decimal)

 $displayh (hexadecimal)

 $displayo (octal)

 Formatters and Escaped literals can be used inside the format string.

 Formatters can be used to overrides the default radix

 Formatters:

 Escaped literals:

%b %c %h %d %t %o %s

\” (double quote) \n (new line) \\(backslash) \t(tab)

© M. Shabany, ASIC/FPGA Chip Design

System Tasks ($monitor)

 $monitor: to monitor changes in the signal values in its argument list

 Continuously monitors the variables in its argument list and displays the formatted

 arguments at the end of each simulation time in which any of signals changes value

 Only one $monitor system task can be active. Any subsequent invocation of

 $monitor starts monitoring the new signal arguments and discontinues monitoring

 the previous signal arguments.

 $monitoroff and $monitoron system tasks can be used to restrict monitoring to

 intervals of time, rather than monitoring entire remainder of simulation session.

 The $monitor system task accepts the same formatters/argument list as $display.

$monitor (“format string”, argument list)

© M. Shabany, ASIC/FPGA Chip Design

File Open/Close

 The stimulus can be read from a file and then applied to the DUT

 A file can be opened for reading or writing, and the syntax is as below:

 All fopen options:

 A file can be closed as follows:

file = $fopen("filename",r); // For reading

file = $fopen("filename",w); // For writing

file = $fclose("filename”);

“r” or “rb” Open for reading

“w” or “wb” Truncate to zero length or create for writing

“a” or “ab” Append (open for writing at end of file)

“r+”, “r+b”, or “rb+” Open for update (reading and writing)

“a+”, “a+b”, or “ab+” Append; Open or create for update at end-of-file

© M. Shabany, ASIC/FPGA Chip Design

Initial Construct

 Initial: Same as always except that whatever that is inside it executes only once

 Used for initialization at the beginning of the testbench

 Any signal assigned a value inside it should be of type variable (e.g., reg)

module test ();
 `timescale 1ns/1ns;
 reg Clk, Reset, in;
 wire Out;

 Moore DUT(in, Clk, Reset, Out);
 initial
 begin
 Clk = 1’b0; in = 1’b0; Reset = 1’b1;
 end
 initial #10 Reset = 1’b0;
 always #5 Clk = ~Clk;
 initial #7 in = 1’b1;
endmodule

A clock with 10ns period

Executes only once (as opposed to always)

Top module instantiation

Requires begin-end

for multiple statements Clk

in

Reset

0 5 10 15 20 25 30 35

© M. Shabany, ASIC/FPGA Chip Design

Creating Clock

`timescale 1ns/1ns;
 reg Clk;
 always
 begin
 # 10 Clk = 1;
 # 10 Clk = 0;
 end

`timescale 1ns/1ns;
 reg Clk;
 initial
 begin
 # 20 Clk = 1;
 forever begin
 # 10 Clk = 0;
 # 10 Clk = 1;
 end
 end

`timescale 1ns/1ns;
 reg Clk;
 initial
 begin
 # 20 Clk = 1;
 forever begin
 # 5 Clk = 0;
 # 15 Clk = 1;
 end
 end

`timescale 1ns/1ns;
 reg Clk;
 initial # 10 Clk = 1;
 always #10 Clk = ~Clk

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 Common stimulus application techniques are:

 In-line stimulus, applied from an initial block

 Stimulus applied from a loop or always block

 Stimulus applied from an array of vectors or integers

© M. Shabany, ASIC/FPGA Chip Design

In-Line Stimulus

fork-join construct is used to
 execute them all in parallel

© M. Shabany, ASIC/FPGA Chip Design

In-Loop Stimulus

In-Loop stimulus

© M. Shabany, ASIC/FPGA Chip Design

Random Stimulus

Initial repeat (13) #5 Clk = ~Clk;
Initial repeat (10) #6 In = $random;
Initial forever @(posedge Clk) #3 In2 = $random

 $random: Returns a 32-bit signed integer random value

There are two ways to terminate simulations

 $stop:

 A stopped simulation can be resumed after termination

 $finish:

 A finished simulation can NOT be resumed after termination

“In” receives random data
10 times every 6 time units

Initial #180 $stop;
Initial #180 $finish;

Both terminate simulation after 180 time units

3 time units after the posedge
Clk, In2 gets a new data

(No overlapping b/w data and Clk)

© M. Shabany, ASIC/FPGA Chip Design

Task Construct in Testbench

Clock period: 20 time units

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 Make sure you understand the timing transitions:

reg [10:0] Count;
reg [3:0] A;
always @ (posedge Clk)
 begin
 if (!Rst)
 A <= 4’b0;
 else if (Count == 3)
 A <= 4’b2;
 end
always @ (posedge Clk)
 begin
 if (!Rst)
 Count <= 11’b0;
 else
 Count <= Count + 1;
 end

Clk

Rst

Count 0 1 2 3 4 5

A 0 20 0 0 2

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 If another block wants to sample “SUM” value, it has to sample it when or
 after Count is 4.

reg [3:0] a, b;
wire [3:0] SUM;
always @ (posedge Clk)
 begin
 if (Count == 1)
 a <= 4’b0101;
 else if (Count == 3)
 b <= 4’b1010;
 end
assign SUM = a+b;

