ASIC & FPGA Chip Design:

Synthesis

Mahdi Shabany

Department of Electrical Engineering
Sharif University of technology

© M. Shabany, ASIC/FPGA Chip Design

Outline

] Introduction to Synthesis
] Digital Logic Basics

J Logic Optimization
» Two-level logic synthesis
» Multi-level logic synthesis

J Technology Mapping

» Boolean Satisfiability
» ASIC/FPGA-oriented Technology Mapping

© M. Shabany, ASIC/FPGA Chip Design

Outline

] Introduction to Synthesis

© M. Shabany, ASIC/FPGA Chip Design

Synthesis

J Synthesis = Translation + Logic Optimization + Technology Mapping
» Translation: going from RTL to Boolean function
» Logic Optimization : Optimizing and minimizing Boolean function
» Technology Mapping (TM): Map the Boolean function to the target library

: Logic Technology
Translation |— N — :
Optimization Mapping
Synthesis

© M. Shabany, ASIC/FPGA Chip Design

Synthesis

J Synthesis = Translation + Logic Optimization + Technology Mapping

Translation Bs
N i
always @ (a, b) B : 1 H /1 FPGA

case ({a,b}) out=ab+ab+ab o HN

2'b00: out = 1; 7 H.

2'b01: out = 1; _ E ’r :

2'b11: out = 1; Logic [>+———

default: out = 0; Optimization 2-input LUT
endcase Technology

out=a+b

Nl\llapping

24[>°4>ﬂ ASIC

© M. Shabany, ASIC/FPGA Chip Design

Outline

] Digital Logic Basics

© M. Shabany, ASIC/FPGA Chip Design

Digital Logic Basics : Boolean Function

fix):B"—B

B ={0, 1}, x = (X4, Xy, ..., X.,)

" X4, X,, ... @re variables

" X4, X4, X5, Xy, ... are literals

" each vertex of B" is mapped to 0 or 1

" the onset of fis a set of input values for which f(x) = 1

" the offset of fis a set of input values for which f(x) =0

© M. Shabany, ASIC/FPGA Chip Design

Digital Logic Basics

(1 A Boolean function can be represented by:

> A truth table
X1 Xy f

= = O O
= O O
O = FL O

> A logic expression

= We use logic variables and operators (AND, OR, NOT, XOR, XNOR, NAND, NOR)
to express a logical relation b/w input variables and the output function

f=x, ®x,

© M. Shabany, ASIC/FPGA Chip Design

Digital Logic Basics : SOP

 Sum of Products (SOP):
» A logic function that is represented as an OR of product (AND) terms :

f(x,,X,,X5) =X, +X,X; + XX
— —

5T e

\{
cube minterm

" A literal is a function input (e.g., X, X,).
= A product term is formed using an AND operation and literals in either true
or complemented form.
= A cube is the AND of set of literals
= A minterm is a cube that contains all literals of a logic function
0 A function with K variables has 2X possible K-literal minterms
= A cover of “f” is a set of cubes that represent the logic function “f”
0 (e.g.,C={x,,%X,X3,X;X,X5})

© M. Shabany, ASIC/FPGA Chip Design

Digital Logic Basics : POS

J Product of Sums (POS):
» A logic function that is represented as an AND of sum (OR) terms :

f=(x,+x,)(x;+x,)

= A sum term is formed using an OR operation and literals in either true
or complemented form.
= A maxterm is a sum term that contains all literals of a logic function

1 POS can be derived from SOP by DeMorgan’s Theorem and double complementation

© M. Shabany, ASIC/FPGA Chip Design

Digital Logic Basics : Karnaugh Map

1 Karnaugh Map:

» Variables assigned to rows and columns.
» Adjacent valuations differ by 1 position.

