ASIC & FPGA Chip Design:

Synthesis

Mahdi Shabany

Department of Electrical Engineering
Sharif University of technology

Outline

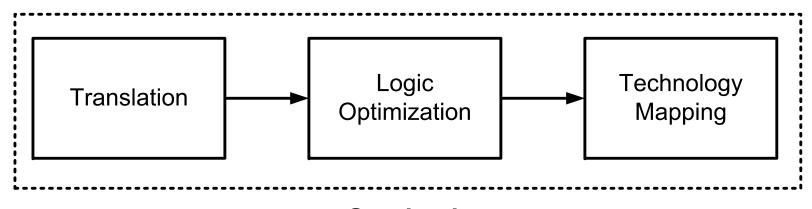
- ☐ Introduction to Synthesis
- Digital Logic Basics
- Logic Optimization
 - Two-level logic synthesis
 - Multi-level logic synthesis
- ☐ Technology Mapping
 - Boolean Satisfiability
 - ASIC/FPGA-oriented Technology Mapping

Outline

- ☐ Introduction to Synthesis
- ☐ Digital Logic Basics
- **☐** Logic Optimization
 - > Two-level logic synthesis
 - ➤ Multi-level logic synthesis
- ☐ Technology Mapping
 - Boolean Satisfiability
 - > ASIC/FPGA-oriented Technology Mapping

Synthesis

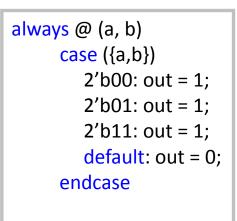
- Synthesis = Translation + Logic Optimization + Technology Mapping
 - > Translation: going from RTL to Boolean function
 - > Logic Optimization : Optimizing and minimizing Boolean function
 - > Technology Mapping (TM): Map the Boolean function to the target library

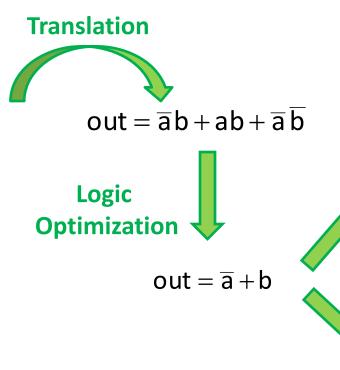


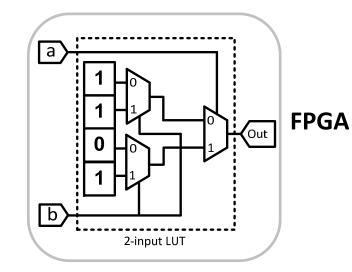
Synthesis

Synthesis

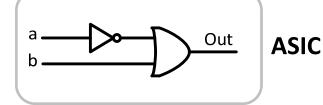
☐ **Synthesis** = Translation + Logic Optimization + Technology Mapping







Technology Mapping



Outline

- ☐ Introduction to Synthesis
- ☐ Digital Logic Basics
- **☐** Logic Optimization
 - > Two-level logic synthesis
 - ➤ Multi-level logic synthesis
- □ Technology Mapping
 - Boolean Satisfiability
 - > ASIC/FPGA-oriented Technology Mapping

Digital Logic Basics: Boolean Function

$$f(x): B^n \longrightarrow B$$

B = {0, 1},
$$x = (x_1, x_2, ..., x_n)$$

- x₁, x₂, ... are variables
- $x_1, \overline{x_1}, x_2, \overline{x_2}, \dots$ are literals
- each vertex of Bⁿ is mapped to 0 or 1
- the onset of f is a set of input values for which f(x) = 1
- the offset of f is a set of input values for which f(x) = 0

Digital Logic Basics

- ☐ A Boolean function can be represented by:
 - > A truth table

X ₁	X ₂	f
0	0	0
0	1	1
1	0	1
1	1	0

- > A logic expression
 - We use logic variables and operators (AND, OR, NOT, XOR, XNOR, NAND, NOR) to express a logical relation b/w input variables and the output function

$$f = x_1 \oplus x_2$$

Digital Logic Basics: SOP

- ☐ Sum of Products (SOP):
 - > A logic function that is represented as an OR of product (AND) terms:

$$f(x_1, x_2, x_3) = x_1 + x_2x_3 + \overline{x}_1x_2x_3$$
Literal cube minterm

- A <u>literal</u> is a function input (e.g., $\overline{\chi}_1, \chi_2$).
- A <u>product term</u> is formed using an AND operation and literals in either true or complemented form.
- A <u>cube</u> is the AND of set of literals
- A <u>minterm</u> is a cube that contains all literals of a logic function
 A function with K variables has 2^K possible K-literal minterms
- A <u>cover</u> of "**f**" is a set of cubes that represent the logic function "**f**" \circ (e.g., $C = \{x_1, x_2, x_3, \overline{x}_1, x_2, x_3\}$)

Digital Logic Basics: POS

- ☐ Product of Sums (POS):
 - > A logic function that is represented as an AND of sum (OR) terms:

$$f = (x_1 + x_2)(x_3 + x_2)$$

- A <u>sum term</u> is formed using an OR operation and literals in either true or complemented form.
- A <u>maxterm</u> is a sum term that contains all literals of a logic function
- ☐ POS can be derived from SOP by DeMorgan's Theorem and double complementation

$$f = x_1 + x_2 x_3$$

$$\overline{f} = \overline{x_1 + x_2 x_3} = \overline{(x_1)} \cdot \overline{(x_2 x_3)} = \overline{x_1} \cdot (\overline{x_2} + \overline{x_3}) = \overline{x_1} \overline{x_2} + \overline{x_1} \overline{x_3}$$

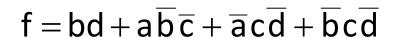
$$f = \overline{\overline{f}} = \overline{\overline{x_1}} \overline{x_2} + \overline{x_1} \overline{x_3} = \overline{(\overline{x_1}} \overline{x_2}) \cdot \overline{(\overline{x_1}} \overline{x_3})$$

$$f = (x_1 + x_2)(x_1 + x_3)$$

Digital Logic Basics: Karnaugh Map

☐ Karnaugh Map:

- > Variables assigned to rows and columns.
- Adjacent valuations differ by 1 position.
- \triangleright Form product terms by creating groups with 2^k 1s that are adjacent to one another



Digital Logic Basics: Implementation Cost

☐ Cost of an Implementation:

Cost of implementation = # of inputs + # of gates (except NOTs)

Example:

$$f = \underline{bd} + \underline{a}\overline{b}\overline{c} + \overline{a}c\overline{d} + \overline{b}c\overline{d}$$

5

$$\triangleright$$
 Cost = 3 + 4 + 4 + 4 + 5 = 20

Digital Logic Basics : Canonical Form

☐ Canonical Form:

- ➤ A form of Boolean logic function representation is said to be canonical if and only if for each logic function there exists a unique representation in the given form
- > Function is described using its equivalent minterms

Example:

> Canonical

$$f(a,b,c) = a\overline{b}c + abc$$

Non-canonical

$$f(a,b,c) = a\overline{b}c + abc + bc$$

Because it has a cube that does not include all the literals

☐ Any Boolean logic can be represented in a canonical form

Outline

- ☐ Introduction to Synthesis
- ☐ Digital Logic Basics
- **☐** Logic Optimization
 - Two-level logic synthesis
 - ➤ Multi-level logic synthesis
- ☐ Technology Mapping
 - Boolean Satisfiability
 - ➤ ASIC/FPGA-oriented Technology Mapping

Two-Level Logic Synthesis: Cubical Notation

☐ Cubical Notation:

- > A different way to represent a product term
 - "0": to represent inverted variable
 - "1": to represent a variable in true form
 - "X": to represent a variable not used in the product term

abcd	p-term	
X1X1 —		f = {X1X1, 100X, 0X10, X010}
100X —	→	
0X10 —		
X010		(Easier to implement in a computer program)

Two-Level Logic Synthesis: Cubical Notation

☐ Cubical Notation:

- > A different way to represent a product term
 - "0": to represent inverted variable
 - "1": to represent a variable in true form
 - "X": to represent a variable not used in the product term

abcd	p-term	
X1X1 — 100X —		f = {X1X1, 100X, 0X10, X010}
0X10 —	<u></u>	
X010	→ b̄cd̄	(Easier to implement in a computer program)

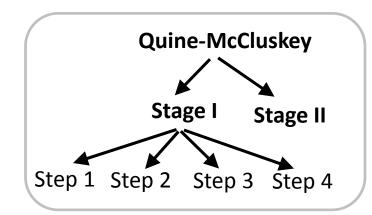
Two-Level Logic Synthesis: Quine-McCluskey Method

- ☐ How do we use cubical notation to synthesize logic functions?
 - Quine-McCluskey method
 - Willard Quine (1908-2000)) and Edward McCluskey (1928-present)
- ☐ Quine-McCluskey method: (2 Stages)

Stage I: Take minterms for a function (Canonical) and form Prime Implicants (PIs).

Stage II: Pick <u>minimum</u> Prime Implicants to generate a cover.

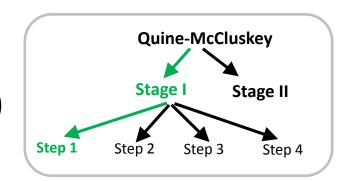
A <u>cover</u> of a function is a set of cubes that represent that logic function



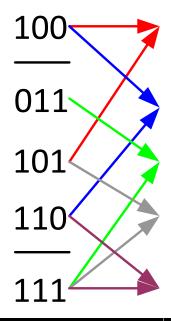
Quine-McCluskey Method: Stage I – Step 1

☐ Stage I of Quine-McCluskey method has four steps:

$$f(a,b,c) = \sum m(3,4,5,6,7)$$



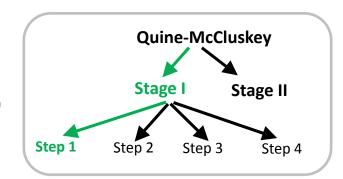
Step 1: List all minterms grouped in increasing order of the number of 1s they contain. Take cubes from adjacent groups to form larger product terms.



