
© M. Shabany, ASIC/FPGA Chip Design

ASIC/FPGA Chip Design

Mahdi Shabany

Department of Electrical Engineering

Sharif University of technology

Verification

© M. Shabany, ASIC/FPGA Chip Design

Verification

 Exponential increase in the complexity of ASIC implies need for sophisticated
verification methods to be incorporated in the ASIC design process.

 Catch the bug as early as possible

 So catch it in simulation saves time and money.
 Imagine respin of a chip if the same bug is caught in Silicon

 Verification:

A process that ensures conformance of a
design to predefined expectations

© M. Shabany, ASIC/FPGA Chip Design

Verification

 Types of Verification:

 Functional:
 Functional verification of RTL

 Gate-level simulation:

 To verify that the synthesized netlist matches the expected functionality

 Formal Verification (equivalence checking):
 To make sure that the gate level netlist is equivalent to the RTL

Timing Verification:

 To verify that the design can run at speed

© M. Shabany, ASIC/FPGA Chip Design

Functional Verification

 Two general methods:

 Graphical and manually:
 Inserting inputs and clock manually and run graphical simulations using CAD
tools such as Quartus or ISE

o Good for simple designs
o Suitable for early evaluations

 Automated:
 Writing testbench to run the simulation/verification automatically

o Suitable for large designs
o Suitable for stress testing

© M. Shabany, ASIC/FPGA Chip Design

Testbench (Functional Verification)

 Testbench is a Verilog module to simulate a Design Under Test (DUT)

 Testbench:

 A Verilog module
 Instantiates the DUT
 Apply stimulus (data) to the DUT
 Monitors the results to verify that the test was successful (i.e., the output of
 the DUT conformed to expectations)

Test generator

&

Monitoring

Design Under Test

(DUT)

Testbench

Stimulus

Results

© M. Shabany, ASIC/FPGA Chip Design

Testbench

© M. Shabany, ASIC/FPGA Chip Design

Testbench (Functional Verification)

 Simulation of Verilog designs takes the following steps:

 Compilation & Elaboration:

 The simulator reads the design description, processes compiler directives, and
 builds a data structure that defines the design hierarchy.

 Initialization:
 The simulator initializes module parameters, storage elements and nets.
 When simulation starts at time zero, the simulator propagates these changes and
 executes the statements in each initial and always block up to a timing control.

 Simulation:

 The simulator processes events and applies them to the DUT
 The results are displayed and/or saved for investigation

© M. Shabany, ASIC/FPGA Chip Design

Verilog Simulation Commands:

 The Verilog includes compiler directives and system tasks to control
 the simulation of a Verilog mode

 `<directive> compiler directives:

 Executed prior to simulation time zero
 Instructions to simulators on how to compile models
 Always start with a ` accent grave (the “back tic”)

 $<task> system tasks:

 Executed during simulation (i.e.: to display values)
 Used as programming statements
 Always start with a $ dollar sign

`include `timescale `define

$monitor $display $time

© M. Shabany, ASIC/FPGA Chip Design

Compiler Directives (Include Files)

Defines a constant to be used hereafter

Terminates the simulation

© M. Shabany, ASIC/FPGA Chip Design

Compiler Directives (Time Scale)

Unit/Precision Delay Specification Time Delayed Comments

1 ns/ 1ns #3 3ns

10 ns/ 1ns #3 30ns Delay is 3*10ns (time unit)

10 ns/ 1ns #3.2 32ns 3.2 is multiplied by 10

10 ns/ 1ns #3.36 34ns

10 ns/ 10ns #3.2 30ns

10 ns/ 100ps #3.748 37.5ns 3.748 is multiplied by 10 and
rounded to 2 decimal place

1 ns/ 1ns #3.22 3ns

 `timescale is used to define time delay unit/precision :

`timescale 10ns/1ns

© M. Shabany, ASIC/FPGA Chip Design

System Tasks ($display)

 $time: Returns the current simulation time as a 64-bit unsigned integer

 The returned value is scaled to the time unit of the module that invoked it

 $display: Immediately displays the values of its arguments

Example:

$display (“format string”, argument list)

$display (“Reset is = %b and Clock is = %b \n”, Reset, Clk)

Reset is = 1 and Clock is = 0

Reset is = 1 and Clock is = 1

Reset is = 0 and Clock is = 0

Reset is = 0 and Clock is = 1

© M. Shabany, ASIC/FPGA Chip Design

System Tasks ($display)

 $display: supports multiple default radixes

 $displayb (binary)

 $displayd (decimal)

 $displayh (hexadecimal)

 $displayo (octal)

 Formatters and Escaped literals can be used inside the format string.

 Formatters can be used to overrides the default radix

 Formatters:

 Escaped literals:

%b %c %h %d %t %o %s

\” (double quote) \n (new line) \\(backslash) \t(tab)

© M. Shabany, ASIC/FPGA Chip Design

System Tasks ($monitor)

 $monitor: to monitor changes in the signal values in its argument list

 Continuously monitors the variables in its argument list and displays the formatted

 arguments at the end of each simulation time in which any of signals changes value

 Only one $monitor system task can be active. Any subsequent invocation of

 $monitor starts monitoring the new signal arguments and discontinues monitoring

 the previous signal arguments.