» Form product terms by creating groups with 2% 1s that are adjacent to one another

ab

cd 00 01 11 10
00 0 0 0 1
o1 0 1 1 1
11 0 1 1 0
10 1 1L 0 1

f=bd+abc+acd+bcd

© M. Shabany, ASIC/FPGA Chip Design

Digital Logic Basics : Implementation Cost

[Cost of an Implementation:

Cost of implementation = # of inputs + # of gates (except NOTSs)

** Example:

fz@ﬁ@bé} acd+bcd

3 4 4 4

\ J

» Cost=3+4+4+4+5=20

© M. Shabany, ASIC/FPGA Chip Design

Digital Logic Basics : Canonical Form

J Canonical Form:
» A form of Boolean logic function representation is said to be canonical if and only if
for each logic function there exists a unique representation in the given form

» Function is described using its equivalent minterms
s* Example:
> Canonical f(a,b,c)=abc+abc

> Non-canonical f(a,b,c)=abc+abc+bc

= Because it has a cube that does not include all the literals

(J Any Boolean logic can be represented in a canonical form

© M. Shabany, ASIC/FPGA Chip Design

Outline

J Logic Optimization
» Two-level logic synthesis

© M. Shabany, ASIC/FPGA Chip Design

14

Two-Level Logic Synthesis : Cubical Notation

[Cubical Notation:
» A different way to represent a product term
= “0” : to represent inverted variable
= “1” : to represent a variable in true form
= “X” : to represent a variable not used in the product term

abcd p-term

X1X1 —— f = {X1X1, 100X, 0X10, X010}

100X —

0X10 —— . . :

%010 (Easier to implement in a computer program)

© M. Shabany, ASIC/FPGA Chip Design

Two-Level Logic Synthesis : Cubical Notation

(1 Cubical Notation:
» A different way to represent a product term
= “0” : to represent inverted variable

= “1” : to represent a variable in true form
= “X” : to represent a variable not used in the product term

abcd p-term
X1X1 —— b_d_ f = {X1X1, 100X, 0X10, X010}

100X —— 3 bc

0X10 — acd o .

%010 bed (Easier to implement in a computer program)

© M. Shabany, ASIC/FPGA Chip Design

Two-Level Logic Synthesis: Quine-McCluskey Method

(d How do we use cubical notation to synthesize logic functions?
» Quine-McCluskey method
= Willard Quine (1908-2000)) and Edward McCluskey (1928-present)

1 Quine-McCluskey method: (2 Stages)

Stage | : Take minterms for a function (Canonical) and form Prime Implicants (PlIs).
Stage Il : Pick minimum Prime Implicants to generate a cover.

A cover of a function is a set of cubes that
represent that logic function

Quine-McCluskey

Y N\

Stagel sStagell

Step1l Step2 Step3 Step4

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Stage | — Step 1

[Stage | of Quine-McCluskey method has four steps: Quine-McCluskey

¥
flab,c)=XmB3456,7)

Step 1 Step 2 Step 3 Step 4

Step 1: List all minterms grouped in increasing order of the number of 1s they contain.
Take cubes from adjacent groups to form larger product terms.

100

011

101///

110

111

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Stage | — Step 1

[Stage | of Quine-McCluskey method has four steps: Quine-McCluskey

¥
flab,c)=XmB3456,7)

Step 1 Step 2 Step 3 Step 4

Step 1: List all minterms grouped in increasing order of the number of 1s they contain.
Take cubes from adjacent groups to form larger product terms.

100 10x
011 1x0
/ A
1014 /% x11
110 1x1
111 11x

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Stage | — Step 2/3

Step 2: Take original set of cubes and the newly created ones.
Remove any cube from the set that is completely covered by any other cube.

» In this case we remove all minterms and use only the newly created cubes.

Step 3: Group cubes in the increasing order of non-zero positions. By taking terms from
adjacent groups form larger product terms.

» Rules: X’s must match and the other position must differ by exactly one position
(one cube has a 1 where the other has a 0).
100 10x

Quine-McCluskey 011 1XO

¥ 101// x11

Stage | Stage Il \
— 7 N 110{ /% 111
Step 1 Step2 Step3 Step 4 -

Step 2 Step 3

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Stage | — Step 2/3

Step 2: Take original set of cubes and the newly created ones.
Remove any cube from the set that is completely covered by any other cube.

» In this case we remove all minterms and use only the newly created cubes.

Step 3: Group cubes in the increasing order of non-zero positions. By taking terms from
adjacent groups form larger product terms.