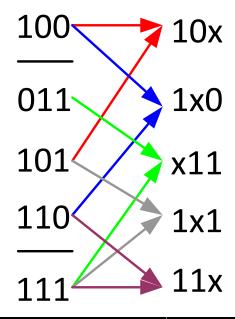
Quine-McCluskey Method: Stage I – Step 1

☐ Stage I of Quine-McCluskey method has four steps:

$$f(a,b,c) = \sum m(3,4,5,6,7)$$



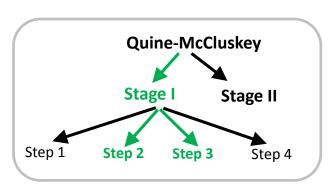
Step 1: List all minterms grouped in increasing order of the number of 1s they contain. Take cubes from adjacent groups to form larger product terms.

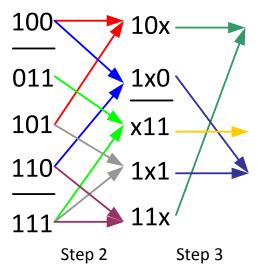


Quine-McCluskey Method: Stage I – Step 2/3

- **Step 2:** Take original set of cubes and the newly created ones.

 Remove any cube from the set that is completely covered by any other cube.
 - > In this case we remove all minterms and use only the newly created cubes.
- **Step 3:** Group cubes in the increasing order of **non-zero positions.** By taking terms from adjacent groups form larger product terms.
 - ➤ Rules: X's must match and the other position must differ by exactly one position (one cube has a 1 where the other has a 0).

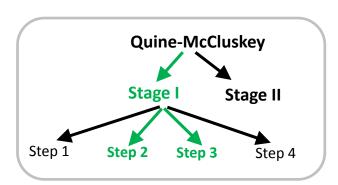


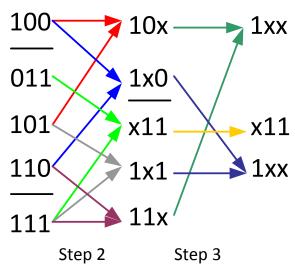


Quine-McCluskey Method: Stage I – Step 2/3

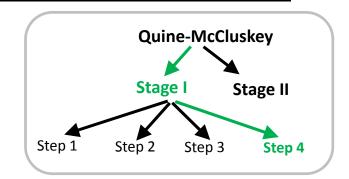
- **Step 2:** Take original set of cubes and the newly created ones.

 Remove any cube from the set that is completely covered by any other cube.
 - > In this case we remove all minterms and use only the newly created cubes.
- **Step 3:** Group cubes in the increasing order of **non-zero positions.** By taking terms from adjacent groups form larger product terms.
 - ➤ Rules: X's must match and the other position must differ by exactly one position (one cube has a 1 where the other has a 0).



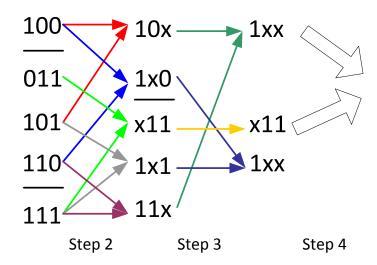


Quine-McCluskey Method: Stage I – Step 4

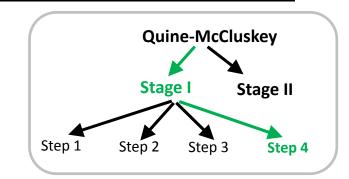


Step 4: Repeat steps 2-4 until all PIs are generated.

- > In our case we are done, because 1xx and x11 are the PIs for this function.
- ightharpoonup PI set = { 1xx, x11 }

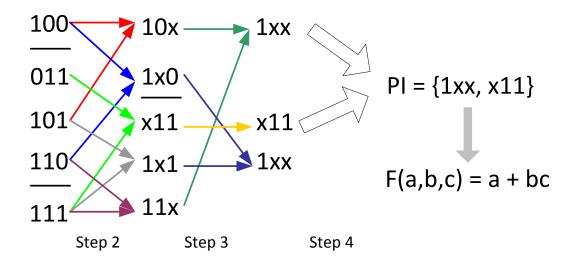


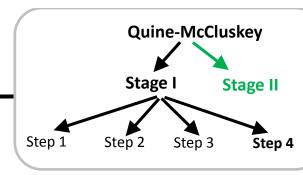
Quine-McCluskey Method: Stage I – Step 4



Step 4: Repeat steps 2-4 until all PIs are generated.

- > In our case we are done, because 1xx and x11 are the PIs for this function.
- > PI set = { 1xx, x11 }





- ☐ Stage II: Build a table list the minterms that are covered by each PI
 - (Prime Implicant Cover Table)
- ☐ Pick the essential prime implicants (columns with only one check mark)
 - > 1XX (the only one to cover 4, 5, 6, 7), X11 (the only one to cover 3)

Cube	3	4	5	6	7
1xx		Х	Х	Х	Х
x11	Х				

$$PI = \{1xx, x11\}$$

Done!

Quine-McCluskey Method: Stage I – (Step 1-4)

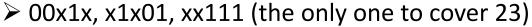
Example: $f(a,b,c,d,e) = \sum m(0,2,3,4,6,7,9,12,13,15,16,23,24,25,29,31)$

		000x0	Final Pls
00000		00x00	00xx0
00010		x0000	00xx0
00100		0001x	x0000
10000		00x10	AUUUU
		001x0 0x100	$\overline{00x1x}$
00011		1x000	OOMIN
00110			0x100
01001		00x11	4 000
01100		0011x 01x01	1x000
11000		x1001	1 01
$\frac{11000}{00111}$	<i>y</i>	0110x	x1x01
		1100x	0110x
01101		$\overline{0x111}$	UTTUX
11001		011x1	1100x
$\overline{01111}$		x0111	
10111		x1101	xx111
11101		11x01	
		$\overline{x1111}$	x11x1
11111		1x111	

111x1

When starting with minterms, we need to only consider the combination of cubes that create a larger cube (more x's).

- ☐ Stage II: Build a table list the minterms that are covered by each PI
 - ➤ (Prime Implicant Cover Table)



Cube	0	2	3	4	6	7	9	12	13	15	16	23	24	25	29	31
00xx0	X	X		X	X											
x0000	X										X					
00x1x		X	X		X	X										
0x100				X				X								
1x000											X		X			
x1x01							X		X					X	X	
0110x								X	X							
1100x													X	X		
xx111						X				X		X				X
x11x1									X	X					X	X

Quine-McCluskey

Step 3

Stage II

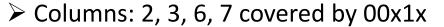
Step 4

Stage I

Step 2

Step 1

☐ Remove the columns covered by the essential prime implicants



> Columns: 9, 13, 25, 29 by x1x01

> Columns: 15, 23, 31 by xx111

Remove used PIs and covered minterms from the table

Step 1

Quine-McCluskey

Step 3

Stage II

Step 4

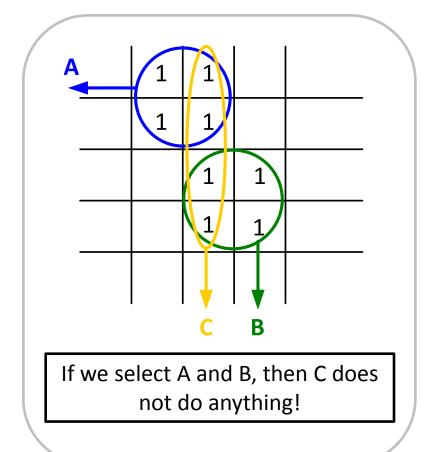
Stage I

Step 2

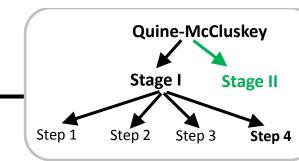
Cube	0	2	3	4	6	7	9	12	13	15	16	23	24	25	29	31
00xx0	X	X		X	X											
x0000	X										X					
00x1x		X	X		X	X										
0x100				X				X								
1x000											X		X			
x1x01							X		X					X	X	
0110x								X	X							
1100x													X	X		
xx111						X				X		X				X
x11x1									X	X					X	X

☐ Notice that cube x11x1 does not cover any of the remaining minterms. So remove it.

	0	4	12	16	24
00xx0	Х	Х			
X0000	Х			Х	
0x100		Х	Х		
1x000				Х	Х
0110x			Х		
1100x					Х
x11x1					



Definition 1: Row dominance



- ➤ Row A in the covering table dominates another row B if and only if row A covers at least the same set of columns as row B, and the PI in row B has equal or greater cost than the PI in row A.
- ➤ Notice that 1x000 dominates 1100x, 0x100 dominates 0110x., so:

	0	4	12	16	24
00xx0	X	X			
X0000	X			Χ	
0x100		Χ	Χ		
1x000				X	X
0110x			Х		
1100x					Χ

	0	4	12	16	24
00xx0	X	Х			
X0000	X			Χ	
0x100		Х	Χ		
1x000				Х	Х

□ Definition 1: Column dominance

- ➤ Column i dominates column j if and only if column i is covered by at least the same set of cubes as column j. In such cases we remove the column i from the table.
- ➤ Notice that column 4 dominates column 12, and column 16 dominates 24, so:

	0	4	12	16	24		0	12
00xx0	Χ	X				00xx0	X	
X0000	Χ			Х		X0000	Х	
0x100		X	Х			0x100		X
1x000				Х	X	1x000		

 $PI = \{00x1x, x1x01, xx111, 0x100, 1x00\}$

Essential PIs

24

☐ By row dominance, x0000 is removed, so:

> It covers the same number of columns as 00xx0, but it has a larger cost

	0	12	24				_	<u> </u>
00xx0	Х					0	12	24
X0000	X				00xx0	Х		
				J				
							L	

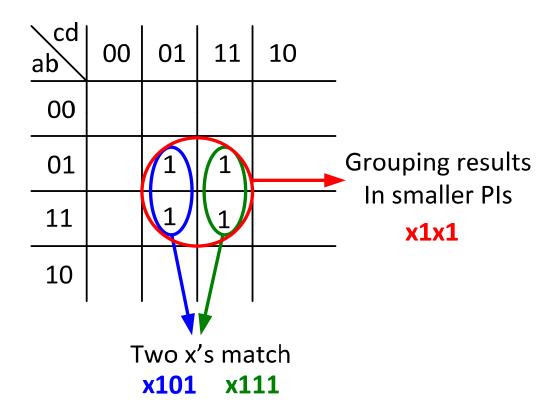
 $PI = \{00x1x, x1x01, xx111, 0x100, 1x00, 00xx0\}$

Quine-McCluskey Method: Summary

- 1. Generate all PIs starting with minterms
- 2. Create a prime implicant covering table. List PIs in the rows and function minterms in the columns.
- 3. For each PI indicate which minterms it covers by putting a checkmark in the corresponding column.
- 4. For each column covered by exactly one PI add the corresponding PI to your cover, removing the PI from the table, as well as any columns it covers.
- 5. Apply concepts of row and column dominance to reduce the table.
- 6. Repeat steps 4-6 until the table cannot be further reduced.