 $monitoroff and $monitoron system tasks can be used to restrict monitoring to

 intervals of time, rather than monitoring entire remainder of simulation session.

 The $monitor system task accepts the same formatters/argument list as $display.

$monitor (“format string”, argument list)

© M. Shabany, ASIC/FPGA Chip Design

File Open/Close

 The stimulus can be read from a file and then applied to the DUT

 A file can be opened for reading or writing, and the syntax is as below:

 All fopen options:

 A file can be closed as follows:

file = $fopen("filename",r); // For reading

file = $fopen("filename",w); // For writing

file = $fclose("filename”);

“r” or “rb” Open for reading

“w” or “wb” Truncate to zero length or create for writing

“a” or “ab” Append (open for writing at end of file)

“r+”, “r+b”, or “rb+” Open for update (reading and writing)

“a+”, “a+b”, or “ab+” Append; Open or create for update at end-of-file

© M. Shabany, ASIC/FPGA Chip Design

Initial Construct

 Initial: Same as always except that whatever that is inside it executes only once

 Used for initialization at the beginning of the testbench

 Any signal assigned a value inside it should be of type variable (e.g., reg)

module test ();
 `timescale 1ns/1ns;
 reg Clk, Reset, in;
 wire Out;

 Moore DUT(in, Clk, Reset, Out);
 initial
 begin
 Clk = 1’b0; in = 1’b0; Reset = 1’b1;
 end
 initial #10 Reset = 1’b0;
 always #5 Clk = ~Clk;
 initial #7 in = 1’b1;
endmodule

A clock with 10ns period

Executes only once (as opposed to always)

Top module instantiation

Requires begin-end

for multiple statements Clk

in

Reset

0 5 10 15 20 25 30 35

© M. Shabany, ASIC/FPGA Chip Design

Creating Clock

`timescale 1ns/1ns;
 reg Clk;
 always
 begin
 # 10 Clk = 1;
 # 10 Clk = 0;
 end

`timescale 1ns/1ns;
 reg Clk;
 initial
 begin
 # 20 Clk = 1;
 forever begin
 # 10 Clk = 0;
 # 10 Clk = 1;
 end
 end

`timescale 1ns/1ns;
 reg Clk;
 initial
 begin
 # 20 Clk = 1;
 forever begin
 # 5 Clk = 0;
 # 15 Clk = 1;
 end
 end

`timescale 1ns/1ns;
 reg Clk;
 initial # 10 Clk = 1;
 always #10 Clk = ~Clk

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 Common stimulus application techniques are:

 In-line stimulus, applied from an initial block

 Stimulus applied from a loop or always block

 Stimulus applied from an array of vectors or integers

© M. Shabany, ASIC/FPGA Chip Design

In-Line Stimulus

fork-join construct is used to
 execute them all in parallel

© M. Shabany, ASIC/FPGA Chip Design

In-Loop Stimulus

In-Loop stimulus

© M. Shabany, ASIC/FPGA Chip Design

Random Stimulus

Initial repeat (13) #5 Clk = ~Clk;
Initial repeat (10) #6 In = $random;
Initial forever @(posedge Clk) #3 In2 = $random

 $random: Returns a 32-bit signed integer random value

There are two ways to terminate simulations

 $stop:

 A stopped simulation can be resumed after termination

 $finish:

 A finished simulation can NOT be resumed after termination

“In” receives random data
10 times every 6 time units

Initial #180 $stop;
Initial #180 $finish;

Both terminate simulation after 180 time units

3 time units after the posedge
Clk, In2 gets a new data

(No overlapping b/w data and Clk)

© M. Shabany, ASIC/FPGA Chip Design

Task Construct in Testbench

Clock period: 20 time units

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 Make sure you understand the timing transitions:

reg [10:0] Count;
reg [3:0] A;
always @ (posedge Clk)
 begin
 if (!Rst)
 A <= 4’b0;
 else if (Count == 3)
 A <= 4’b2;
 end
always @ (posedge Clk)
 begin
 if (!Rst)
 Count <= 11’b0;
 else
 Count <= Count + 1;
 end

Clk

Rst

Count 0 1 2 3 4 5

A 0 20 0 0 2

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 If another block wants to sample “SUM” value, it has to sample it when or
 after Count is 4.

reg [3:0] a, b;
wire [3:0] SUM;
always @ (posedge Clk)
 begin
 if (Count == 1)
 a <= 4’b0101;
 else if (Count == 3)
 b <= 4’b1010;
 end
assign SUM = a+b;

Clk

Count 0 1 2 3 4 5

a 0101 0101 0101 0101

b 1010 1010

SUM 1111 1111

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 Example:

module Counter(clk, reset, out);
input clk, reset;
output [2:0] out;
reg [2:0] count;

always @ (posedge clk)
begin
if (reset)
 count <= 0;
 else if (count == 3'b111)
 count <= 3'b000;
 else
 count <= count +3'b1;
end
assign out = count;
endmodule