» Rules: X’s must match and the other position must differ by exactly one position
(one cube has a 1 where the other has a 0).
100 10x 1xx

Quine-McCluskey 011 1XO

¥ 101// x11

Stage | Stage Il \
44 \‘\A 110 1x1 1xx
Step 1 Step2 Step3 Step 4 -

Step 2 Step 3

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Stage | — Step 4

Quine-McCluskey

¥

Stage | Stage Il

Step 1 Step 2 Step 3 Step 4

Step 4: Repeat steps 2-4 until all Pls are generated.
» In our case we are done, because 1xx and x11 are the Pls for this function.
» Plset={1xx, x11}

100?1 1xx Q

011 1x0

w01l AT N
014 /% x1 x11

1105 1x1 Ixx
11x

Step 2 Step 3 Step 4

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Stage | — Step 4

Quine-McCluskey

¥

Stage | Stage Il

Step 1 Step 2 Step 3 Step 4

Step 4: Repeat steps 2-4 until all Pls are generated.
» In our case we are done, because 1xx and x11 are the Pls for this function.
» Plset={1xx, x11}

100?1 1xx %
011/ /1x0 Pl = {1xx, x11}
014 /% x1 xllz;

110 1xx
/i 1X1 F(a,b,c) =a + bc
11x

Step 2 Step 3 Step 4

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey

Quine-McCluskey Method : Stage li

Stage | Stage Il

Step 1 Step 2 Step 3 Step 4

 Stage ll: Build a table list the minterms that are covered by each PI
» (Prime Implicant Cover Table)

O Pick the essential prime implicants (columns with only one check mark)
» 1XX (the only one to cover 4, 5, 6, 7), X11 (the only one to cover 3)

Cube 3 4 5 6 4
1xXx X X X
x11 X

Pl = {1xx, x11}

Done!

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Stage | — (Step 1-4)

% Example: f(a,b,c,d,e)=>m(0,2,3,4,6,7,9,12,13,15,16,23,24,25,29,31)

00000

00010
00100
10000

00011
00110
01001
01100
11000
00111
01101
11001
01111
10111
11101

11111

000x0
00x00
x0000
0001x
00x10
001x0
0x100
1x000

00x11
0011x
01x01
x1001
0110x
1100x
Ox111
011x1

x0111
x1101
11x01

x1111
Ix111
111x1

Final Pls

00xx0
x0000

00x1x
0x100
1x000

x1x01
0110x
1100x

xx111
x11x1

When starting with minterms, we
need to only consider the combination
of cubes that create a larger
cube (more x’s).

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey

Quine-McCluskey Method : Stage li

[Stage ll: Build a table list the minterms that are covered by each PI

Stage | Stage Il

- - Step 1 Step 2 Step 3 Step 4
» (Prime Implicant Cover Table)

O Pick the essential prime implicants (columns with only one check mark)
» 00x1x, x1x01, xx111 (the only one to cover 23)

Cube O 12 §3 844|167 19 p12|13[15(16)23 2412529 | 31

00xx0 X | X X | X
x0000 X X
00x1x X I X X | X

0x100 X X

1x000 X X
x1x01 X X X | X

0110x X | X

1100x X | X
xx111 X X X X

x11x1 X | X X | X

Pl = {00x1x, x1x01, xx111}

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey

Quine-McCluskey Method : Stage Il Stag:/.

(d Remove the columns covered by the essential prime implicants

» Columns: 2, 3, 6, 7 covered by 00x1x
» Columns: 9, 13, 25, 29 by x1x01
» Columns: 15, 23, 31 by xx111

Cube 0 ’

Step 1 Step2 Step3

Stage Il

Step 4

Remove used Pls and covered
minterms from the table

00xx0 X

x0000 X

00x1x

0x100
1x000

x1x01

0110x

1100x

xx111

x11x1

Pl = {00x1x, x1x01, xx111}
© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Stage li

1 Notice that cube x11x1 does not cover any of the remaining minterms. So remove it.

A N\

Pl = {00x1x, x1x01, xx111}

- 1 1\
12 16 24
|y
00xx0 -
X0000 X w(1
0x100 X
\a'| 1
1x000 X X
0110x X l
1100x X B
If we select A and B, then C does

not do anything!