Quine-McCluskey Method: Note 1

- ☐ Why should x's match?
 - Matching x's is equivalent to grouping PIs in the Karnaugh map.



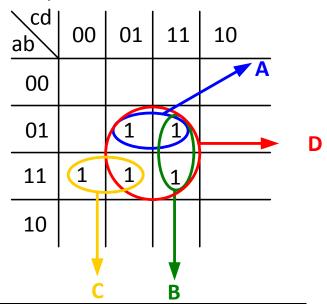
Quine-McCluskey Method: Note 2

- ☐ When starting with minterms (Canonical form), the above procedure works fine.
- Otherwise, it is necessary to represent the function as a sum of minterms first

$$f = \overline{a}bd + \underline{b}cd + \underline{a}b\overline{c}$$
 PI set = { 01x1, x111, 110x}

- ➤ Not possible to combine/reduce the above PI set (no x's match)
- > Represent "f" as a sum of minterms (canonical form)

$$f = ab\overline{c}\overline{d} + ab\overline{c}d + abcd + \overline{a}b\overline{c}d + \overline{a}bcd$$



Outline

- ☐ Introduction to Synthesis
- **☐** Digital Logic Basics
- **☐** Logic Optimization
 - > Two-level logic synthesis
 - Multi-level logic synthesis
- □ Technology Mapping
 - Boolean Satisfiability
 - > ASIC/FPGA-oriented Technology Mapping

Multi-Level Logic Synthesis

- ☐ Two-level logic synthesis is effective and mature
- ☐ Two-level logic synthesis is directly applicable to PLAs and PLDs

However, ...

- ☐ There are many functions that are too expensive to implement in two-level forms (too many product terms!)
- ☐ Two-level implementation constrains layout (AND-plane, OR-plane)

Multi-level logic synthesis may be employed

- ☐ Rule of thumb:
 - Two-level logic is good for control logic
 - Multi-level logic is good for data path or random logic

Multi-Level Logic Synthesis

- ☐ Multi-level logic synthesis:
 - > Decompose a logic function into smaller functions
 - > A simple tool to do this is called Shannon's Decomposition
 - Claude Shannon 1916-2001
- ☐ Shannon's Expansion Theorem:

Any logic function $f(x_1, x_2, ..., x_n)$ can be expanded in the form of:

$$x_k. f(x_1, x_2, x_{k-1}, 1, x_{k+1}, ..., x_n) + \overline{x}_k. f(x_1, x_2, x_{k-1}, 0, x_{k+1}, ..., x_n)$$

= $x_k. f_{X_k} + \overline{x}_k. f_{\overline{X}_k}$

$$> f_x = f(x_k = 1,...) : 1- cofactor$$

$$> f_{\overline{x}_k} = f(x_k = 0,...)$$
: 0- cofactor

Multi-Level Logic Synthesis

Example:

>
$$F(A, B, C) = A'B + ABC' + A'B'C$$

= $A(BC') + A'(B+B'C) = A.F_1 + A'.F_2$
> $F_2 = B+B'C = B.1 + B'.C$
> $F_1 = BC' = BC' + B'.0$

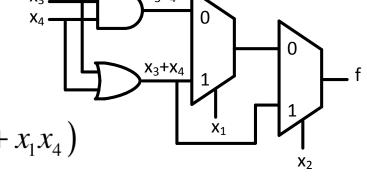
Multi-Level Logic Synthesis

Example:

$$f = \overline{x_1} \overline{x_2} x_3 x_4 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4$$

$$f = x_2 (x_1 x_3 + x_1 x_4 + x_3 + x_4) + \overline{x_2} (\overline{x_1} x_3 x_4 + x_1 x_3 + x_1 x_4)$$

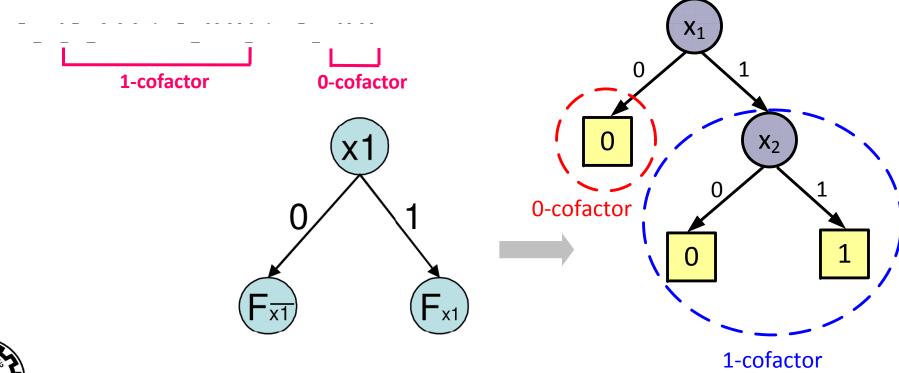
$$f = x_2 (x_3 + x_4) + \overline{x_2} (\overline{x_1} x_3 x_4 + x_1 (x_3 + x_4))$$



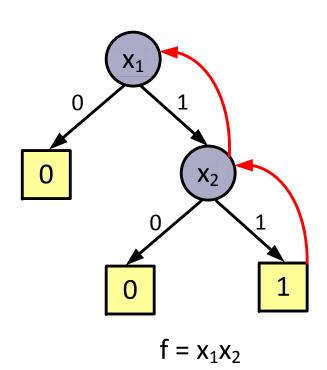
- \square We found out that logic expression (x_3+x_4) appears in multiple places. Hence, this knowledge could be used to simplify the implementation of this circuit.
- ☐ Keeping track of this type of relationships in a logic function can be tedious in a large expression.
- ☐ Can we represent this information in a better way?
 - > Yes, we can use Binary Decision Diagrams (BDDs)

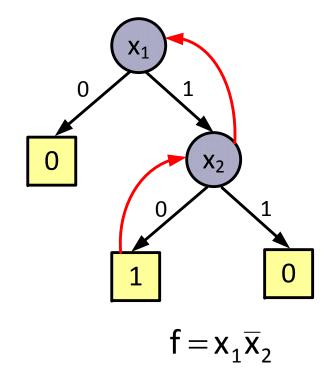
 \Box Let us decompose a function "f=x₁x₂" with respect to x₁:

$$f = x_1.f_{x_1} + \overline{x}_1.f_{\overline{x}_1}$$



- ☐ To derive the function from BDD, start from the bottom to top
- ☐ Start only with terminal nodes 1
- ☐ If see edge "1" use the variable otherwise its complement



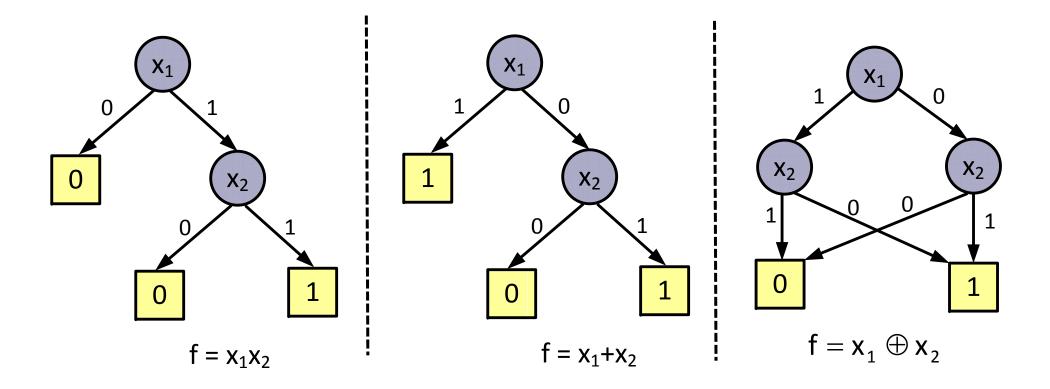


☐ A binary decision diagram represents a logic function by using Shannon's decomposition to decompose a function into cofactors, one variable at a time:

$$f = x_k . f_{x_k} + \overline{x}_k . f_{\overline{x}_k}$$

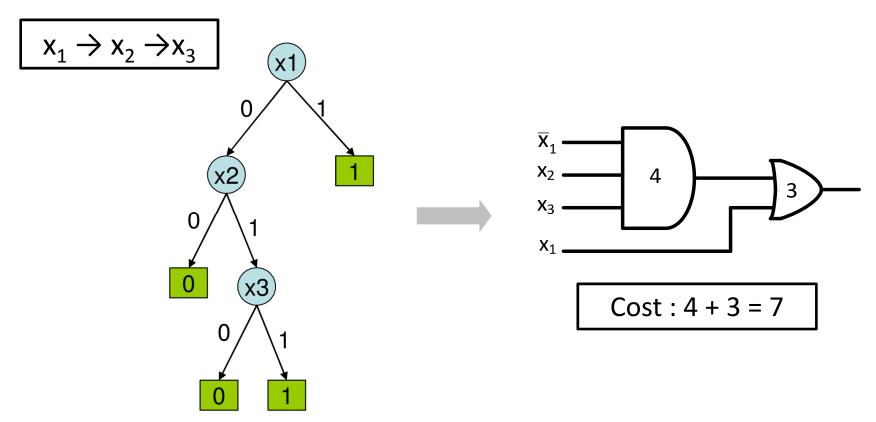
- \Box The decomposition steps are then represented as a directed graph G = (V,E), where:
 - ➤ **V** is a set of vertices. Each vertex is associated with a variable or a constant 0/1.
 - ▶ E is a set of directed edges. Each edge is assigned a label of 0 or 1. A
 0 edge always points to a 0-cofactor and a 1 edge points to a 1-cofactor.