Clk

Count 0 1 2 3 4 5

a 0101 0101 0101 0101

b 1010 1010

SUM 1111 1111

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 Example:

module Counter(clk, reset, out);
input clk, reset;
output [2:0] out;
reg [2:0] count;

always @ (posedge clk)
begin
if (reset)
 count <= 0;
 else if (count == 3'b111)
 count <= 3'b000;
 else
 count <= count +3'b1;
end
assign out = count;
endmodule

`timescale 1 ps/ 1 ps
module Counter_tb();
reg clk, reset;
wire [2:0] out;

Counter i1 (.clk(clk),.out(out),.reset(reset));
initial

clk=0;
always
begin

#5 clk = 1;
#5 clk = 0;
$monitor("Reset is = %b and Clock is =
%b \n", Reset, Clk);

end
endmodule

Module Testbench

© M. Shabany, ASIC/FPGA Chip Design

File Reading for Verification

 $readmemb: Reads a file in binary and stores it in a reg variable

 $readmemh :reads in in hex

$readmemb (“file name”, reg_name, [start_add,[finish_add]]);

module Count_tb ();
 `timescale 1ns/1ns;
 reg Clk, Reset;
 wire Out;
 integer indx;
 parameter N = 100;
 reg [1:0] InReg [N-1:0];
 reg [1:0] DummyReg;

 test DUT(Clk, Reset, Out);

initial
 begin
 indx = 0;
 $readmemb(“TB.txt”, InReg);
 $display(“Running Testbench”);
 repeat (N)
 begin
 DummyReg = InReg[indx];
 Clk = DummyReg[0];
 Reset = DummyReg[1];
 #5 index = indx + 1;
 end
 $monitor(“Output is %b”, Out);
 end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 Example:

`timescale 1ns / 1ps
module adder(a,b,c);
input [1:0] a;
input [1:0] b;
output [2:0] c;

assign c=a+b;

endmodule

Module

Testbench

`timescale 1ns / 1ps
module TestBench();
reg Clk;
reg [1:0] aa;// aa and bb can be n-bit variables
reg [1:0] bb;
wire [2:0] out;
// Pointers should be defined as integer
integer op1, op2, op_out, k, j;
initial // Opening files for read and write
begin
Clk=0;
op1=$fopen ("a.txt","r");
op2=$fopen ("b.txt","r");
op_out=$fopen ("Result.txt","w");
 end
always #10 Clk<=~Clk;
 always @(posedge Clk)
begin
k <= $fscanf (op1, "%b \n", aa);
j <= $fscanf (op2, "%b \n",bb);
end
adder add1(.a(aa),.b(bb),.c(out));
always @(posedge Clk) begin
 $fwrite (op_out,"%b \n",out);
end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 Example:

10
00
00
11
10
11
01
00
10
11

a.txt Result.txt

10
11
11
01
00
10
01
11
00
00

100
011
011
100
010
101
010
011
010
011

b.txt

© M. Shabany, ASIC/FPGA Chip Design

Example: Code (4-bit Ripple-Carry Counter)

module ripple_carry_counter (q, clk,
reset);
output [3:0] q;
input clk, reset;
T_FF tff0 (q[0], clk, reset);
T_FF tff1 (q[1], q[0], reset);
T_FF tff2 (q[2], q[1], reset);
T_FF tff3 (q[3], q[2], reset);
endmodule

module T_FF (q, clk, reset);
 output q;
input clk, reset;
wire d;

D_FF dff0 (q, d, clk, reset);
not n1 (d, q); //not is Verilog provided
primitive
endmodule

// module D_FF with synchronous
reset

Module

module D_FF (q, d, clk, reset);
output q;
input d, clk, reset;
req q;
always @(posedge reset or negedge clk)
 if (reset)
 q = 1,b0;
//module D_FF with synchronous reset
 else
 q = d;
endmodule;

© M. Shabany, ASIC/FPGA Chip Design

Example: Testbench

module stimulus;
req clk;
req reset;
wire [3:0] q;
 //instantiate the design block;
Ripple_carry_counter r1(q, clk, reset);

 //control the clk signal that drives the design block //cycle time = 10
initial
 clk = 1’b0; //set clk to 0
always
 #5 clk = ~clk; //toggle clk every 5 time units

//control the clk signal that drives the design block
//reset the arrested from 0 to 20 and from 200 to 220.
initial
begin
reset = 1’b1;
#15 reset = 1’b0;
#180 reset = 1’b1;
#10 reset = 1’b0;
#20 $finish; //terminate the simulation
end

Testbench

 //monitor the outputs
initial
Smonitor($time, “output q = %d”, q);
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Example : Results

0 output q = 0

20 output q = 1

30 output q = 2

40 output q = 3

50 output q = 4

60 output q = 5

70 output q = 6

80 output q = 7

90 output q = 8

100 output q = 9

110 output q = 10

120 output q = 11

130 output q = 12

140 output q = 13

150 output q = 14

160 output q = 15

170 output q = 0

180 output q = 1

190 output q = 2

195 output q = 0

210 output q = 1

220 output q = 2

Result

© M. Shabany, ASIC/FPGA Chip Design

Simulation Tool: Modelsim

 We use Modelsim as the simulation tool for our testbenches

 Modelsim can also compile the design

 The tutorial for Modelsim should be read and done with the files provided on
the course website.