© M. Shabany, ASIC/FPGA Chip Design

IV ¥ -

Quine-McCluskey Method : Stage li

] Definition 1: Row dominance

» Row A in the covering table dominates another row B if and only if row A covers

Quine-McCluskey

at least the same set of columns as row B, and the Pl in row B has equal or greater

cost than the Pl in row A.

» Notice that 1x000 dominates 1100x, 0x100 dominates 0110x., so:

0 4 12 16 24

00xx0

X0000

Stage | Stage Il
Step 1 Step 2 Step 3 Step 4
12 16 24
00xx0
X0000 X
0x100 X
1x000 X X

Pl = {00x1x, x1x01, xx111}

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Stage li

] Definition 1: Column dominance

» Column i dominates column j if and only if column i is covered by at least the same
set of cubes as column j. In such cases we remove the column i from the table.

» Notice that column 4 dominates column 12, and column 16 dominates 24, so:

e T
e |
|
|
|
|
|
i
| |
S |
o |
|
. =
o =
. E
XOOOO L L | XOOOO
. . . - m
. - - _

Pl = {00x1x, x1x01, xx111, 0x100, 1x00} Essential Pls

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Stage li

(By row dominance, x0000 is removed, so:
» |t covers the same number of columns as 00xx0, but it has a larger cost

12 24

12 24
00xx0 X

00xx0 X
\

X0000

\

Pl = {00x1x, x1x01, xx111, 0x100, 1x00, 00xx0}

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Summary

Generate all Pls starting with minterms

Create a prime implicant covering table. List Pls in the rows and function
minterms in the columns.

For each Pl indicate which minterms it covers by putting a checkmark

in the corresponding column.

For each column covered by exactly one Pl add the corresponding PI to your cover,
removing the Pl from the table, as well as any columns it covers.

Apply concepts of row and column dominance to reduce the table.

Repeat steps 4-6 until the table cannot be further reduced.

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Note 1

1 Why should x’s match?
» Matching x’s is equivalent to grouping Pls in the Karnaugh map.

cd
ab 00| 01 11| 10

00
vy

01 /fli“?l\\ Grouping results
) In smaller Pls

11 1 x1x1

10

Two x’s match
x101 x111

© M. Shabany, ASIC/FPGA Chip Design

Quine-McCluskey Method : Note 2

1 When starting with minterms (Canonical form), the above procedure works fine.
1 Otherwise, it is necessary to represent the function as a sum of minterms first

s Example:

f =abd+bcd+ abc Pl set = { 01x1, x111, 110x}
A B C

» Not possible to combine/reduce the above Pl set (no x’s match)
» Represent “f” as a sum of minterms (canonical form)

cd
ab 00|01 11 10

00 //)'1\

01 1

11 |1 \2
.

10

f =abcd +abcd+abcd+abcd+abcd

w<—(|—\\

© M. Shabany, ASIC/FPGA Chip Design

Outline

J Logic Optimization

» Multi-level logic synthesis

© M. Shabany, ASIC/FPGA Chip Design

35

Multi-Level Logic Synthesis

1 Two-level logic synthesis is effective and mature
1 Two-level logic synthesis is directly applicable to PLAs and PLDs

However, ...

1 There are many functions that are too expensive to implement in
two-level forms (too many product terms!)
[Two-level implementation constrains layout (AND-plane, OR-plane)

Multi-level logic synthesis may be employed ‘

1 Rule of thumb:

» Two-level logic is good for control logic
» Multi-level logic is good for data path or random logic

© M. Shabany, ASIC/FPGA Chip Design

Multi-Level Logic Synthesis

 Multi-level logic synthesis:
» Decompose a logic function into smaller functions
» A simple tool to do this is called Shannon’s Decomposition

= Claude Shannon 1916-2001
1 Shannon’s Expansion Theorem:

Any logic function f(x,, x,, ..., X,,) can be expanded in the form of:
X, F(X0, X0, XL X g X)+ X T X0, X 10X s -0 X))