☐ BDD of some basic logic functions:



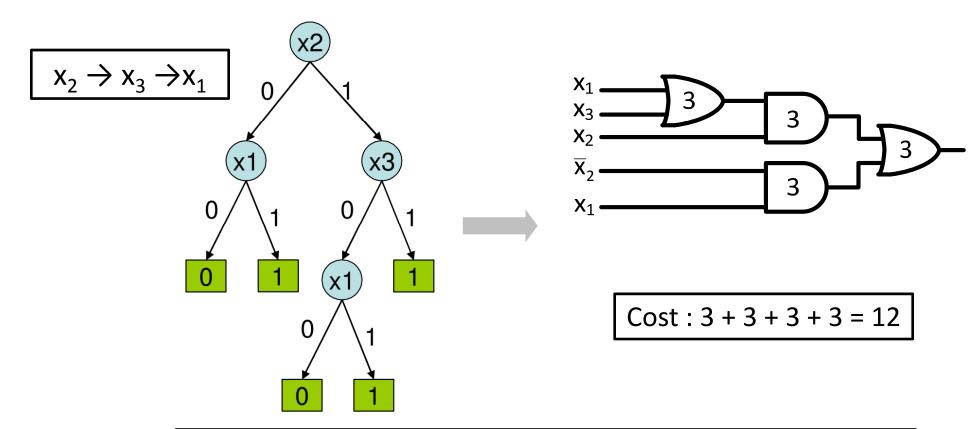
BDD: Decomposition Order Matters

***** Example: $f = x_1 + x_2x_3 = x_1(1) + \overline{x}_1x_2x_3$



BDD: Decomposition Order Matters

 \Leftrightarrow Example: $f = x_1 + x_2 x_3$

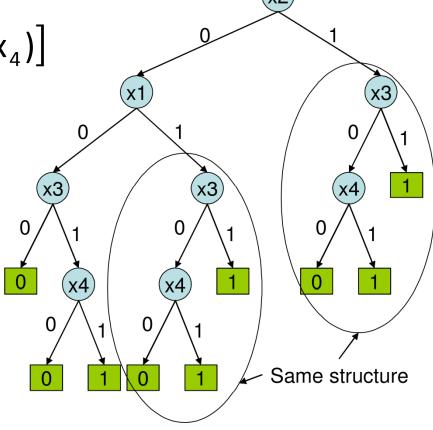


Different order of decomposition => different size/cost of the diagram

Ordered Binary Decision Decomposition (OBDD)

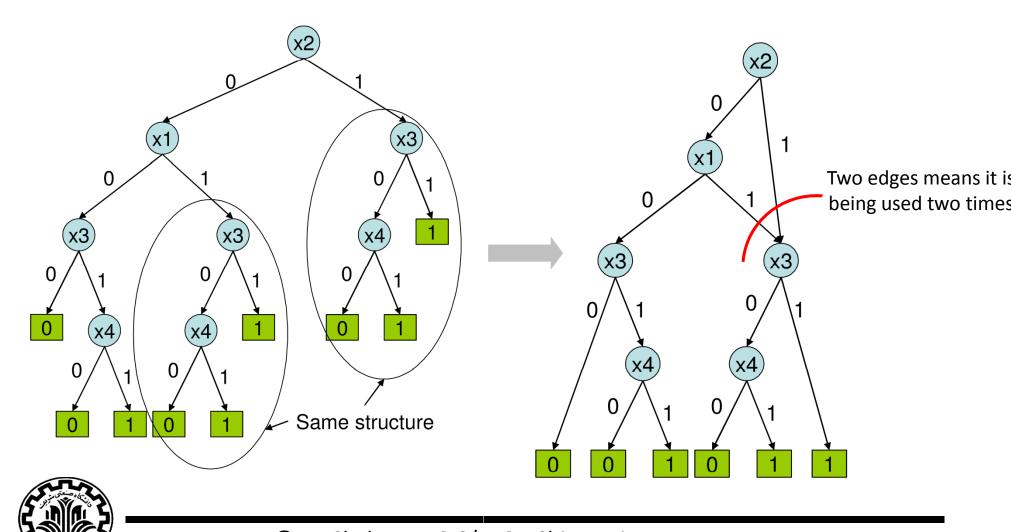
- ☐ We could impose a decomposition order by fixing the sequence of variable with respect to which we decompose a function (Ordered BDD = OBDD)
- ☐ Let us consider the following function:

$$f = x_2(x_3 + x_4) + \overline{x}_2[\overline{x}_1(x_3x_4) + x_1(x_3 + x_4)]$$



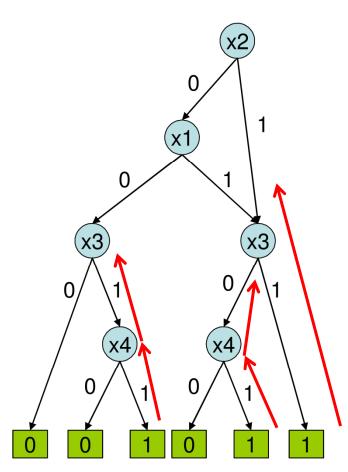
Reducing OBDDs

☐ Similar structure can be used to reduce the OBDD



Reducing OBDDs

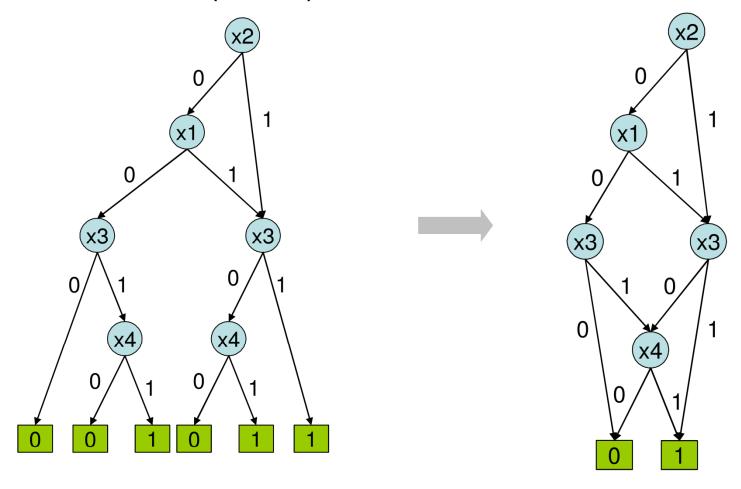
☐ Cost of this OBDD:



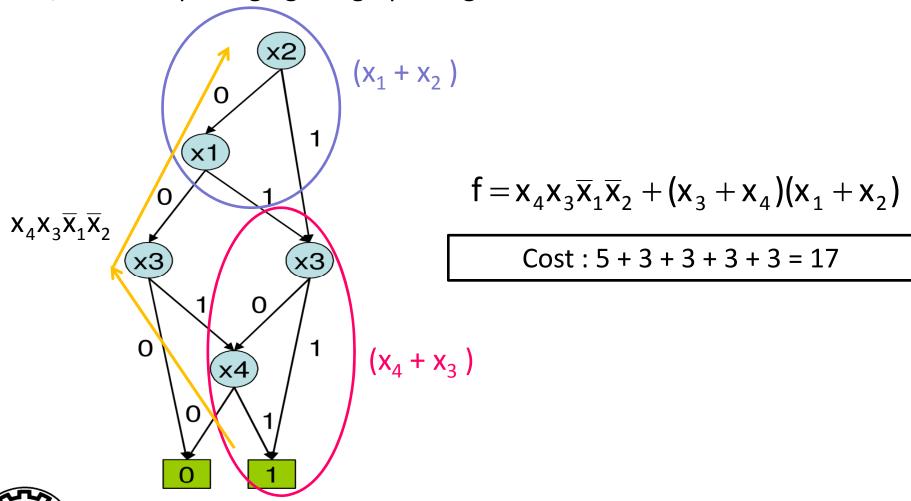
$$f = x_4 x_3 \overline{x}_1 \overline{x}_2 + (x_4 + x_3)(x_1 + x_2)$$

Cost: 5 + 3 + 3 + 3 + 3 = 17

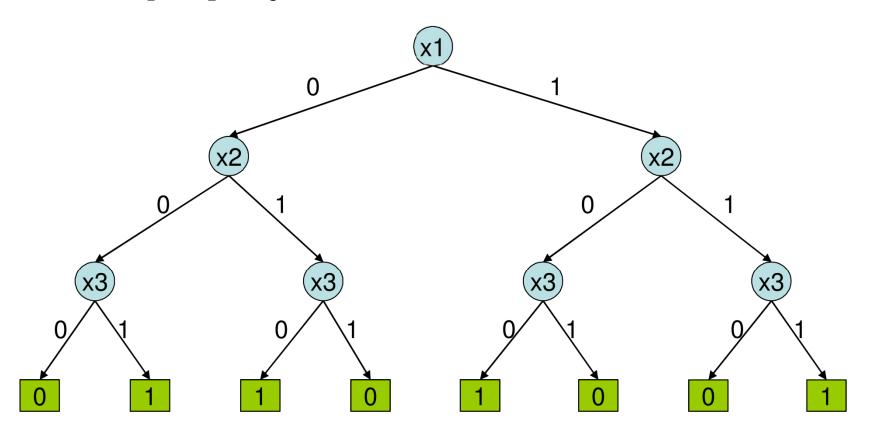
☐ Bottom-up merging of the isomorphic graphs together to simplify the OBDD into a **Reduced Ordered BDD** (ROBDD)



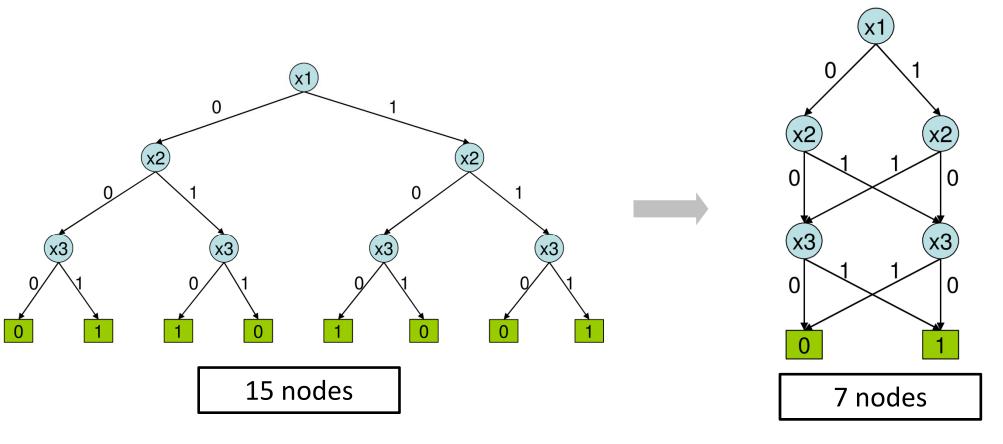
☐ Thus, bottom-up merging the graphs together will reduce the cost