`timescale 1 ps/ 1 ps
module Counter_tb();
reg clk, reset;
wire [2:0] out;

Counter i1 (.clk(clk),.out(out),.reset(reset));
initial

clk=0;
always
begin

#5 clk = 1;
#5 clk = 0;
$monitor("Reset is = %b and Clock is =
%b \n", Reset, Clk);

end
endmodule

Module Testbench

© M. Shabany, ASIC/FPGA Chip Design

File Reading for Verification

 $readmemb: Reads a file in binary and stores it in a reg variable

 $readmemh :reads in in hex

$readmemb (“file name”, reg_name, [start_add,[finish_add]]);

module Count_tb ();
 `timescale 1ns/1ns;
 reg Clk, Reset;
 wire Out;
 integer indx;
 parameter N = 100;
 reg [1:0] InReg [N-1:0];
 reg [1:0] DummyReg;

 test DUT(Clk, Reset, Out);

initial
 begin
 indx = 0;
 $readmemb(“TB.txt”, InReg);
 $display(“Running Testbench”);
 repeat (N)
 begin
 DummyReg = InReg[indx];
 Clk = DummyReg[0];
 Reset = DummyReg[1];
 #5 index = indx + 1;
 end
 $monitor(“Output is %b”, Out);
 end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 Example:

`timescale 1ns / 1ps
module adder(a,b,c);
input [1:0] a;
input [1:0] b;
output [2:0] c;

assign c=a+b;

endmodule

Module

Testbench

`timescale 1ns / 1ps
module TestBench();
reg Clk;
reg [1:0] aa;// aa and bb can be n-bit variables
reg [1:0] bb;
wire [2:0] out;
// Pointers should be defined as integer
integer op1, op2, op_out, k, j;
initial // Opening files for read and write
begin
Clk=0;
op1=$fopen ("a.txt","r");
op2=$fopen ("b.txt","r");
op_out=$fopen ("Result.txt","w");
 end
always #10 Clk<=~Clk;
 always @(posedge Clk)
begin
k <= $fscanf (op1, "%b \n", aa);
j <= $fscanf (op2, "%b \n",bb);
end
adder add1(.a(aa),.b(bb),.c(out));
always @(posedge Clk) begin
 $fwrite (op_out,"%b \n",out);
end
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Applying Stimulus

 Example:

10
00
00
11
10
11
01
00
10
11

a.txt Result.txt

10
11
11
01
00
10
01
11
00
00

100
011
011
100
010
101
010
011
010
011

b.txt

© M. Shabany, ASIC/FPGA Chip Design

Example: Code (4-bit Ripple-Carry Counter)

module ripple_carry_counter (q, clk,
reset);
output [3:0] q;
input clk, reset;
T_FF tff0 (q[0], clk, reset);
T_FF tff1 (q[1], q[0], reset);
T_FF tff2 (q[2], q[1], reset);
T_FF tff3 (q[3], q[2], reset);
endmodule

module T_FF (q, clk, reset);
 output q;
input clk, reset;
wire d;

D_FF dff0 (q, d, clk, reset);
not n1 (d, q); //not is Verilog provided
primitive
endmodule

// module D_FF with synchronous
reset

Module

module D_FF (q, d, clk, reset);
output q;
input d, clk, reset;
req q;
always @(posedge reset or negedge clk)
 if (reset)
 q = 1,b0;
//module D_FF with synchronous reset
 else
 q = d;
endmodule;

© M. Shabany, ASIC/FPGA Chip Design

Example: Testbench

module stimulus;
req clk;
req reset;
wire [3:0] q;
 //instantiate the design block;
Ripple_carry_counter r1(q, clk, reset);

 //control the clk signal that drives the design block //cycle time = 10
initial
 clk = 1’b0; //set clk to 0
always
 #5 clk = ~clk; //toggle clk every 5 time units

//control the clk signal that drives the design block
//reset the arrested from 0 to 20 and from 200 to 220.
initial
begin
reset = 1’b1;
#15 reset = 1’b0;
#180 reset = 1’b1;
#10 reset = 1’b0;
#20 $finish; //terminate the simulation
end

Testbench

 //monitor the outputs
initial
Smonitor($time, “output q = %d”, q);
endmodule

© M. Shabany, ASIC/FPGA Chip Design

Example : Results

0 output q = 0

20 output q = 1

30 output q = 2

40 output q = 3

50 output q = 4

60 output q = 5

70 output q = 6

80 output q = 7

90 output q = 8

100 output q = 9

110 output q = 10

120 output q = 11

130 output q = 12

140 output q = 13

150 output q = 14

160 output q = 15

170 output q = 0

180 output q = 1

190 output q = 2

195 output q = 0

210 output q = 1

220 output q = 2

Result

© M. Shabany, ASIC/FPGA Chip Design

Simulation Tool: Modelsim

 We use Modelsim as the simulation tool for our testbenches

 Modelsim can also compile the design

 The tutorial for Modelsim should be read and done with the files provided on
the course website.