— Xk-fXK + ik-fXK

>f =f(x, =1,...): 1- cofactor

> ka = f(Xk =0,...): 0- cofactor

© M. Shabany, ASIC/FPGA Chip Design

Multi-Level Logic Synthesis

s Example:
> F(A, B, C) = A'B + ABC’ + A'B’C
= A(BC’) + A’(B+B’C) = A.F, + A’F,

O

» F,=B+B’'C=B.1+B'C

(@)

» F,=BC’=BC’ +B".0

© M. Shabany, ASIC/FPGA Chip Design

Multi-Level Logic Synthesis

X X3X4
¢ Example: X } 0

X3+Xy4
— ¥ 3 1
f—xxxx4+x1x3+xlx4+x2x3+x2x4 =

X1

XX, +x,x, +x;+x,) + X, (flx3x4 + XX, + X, X,)

x, (x
f x, (X, +x,)+ X, (x1x3x4 +x, (X + x4))

d We found out that logic expression (x;+x,) appears in multiple places. Hence,
this knowledge could be used to simplify the implementation of this circuit.
J Keeping track of this type of relationships in a logic function can be tedious in a
large expression.
 Can we represent this information in a better way?
» Yes, we can use Binary Decision Diagrams (BDDs)

© M. Shabany, ASIC/FPGA Chip Design

Binary Decision Decomposition (BDD)

U Let us decompose a function “f=x,x,” with respect to x;:

f=x.f +X.f

I | | |

1-cofactor 0-cofactor

/\
o

//
~
O 1 O-cofactor [

\
\| O 1

Fn E :
_’/

1-cofactor

© M. Shabany, ASIC/FPGA Chip Design

Binary Decision Decomposition (BDD)

1 To derive the function from BDD, start from the bottom to top
 Start only with terminal nodes 1
 If see edge “1” use the variable otherwise its complement

f= X1X7

© M. Shabany, ASIC/FPGA Chip Design

Binary Decision Decomposition (BDD)

1 A binary decision diagram represents a logic function by using Shannon’s
decomposition to decompose a function into cofactors, one variable at a
time:

1 The decomposition steps are then represented as a directed graph

= (V,E), where:

> V is a set of vertices. Each vertex is associated with a variable or a
constant 0/1.

» E is a set of directed edges. Each edge is assighed a label of 0 or 1. A
0 edge always points to a 0-cofactor and a 1 edge points to a 1-cofactor.

© M. Shabany, ASIC/FPGA Chip Design

Binary Decision Decomposition (BDD)

(1 BDD of some basic logic functions:

i |
: I
| | .
- ! 1 0
1 [
1 I
1 I
1 1
i e
I
s N
! 1
1 I
1 [
l 10
1 1
! 1
: I
1 —

© M. Shabany, ASIC/FPGA Chip Design

BDD: Decomposition Order Matters

< Example: f= x; +X,X; =X,(1)+X;X,X,

X] }
I Xz 4 |
>_
X3

Cost:4+3=7

X1 =2 Xy X3

© M. Shabany, ASIC/FPGA Chip Design

BDD: Decomposition Order Matters

“ Example: f= x, +X,X,

Cost:3+3+3+3=12

0 1

Different order of decomposition => different size/cost of the diagram

© M. Shabany, ASIC/FPGA Chip Design

Ordered Binary Decision Decomposition (OBDD)

. We could impose a decomposition order by fixing the sequence of variable with
respect to which we decompose a function (Ordered BDD = OBDD)
[Let us consider the following function:

f=x,(x, +X4)+i2[Y1(X3X4)+X1(X3 +X4)]

0 1 1N\0 1 i/— Same structure

© M. Shabany, ASIC/FPGA Chip Design

Reducing OBDDs

[Similar structure can be used to reduce the OBDD

Two edges means it i
being used two times

0 1 X0 1 /— Same structure

© M. Shabany, ASIC/FPGA Chip Design

Reducing OBDDs

[Cost of this OBDD:

f:X4X3iliz + (X4 + X3)(X1 + Xz)

Cost:5+3+3+3+3=17

© M. Shabany, ASIC/FPGA Chip Design

Reduced Ordered BDD (ROBDD)