\Limits Example: $f = X_1 \oplus X_2 \oplus X_3$



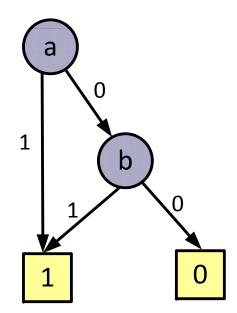
\Limits Example: $f = X_1 \oplus X_2 \oplus X_3$



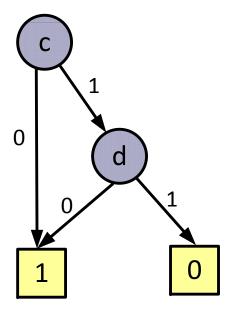
BDD of f < op> g

- \Box Goal: take BDDs for functions "f" and "g" and produce a BDD for **f < op> g.**
- \Box Case 1: functions f and g have distinct support (i.e., sup(f) \cap sup(g) = φ)
- **Example:**

$$f = a + b$$

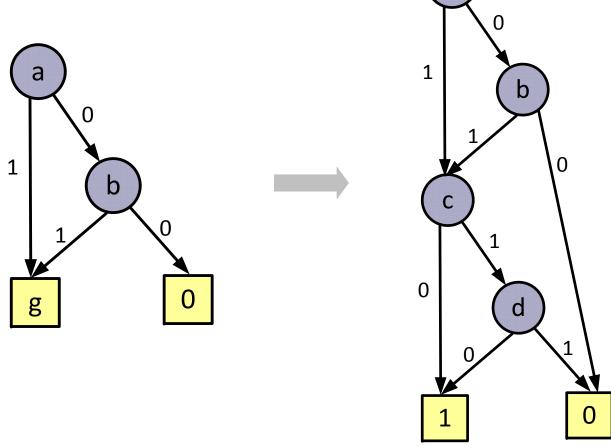


$$g = \overline{cd}$$



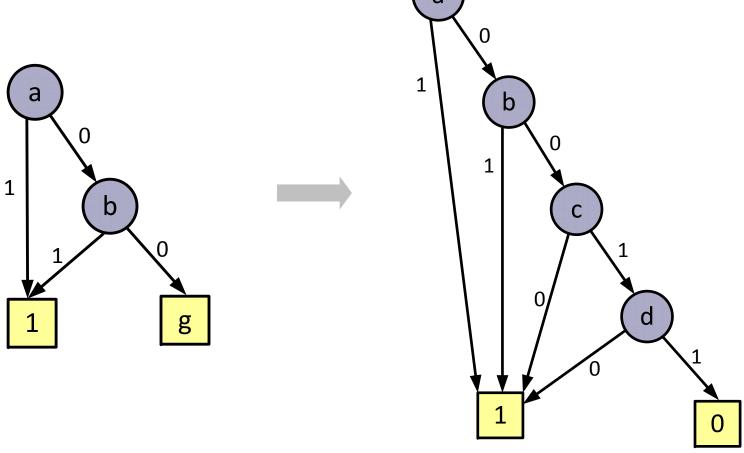
BDD of (f.g)

 \square BDD of h = f.g?



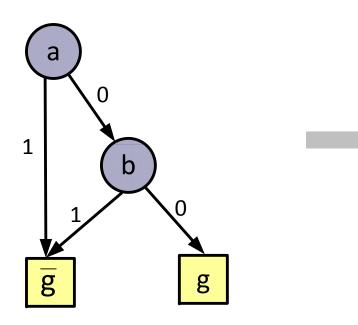
BDD of (f + g)

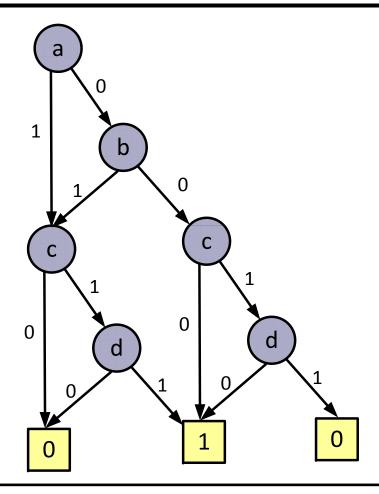
 \Box BDD of h = f+g?



BDD of $(h = f \oplus g)$

 \square BDD of $h = f \oplus g = \overline{f}g + f\overline{g}$?



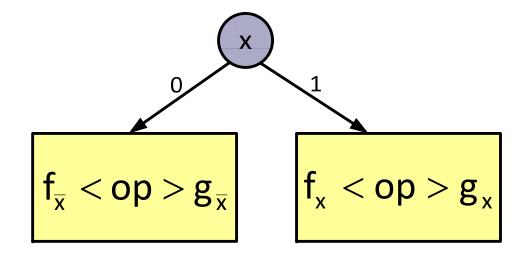


When the support of "f" and the support of "g" are disjoint, then replace terminals of f with 0, 1, g, or \overline{g}

BDD of $(h = f \oplus g)$

 \Box Case 2: both functions have the same support (i.e., sup(f) = sup(g))

$$h = f(x,y) < op > g(x,y) = [xf(1,y) + \overline{x}f(0,y)] < op > [xg(1,y) + \overline{x}g(0,y)]$$
$$= x[f(1,y) < op > g(1,y)] + \overline{x}[f(0,y) < op > g(0,y)]$$

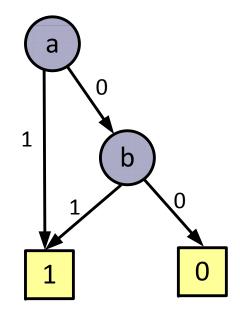


Pick a variable x and decompose both f and g with respect to it. Then the 0-cofactor is $f_{\bar{x}} < op > g_{\bar{x}}$ and the 1-cofactor is $f_{\bar{x}} < op > g_{\bar{x}}$

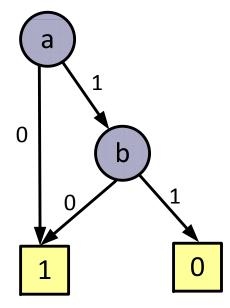
BDD of f <op> g

Example: find f.g?

$$f = a + b$$



$$g = \overline{ab}$$



BDD of f.g

Example: find f.g? and and b

Boolean Satisfiability: Theory

☐ Boolean Satisfiability: (a.k.a SAT Problem)

> A Boolean expression in a conjunctive normal form (CNF):

$$f(x_1, x_2, ..., x_n) = (x_1 + x_2 + x_3)(x_4 + \overline{x}_5 + x_6)(\overline{x}_7 + \overline{x}_1 + x_8) \cdots (\cdots)$$

is satisfiable if and only if there exists a valuation for variables $(x_1, x_2, ..., x_n)$ such that f=1.

Example: Is the following function satisfiable?

$$f = (x_1 + x_2) (x_1 + x_3) (\overline{x}_1 + \overline{x}_3) (\overline{x}_1 + \overline{x}_3)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Boolean Satisfiability: Theory

	2.	-5	Δ	r
_	_		$\overline{}$	

➤ Boolean satisfiability problem where each sum term consists of no more than 2 literals

□ 3-SAT:

- ➤ Boolean satisfiability problem where each sum term consists of no more than 3 literals
- \square If there are n variables in "f", (i.e., $(x_1, x_2, ..., x_n)$), we have to search over 2^n possible cases to verify satisfiability!

NP-complete problem, i.e., non-deterministic polynomial time complete

- ☐ Is there any better way?
 - > YES using dynamic programming algorithm based on Implication graphs.

☐ Implication Graph:

- > An implication graph consists of
 - Nodes: which represent a variable and its assignments
 - Edges: which indicate an implication

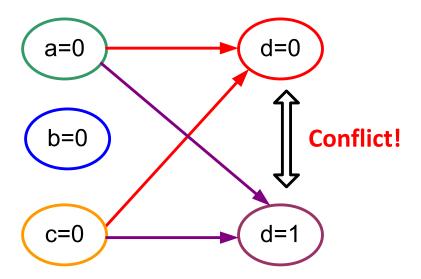
Example:

$$f = (\overline{a} + b + c)(a + c + d)(a + c + \overline{d})(a + \overline{c} + d)(a + \overline{c} + \overline{d})(\overline{b} + \overline{c} + d)(\overline{a} + b + \overline{c})(\overline{a} + \overline{b} + c)$$

Satisfiable! (SAT)

☐ Implication Graph:

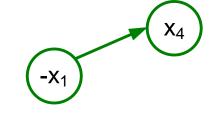
$$f = (\overline{a} + b + c)(a + c + d)(a + c + \overline{d})(a + \overline{c} + d)(a + \overline{c} + \overline{d})(\overline{b} + \overline{c} + d)(\overline{a} + b + \overline{c})(\overline{a} + \overline{b} + c)$$



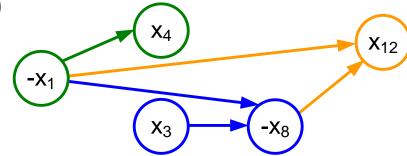
$$f = (x_1 + x_4)(x_1 + \overline{x}_3 + \overline{x}_8)(x_1 + x_8 + x_{12})(x_2 + x_{11})(\overline{x}_7 + \overline{x}_3 + x_9)(\overline{x}_7 + x_8 + \overline{x}_9)(x_7 + x_8 + \overline{x}_{10})(x_7 + x_{10} + \overline{x}_{12})$$

☐ Idea:

- > Assign a variable such that it simplifies the largest number of clauses (removes literal from a clause)
- > Draw an implication graph
- \square Step 1: $x_1=0 \Longrightarrow x_4=1$

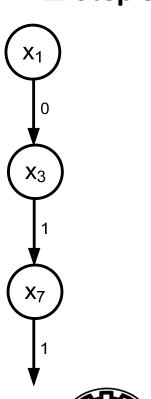


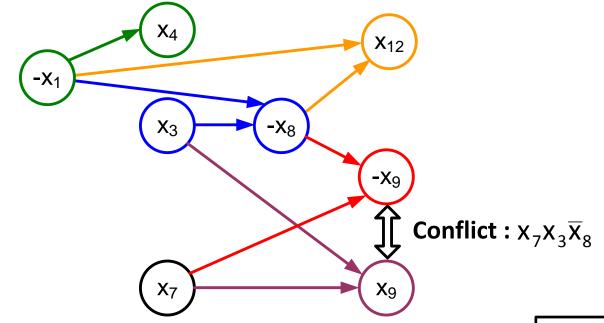
 \square Step 2: $x_3=1 \Longrightarrow x_8=0$



$$f = (x_1 + x_4)(x_1 + \overline{x}_3 + \overline{x}_8)(x_1 + x_8 + x_{12})(x_2 + x_{11})(\overline{x}_7 + \overline{x}_3 + x_9)(\overline{x}_7 + x_8 + \overline{x}_9)(x_7 + x_8 + \overline{x}_{10})(x_7 + x_{10} + \overline{x}_{12})$$

☐ Step 3: $x_7 = 1$





Conflict Clause:
$$(\overline{x_7} \overline{x_3} \overline{x_8}) = (\overline{x}_7 + \overline{x}_3 + x_8)$$

$$(x_1 + x_4)$$
 $(x_1 + \overline{x}_3 + \overline{x}_8)$
 $(x_1 + x_8 + x_{12})$
 $(x_2 + x_{11})$

$$\checkmark (\overline{X}_7 + \overline{X}_3 + X_9)$$

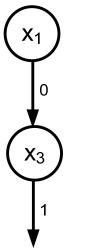
$$\sqrt{(\overline{x}_7 + x_8 + \overline{x}_9)}$$

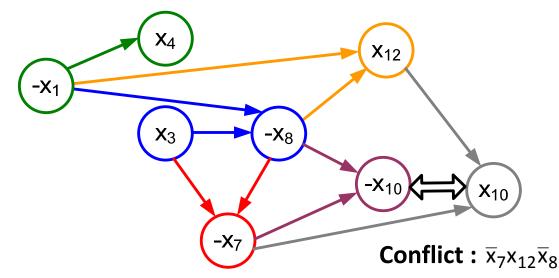
$$(x_7 + x_8 + \overline{x}_{10})$$

$$(\mathbf{x}_7 + \mathbf{x}_{10} + \overline{\mathbf{x}}_{12})$$

This will be 1 when $x_7 \neq 1$ or $x_3 \neq 1$ or $x_8 \neq 0$ So does not change the function

- ☐ When a conflict clause is found:
 - > Add the conflict clause to f
 - Does not the conflict to happen again
 - Backtrack to the point where we first assigned one of the variables in the conflict clause
- \square So we should go back to step 2 where $x_3=1$:





$$\checkmark (x_1 + x_4)$$

$$\checkmark (x_1 + \overline{x}_3 + \overline{x}_8)$$

$$\checkmark (x_1 + x_8 + x_{12})$$

$$(x_2 + x_{11})$$

$$(\overline{x}_7 + \overline{x}_3 + x_9)$$

$$(\overline{x}_7 + x_8 + \overline{x}_9)$$

$$\checkmark (x_7 + x_8 + \overline{x}_{10})$$

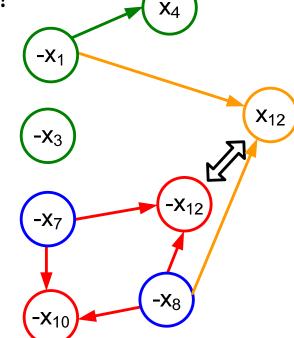
$$\sqrt{(x_7 + x_{10} + \overline{x}_{12})}$$

$$\checkmark (\overline{x}_7 + x_8 + \overline{x}_3)$$

- \square Note: no variable that was previously set is present in the conflict \checkmark $(x_1 + x_4)$ clause. Therefore, the current branch is unsatisfiable, so explore \checkmark $(x_1 + \overline{x}_3 + \overline{x}_8)$ the other branch, i.e., $x_3=0$.
- \square Also set $x_7=0$, which does not force anything
- \square So set $x_8=0$ then conflict!

Conflict : $\overline{X}_7 \overline{X}_1 \overline{X}_8$

Conflict Clause: $X_7 + X_1 + X_8$



$$\checkmark (x_1 + x_4)$$

$$\checkmark (x_1 + \overline{x}_3 + \overline{x}_8)$$

$$(x_1 + x_8 + x_{12})$$

 $(x_2 + x_{11})$

$$\checkmark (\overline{X}_7 + \overline{X}_3 + X_9)$$

$$\checkmark (\overline{x}_7 + x_8 + \overline{x}_9)$$

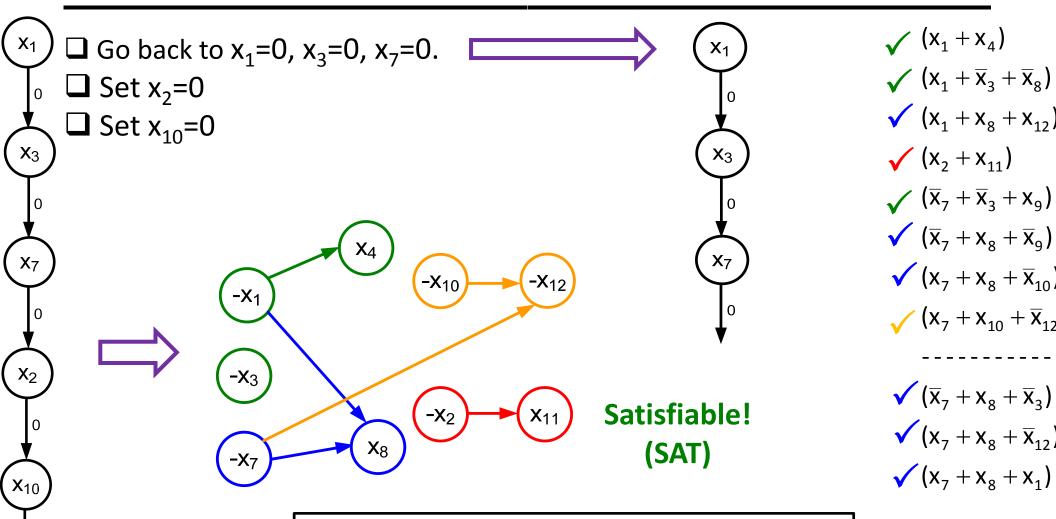
$$\checkmark (x_7 + x_8 + \overline{x}_{10})$$

$$(\mathbf{x}_7 + \mathbf{x}_{10} + \overline{\mathbf{x}}_{12}$$

$$\checkmark (\overline{x}_7 + x_8 + \overline{x}_3)$$

$$\checkmark (x_7 + x_8 + \overline{x}_{12})$$

X8

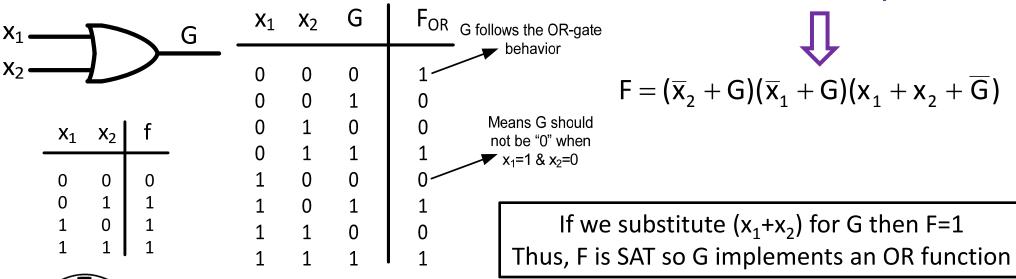


We explored 12 cases of 2¹²=4096 possible cases!

Boolean Satisfiability: SAT Solvers

- ☐ Go back to our question.
- ☐ Given a logic structure can we implement a given logic expression within it?
- ☐ Characteristic Equation (CE):
 - ➤ A logical expression that takes as inputs all literals of a function as well as its output, and it produces a "1" iff for a given set of inputs the output is correct
- **Example:** Dose G = f?

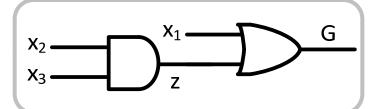
Characteristic Equation



Boolean Satisfiability: SAT Solvers

- ☐ Characteristic Equation (CE) for a Logic Network:
- ☐ Divide-and-Conquer
 - > Create a CE for each gate
 - > Combine CEs for gates to form a CE for the network

X ₂	X ₃	Z	F _{AND}
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1



$$F_{OR} = (\overline{z} + G)(\overline{x}_1 + G)(x_1 + z + \overline{G})$$

$$F_{AND} = (x_3 + \overline{z})(x_2 + \overline{z})(\overline{x}_3 + \overline{x}_2 + z)$$

$$F = F_{OR} \cdot F_{AND} = (x_3 + \overline{z})(x_2 + \overline{z})(\overline{x}_3 + \overline{x}_2 + z)(\overline{z} + G)(\overline{x}_1 + G)(x_1 + z + \overline{G})$$

Boolean Satisfiability: SAT Solvers

☐ SAT Theorem:

- ➤ In order for a given logic network, represented by a characteristic equation F, to be equivalent to a logic function H, then for all x_is, F(G=H) must be SAT.
- **Example:** Assume $H = x_1 + x_2$, find out if G = H?
- \Box This question is equivalent to see if F(G= x_1+x_2) is SAT for all x_1,x_2,x_3 values?

$$F(G|_{x_1+x_2}) = (x_3 + \overline{z})(x_2 + \overline{z})(\overline{x}_3 + \overline{x}_2 + z)(\overline{z} + x_1 + x_2)(\overline{x}_1 + (x_1 + x_2))(x_1 + z + \overline{(x_1 + x_2)})$$

$$x_3 = 0 \longrightarrow F = x_1 + \overline{x}_1 \overline{x}_2 \quad \text{(Not SAT for all } x_1, x_2 \text{ values)}$$

So we can NOT implement an OR function in F

SAT Theorem

☐ SAT Theorem:

Characteristic Equation F represents H if and only if:

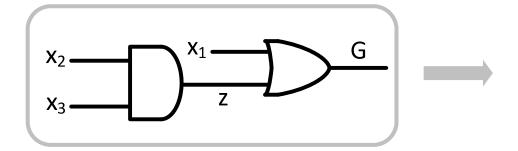
$$\forall i, \forall j, \forall x_i \exists z_j F(G = H) : SAT$$

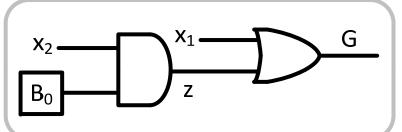
■ x_i : Literals

■ z_i : Internal wires

SAT Problem

QSAT Problem





Question:

Can **F(G)** implement **H** for all x_1, x_2, x_3 values?