J Bottom-up merging of the isomorphic graphs together to simplify the OBDD
into a Reduced Ordered BDD (ROBDD)

© M. Shabany, ASIC/FPGA Chip Design

Reduced Ordered BDD (ROBDD)

 Thus, bottom-up merging the graphs together will reduce the cost

f =X, XXX, + (X5 +X,)(X; +X,)

Cost:5+3+3+3+3=17

© M. Shabany, ASIC/FPGA Chip Design

Reduced Ordered BDD (ROBDD)

< Example: f=x, ®x, D x,

© M. Shabany, ASIC/FPGA Chip Design

Reduced Ordered BDD (ROBDD)

< Example: f=x, ®x, D x,

© M. Shabany, ASIC/FPGA Chip Design

BDD of f <op>g

(1 Goal: take BDDs for functions “f” and “g” and produce a BDD for f <op> g.
 Case 1: functions f and g have distinct support (i.e., sup(f) N sup(g) =)
s* Example:

f=a+b

© M. Shabany, ASIC/FPGA Chip Design

BDD of (f . g)

1 BDD of h =f.g?

d
0
i IO
0
1
1
b
C
1 0 1
: 0 @
0

© M. Shabany, ASIC/FPGA Chip Design

BDD of (f + g)

0 BDD of h = f+g?

© M. Shabany, ASIC/FPGA Chip Design

BDD of (h=f®g)

A BDDof h=f®g=fg+fg ?

When the support of “t” and the support of “g” are disjoint, then
replace terminals of f with O, 1, g, or g

© M. Shabany, ASIC/FPGA Chip Design

BDD of (h=f®g)

[Case 2: both functions have the same support (i.e., sup(f) = sup(g))

h=1f(x,y)<op>g(x,y)= [xf(l,y) + Xf(O,y)] <op > [xg(l,y) + Xg(O,y)]
=x|f(1,y) <op > g(1,y)]+x[f(0,y) < op > g(0,Y)]

f <op>g. f <op>g,

Pick a variable x and decompose both f and g with respect to it.
Then the 0-cofactor is f, <op > g, and the 1-cofactorisf <op > g,

© M. Shabany, ASIC/FPGA Chip Design

BDD of f <op> g

** Example: find f.g?

© M. Shabany, ASIC/FPGA Chip Design

BDDof f. g

** Example: find f.g?

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: Theory

(] Boolean Satisfiability: (a.k.a SAT Problem)
» A Boolean expression in a conjunctive normal form (CNF):

f(X Xy, 00, X) =X + X, +X3) (X, X + X) (X, +X, +Xg)- ()

is satisfiable if and only if there exists a valuation for variables
(Xy, X5, .., X,,) such that f=1.

** Example: Is the following function satisfiable?

f=(x; +x;) (x; +%3) (X; +%3) (X; +X3)

O

Try: x,=1 = 1 1 ;=1 %3=0 X Conflict!

X;=1 X3=1 1 1 v Satisfiable!
“f” is satisfiable.

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: Theory

] 2-SAT:
» Boolean satisfiability problem where each sum term consists of no more
than 2 literals

] 3-SAT:
» Boolean satisfiability problem where each sum term consists of no more
than 3 literals

 If there are n variables in “f”, (i.e., (x4, X, ..., X,)), we have to search over 2"
possible cases to verify satisfiability!

NP-complete problem, i.e., non-deterministic polynomial time complete

O Is there any better way?
» YES using dynamic programming algorithm based on Implication graph:s.

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: Implication Graph

 Implication Graph:

» An implication graph consists of
=" Nodes: which represent a variable and its assignments
= Edges: which indicate an implication

s Example:

f=(@+b+c)(a+c+d)(a+tc+d)(a+c+d)(a+c+d)(b+c+d)(a+b+c)(a+b+c)

v v v v

Satisfiable!
(SAT)