Question:

Can **F(G)** implement $\mathbf{H=x_1+x_2}$ for all x_1,x_2 values by adjusting B_0 ?

☐ **Step 1**: Generate CE for F(G):

$$F = (B_0 + \overline{z})(x_2 + \overline{z})(\overline{B}_0 + \overline{x}_2 + z)(\overline{z} + G)(\overline{x}_1 + G)(x_1 + z + \overline{G})$$

 \square Step 2: For each valuation of x_1 , x_2 , determine what B_0 should be in order for G to implement H

$$F_{\overline{x}_1\overline{x}_2}(G) = (B_0 + \overline{z})(\overline{z})(1)(\overline{z} + G)(1)(z + \overline{G})$$

$$H(x_1 = 0, x_2 = 0) = 0 \longrightarrow G = 0 \longrightarrow z = 0 \longrightarrow B_0: don't care$$

F_{\overline{x}₁x₂} =
$$(B_0 + \overline{z})(1)(\overline{B}_0 + z)(\overline{z} + G)(1)(z + \overline{G})$$

H(x₁ = 0, x₂ = 1) = 1 \longrightarrow G = 1 \longrightarrow z = 1 \longrightarrow B₀ = 1

☐ Step 2, Cont'd:

Fiii)
$$F_{x_1\bar{x}_2} = (B_0 + \bar{z})(\bar{z})(1)(\bar{z} + G)(G)(1)$$

$$H(x_1 = 1, x_2 = 0) = 1 \qquad G = 1 \qquad z = 0 \qquad B_0: don't care$$

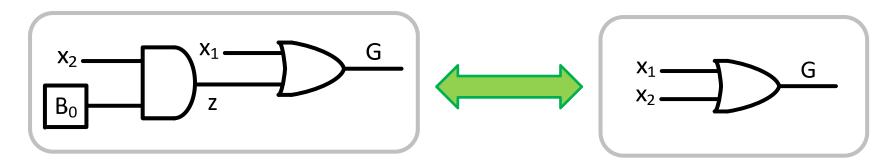
F_{x₁x₂} (G) = (B₀ +
$$\overline{z}$$
)(\overline{B}_0 + z)(1)(\overline{z} + G)(G)(1)
H(x₁ = 1, x₂ = 1) = 1 \longrightarrow G = 1 \longrightarrow z = 1 \longrightarrow B₀ = 1 \longrightarrow SAT

$$z = 0$$
 $B_0 = 0$

Contradicts the results from $F_{\overline{x}_1x_2}$

All Fs are SAT and B₀=1 is the consistent solution

QSAT Problem



Question:

Can **F(G)** implement $\mathbf{H=x_1+x_2}$ for all x_1,x_2 values by adjusting B_0 ?

Answer:

YES for $B_0=1$

Boolean Satisfiability: SAT Solvers

- ☐ Can we solve this problem with a single equation?
 - > Yes, solve SAT for

$$\mathsf{F} = \mathsf{F}_{\overline{\mathsf{x}}_{1}\overline{\mathsf{x}}_{2}} \cdot \mathsf{F}_{\overline{\mathsf{x}}_{1}\mathsf{x}_{2}} \cdot \mathsf{F}_{\mathsf{x}_{1}\overline{\mathsf{x}}_{2}} \cdot \mathsf{F}_{\mathsf{x}_{1}\mathsf{x}_{2}}$$

- \triangleright G is replaced with H(x₁, x₂)
- ➤ Note that signal z should be replicated as
 - \geq z₁ for $F_{\overline{x}_1\overline{x}_2}$

 - $ightharpoonup z_2$ for $F_{\overline{x}_1 \overline{x}_2}$ $ightharpoonup z_3$ for $F_{x_1 \overline{x}_2}$
 - \geq z₄ for $F_{x_1x_2}$
- This is b/c z is an intermediate variable and based on the above calculations z results in a conflict
- \triangleright The choice of B₀=1 will be resolved due to conflict clauses

QSAT Theorem

☐ QSAT Theorem:

Characteristic Equation F represents H if and only if:

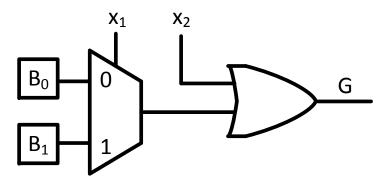
$$\forall i, \forall j, \forall k, \exists B_k \forall x_i \exists z_j F(G = H) : SAT$$

x_i: Literals

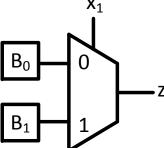
■ z_i : Internal wires

QSAT Theorem

 \Box Can we implement function $H = x_1 + x_2$ into:



- \square We are looking for a value for B_0 and a value for B_1
- ☐ **Step 1**: Represent G as a logic expression. This expression is the characteristic equation



QSAT Theorem

□ Step 1: Represent MUX as a logic expression. This expression is the

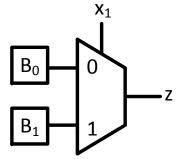
characteristic equation of the MUX

$$\mathbf{I)} \quad \mathbf{B}_0 + \mathbf{x}_1 + \overline{\mathbf{z}}$$

II)
$$B_1 + \overline{X}_1 + \overline{Z}$$

III)
$$\overline{B}_0 + x_1 + z$$

IV)
$$\overline{B}_1 + \overline{X}_1 + Z$$



B ₀	B_1	X ₁	Z	F _{MUX}
B ₀ 0 0 0 0 0 0 0 1 1 1	B ₁ 0 0 0 0 1 1 1 0 0 0 0	X ₁ 0 0 1 1 0 0 1 1 0 1 1 0 1	Z 0 1 0 1 0 1 0 1 0	F _{MUX} 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1
1	0	1	1	
0	1	1	0	
0	1	1	1	
1	0	1	1	
1	1	0	0	
1	1	0	1	1 1
1	1	1	0	
1	1	1	1	

$$F_{MUX} = (\overline{B}_0 + x_1 + \overline{z})(B_1 + \overline{x}_1 + z)(\overline{B}_0 + x_1 + z)(\overline{B}_1 + \overline{x}_1 + z)$$

Boolean Satisfiability: SAT Solvers

$$F_{OR} = (\overline{x}_2 + G)(\overline{z} + G)(z + x_2 + \overline{G})$$

X ₂	Z	G	F _{OR}	
0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1	1 0 0 1 0 1	$Z \longrightarrow G$

☐ Thus the complete characteristic equation for the logic structure is:

$$F = (\overline{B}_0 + x_1 + \overline{z})(B_1 + \overline{x}_1 + z)(\overline{B}_0 + x_1 + z)(\overline{B}_1 + \overline{x}_1 + z)(x_2 + z + \overline{G})(\overline{x}_2 + G)(\overline{z} + G)$$

□ **Step2:** Take F and see if a given logic expression can be implemented in it. This means that we need to find a value for B_0 and B_1 such that for all x_1 , x_2 values, B_0 and B_1 are consistent.

□ Step 2: For each valuation of x_1 , x_2 , determine what B_0 and B_1 should be in order for G to implement $H = x_1 + x_2$

$$F_{\overline{x}_1\overline{x}_2}(G) = (B_0 + \overline{z}_1)(1)(\overline{B}_0 + z_1)(1)(z_1 + \overline{G})(1)(\overline{z}_1 + G)$$
G has to be equal to H, i.e., 0

$$G = 0$$
 $\Rightarrow z_1 = 0 \Rightarrow B_0 = 0$ $\Rightarrow H = 0$

$$ightharpoonup$$
 ii) $F_{x_1\overline{x}_2} = (1)(B_1 + \overline{z}_2)(1)(\overline{B}_1 + z_2)(z_2 + \overline{G})(1)(\overline{z}_2 + \overline{G})$

G has to be equal to H, i.e., 1

$$G = 1$$
 $Z_2 = 1$ $B_1 = 1$ $H = 1$

$$ightharpoonup$$
 iii) $F_{\overline{x}_1x_2}(G) = (B_0 + \overline{z}_3)(1)(\overline{B}_0 + z_3)(1)(1)(G)(\overline{z}_3 + G)$

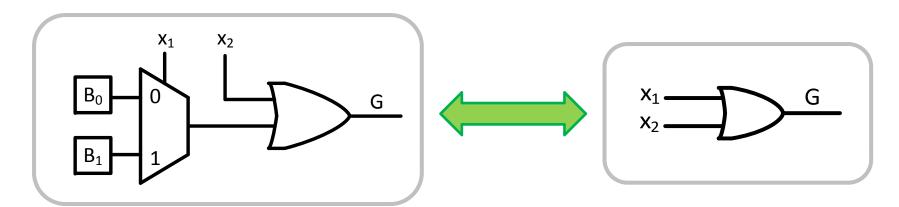
$$H=1 \longrightarrow G=1 \longrightarrow z_3=0 \longrightarrow B_0=0 \checkmark$$

$$ightharpoonup$$
 iv) $F_{x_1x_2} = (1)(B_1 + \overline{z}_4)(1)(\overline{B}_1 + z_4)(1)(G)(\overline{z}_4 + G)$

$$H = 1 \longrightarrow G = 1 \longrightarrow \begin{vmatrix} B_1 = 1 \longrightarrow z_4 = 1 \\ B_1 = 0 \longrightarrow z_4 = 0 & \times \end{vmatrix}$$

No surprise as when $x_1=1$ then z_4 has to be equal to B_1

Find a consistent value: $B_1 = 1$ and $B_0 = 0$



Question:

Can **F(G)** implement $\mathbf{H=x_1+x_2}$ for all x_1,x_2 values by adjusting B_0 ? **Answer:**

YES for $B_0=0$ and $B_1=1$

Outline

- ☐ Introduction to Synthesis
- ☐ Digital Logic Basics
- **☐** Logic Optimization
 - > Two-level logic synthesis
 - ➤ Multi-level logic synthesis
- ☐ Technology Mapping
 - Boolean Satisfiability
 - ASIC/FPGA-oriented Technology Mapping

Logic Synthesis

- Logic synthesis normally in two steps:
 - > Technology independent
 - Manipulate equations
 - Optimize the logic equations
 - Independent of target IC media
 - > Technology dependent (Technology Mapping (TM))
 - Equations are turned into netlist of the available gates

Technology Mapping

☐ Problem Definition:

Given:

1. Boolean network G(v,e), where

 $v \in V$: represent logic functions

 $e \in E$: represent dependencies between logic functions

2. Library of available gates

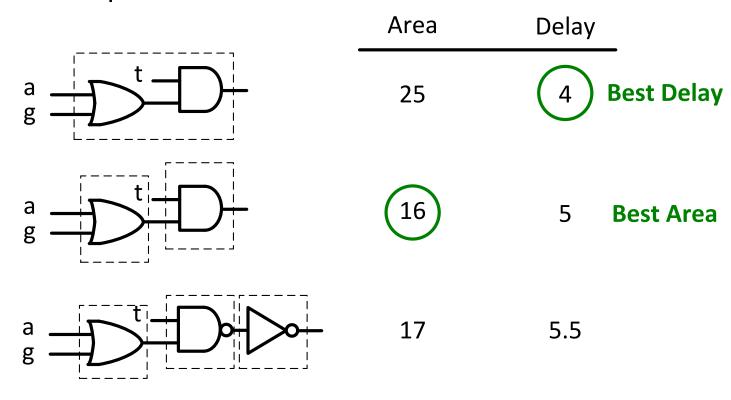
> Find:

- Netlist of gates from library that implements logic function G so as to minimize some of the following metrics:
 - o Area
 - o Delay
 - o Power
 - o Defect

Example: Implement function y=t(a+g) given the following library

Library Element	Area (sq units)	Delay (nsec)
INV	3	1 ns
AND	8	2.5 ns
NAND	6	2 ns
OR	8	2.5 ns
AND-OR	25	4 ns

☐ Possible Implementations:



- ☐ This is a small function with small library → 3 choices
- ☐ Larger designs + libraries → many more choices

- ☐ Algorithmic approach to TM (DAGON Keutzer 80s)
 - Take input Boolean network and do a simple mapping into a network of "base functions" to create a "subject graph" e.g., 2-input NANDs + inverters

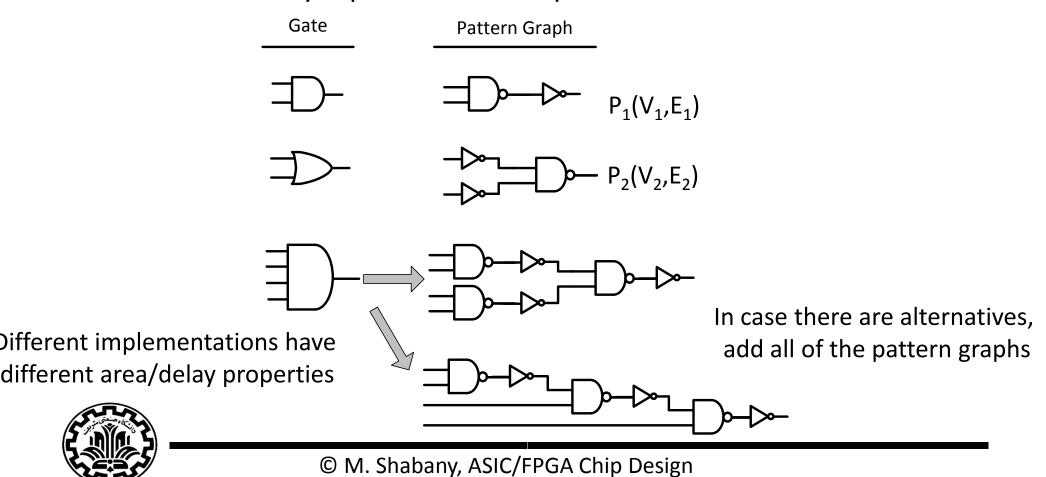
$$F = d\overline{e}(a + b)$$

$$= d\overline{e} \cdot (\overline{a}\overline{b})$$

$$= d\overline{e} \cdot (\overline{a}\overline{b})$$

"Subject Network"
$$G(V,E)$$

- ☐ Algorithmic approach to TM (DAGON Keutzer 80s)
 - 2. Take gates in library and create a "pattern graph" for each that is functionally equivalent and expressed in the same base functions



- □ Now we have subject graph G(V,E) and set of pattern graphs $P_1(V_1,E_1)$, $P_2(V_2,E_2)$,..., $P_L(V_L,E_L)$ with their area and delay properties
- ☐ We have to cover G(V,E) with the set of pattern graphs that results in a minimum cost
- ☐ Cost: area (sum of area of all gates), delay (max delay along any path),...
- ☐ Find the minimum-cost cover is equivalent to dynamic programming (DP)
- ☐ DP Idea:
 - Break the overall problem into sub-problems
 - > Solve sub-problems optimally (store results in a table)
 - > Use solutions to sub-problems, construct solution to the overall problem

- ☐ DP for TM: (Work Backward)
 - > Begin at leafs of tree and find optimal mapping of each leaf node
 - Move up tree find optimal mappings for sub-trees using alreadycomputed mappings
 Subject Graph

leaf

root

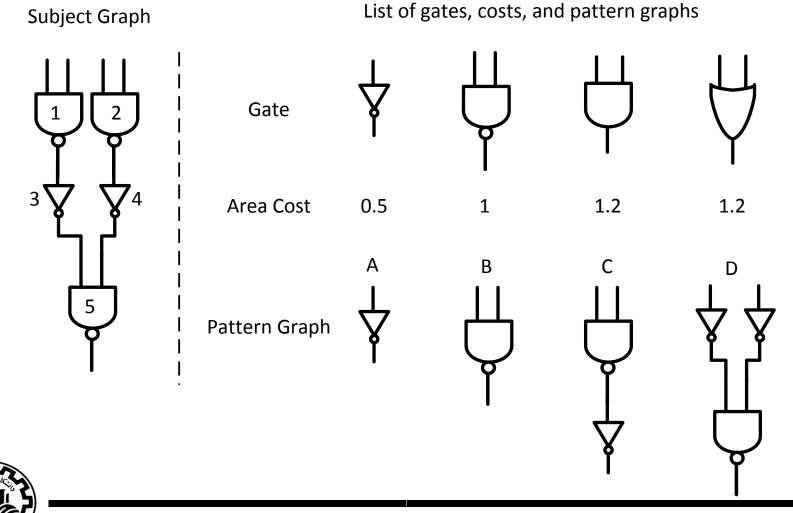
$$F = \overline{a} + \overline{b} + \overline{c} + \overline{d}$$

$$= \overline{ab} + \overline{cd}$$

$$= \overline{ab} \cdot \overline{cd}$$

$$= \overline{ab} \cdot \overline{cd}$$
Create subject graph using base functions

☐ DP for TM: (Work Backward)

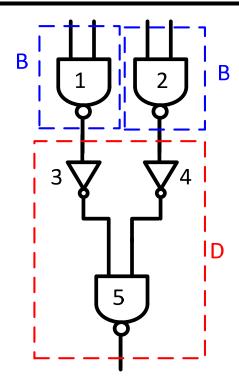


- ☐ Begin at leafs, traverse all nodes
 - Find all pattern graphs that match at each node (match the entire pattern graph all the way back (with trace back))
 - Record the best total cost to implement sub-tree rooted at node
- 1) B matches, cost = 1 record this match + cost
- 2) B matches, cost = 1 record this match + cost
- 3) A matches, cost = 0.5 +1 (cost shared for node 1) C matches, cost = 1.2 record this match + cost
- 4) Same as node 3
- 5) B matches, cost = 1 + 1.2 + 1.2 = 3.4

D matches, cost = 1.2 + 1 + 1 = 3.2 Best for node 5

Solution: D for node 5, B for nodes 1 and 2 (Optimal Mapping)

Optimal Solution:



☐ Key DP point:

➤ If we later need to implement the output of 3 explicitly (as the input to another gate), we need only consider using C for node 3 (DP result).

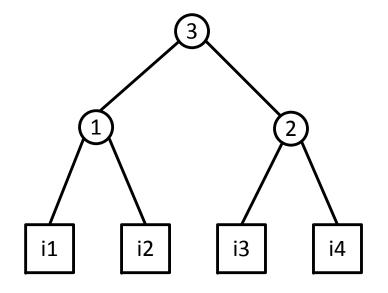
☐ Summary:

- Post-order tree traversal (from leaves to the root)
- > For each node, find all the pattern graphs that match with trace back
- > Choose the one with the best cumulative cost
- > At root of tree, have optimal cost, trace back to construct mapping
- > Can also be used for delay (carry forward the longest path delay)

- ☐ Target gates: LUTs with K-inputs that can implement any function with K inputs
- ☐ Subject graph need not be in base functions
- Nodes must have less than K inputs (K-bounded network)
- ☐ Same bottom-up DP TM algorithm
 - ➤ Matching is different
 - > Only need to care about # of inputs not functionality

Example:

- ➤ Mapping to 3-LUTs (K=3)
- What are matches at node 3?
 - > Each match is a cut
 - > Cuts of nodes 3:
 - {i1, i2, 2}
 - {i3, i4, 1}
 - **1**,2



☐ Finding all matches at a node = finding set of K-feasible cuts for that node

A cut is K-feasible if its size is less than K