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: Implication Graph

 Implication Graph:

f=(@+b+c)a+c+d)(@a+c+d)(a+c+d)(a+c+d)(b+c+d)(a+b+c)(a+b+c)

v v v v v v

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: Implication Graph

f=(x, + %) (X, + X5 +Xg) (X; + Xg + X,) (X, + X)) (X5 + X5 4+ Xg) (X, +Xg + X,) (X5 +Xg +Xy0) (X5 +Xq0 +Xy5)

v v

 Idea:
» Assign a variable such that it simplifies the largest number of clauses
(removes literal from a clause)
» Draw an implication graph

d Step 1: x,=0=) x,=1 @

 Step 2: x;=1 =) x,=0 Q

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: Implication Graph

f=(x; %) (X, + X5 +Xg)(X; +Xg + X)X, X)X + X5 4+ Xg) (X, +Xg +X,) (X5 +Xg +X0) (X5 +Xq0 +Xy5)

v v v v
 Step 3: x,=1 v (X, +x%,)

v (X +X;3+Xg)
(X, +Xg +Xy,)
(x, +x4,)

v (X, + X, +X,)

v (X, +Xg +X,)

Conflict : XX X, (X; +Xg +Xyp)

(X5 +Xq9 +Xp5)

1 This will be 1 when
Conflict Clause: (X7X3Y8) = (X, +X; +Xg) | X, #Llorx; #1lorx, #0

So does not change the function

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: Implication Graph

[When a conflict clause is found:
» Add the conflict clause to f
» Does not the conflict to happen again
» Backtrack to the point where we first assigned one of the
variables in the conflict clause

J So we should go back to step 2 where x;=1:

Conflict : X7x1,Xg

© M. Shabany, ASIC/FPGA Chip Design

v' (X +x,)

v (X, +X; +X;)
(X, +Xg +Xy55)
(X, +X44)

(X, + X5 +Xg)
(X, +Xg +X,)

V' (X, +Xg +Xy0)

(X, + X0 +Xy,)

V' (X, + X, +X,)

Conflict Clause:x, + X, + X,

Boolean Satisfiability: Implication Graph

[Note: no variable that was previously set is present in the conflict v~ (X; +X,)
clause. Therefore, the current branch is unsatisfiable, so explore v (x, +X; +X,)

the other branch, i.e., x;=0.
4 Also set x,=0, which does not force anything
[So set x,=0 then conflict! Q

Conflict : X, X X

Conflict Clause: X, + X, + Xg

O
@ J X12
O
(29

© M. Shabany, ASIC/FPGA Chip Design

(X, +Xg + Xy,
(X, +X44)
v' (X, + X5 +X,)
V' (X, + X +X,)
V' (X, +Xg + X,
(X5 + X + Xy,
V' (X, +X, +X;)
\/(x7+x8+Y12]

Boolean Satisfiability: Implication Graph

° Go back to x,=0, x3=0, x,=0. | > ° v (X +%,)
0

v_ (X +X5+Xg)

] Set X10=0 v (X3 +Xg + X,
@ v’ (X, +Xq)
0 v (X X5 +X,)

@ e \/(¥7+x8+¥9)

-X10 -X12 v (X; +Xg + X

(X5 + Xy + Xy

i Satisfiable! Y b4, +§3),
\/(x7 + Xg + Xy,

(SAT) v (X, + X5 +X,)

0

We explored 12 cases of 212=4096 possible cases!

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: SAT Solvers

1 Go back to our question.
[Given a logic structure can we implement a given logic expression within it?

J Characteristic Equation (CE):

» A logical expression that takes as inputs all literals of a function as well as its
output, and it produces a “1” iff for a given set of inputs the output is correct

“* Example: Dose G=f? o _
Characteristic Equation

X1 G X1 X G For G follows the OR-gate
behavior
X2

0 0 O 1/ _ _ _
0 0 1 0 F=(X, + G)(x; +G)(x, +x, + G)
a xl f 0 10 | 0 lemis
X1=1 &X2=0
o ol o 1 0 0 0/
0o 1] 1 1 0 1 1 -
1 o 1 1 1 0 0 If we substitute (x,+x,) for G then F=1
S 1 1 1 1 Thus, F is SAT so G implements an OR function

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: SAT Solvers

J Characteristic Equation (CE) for a Logic Network:
] Divide-and-Conquer

» Create a CE for each gate

» Combine CEs for gates to form a CE for the network

X2 X3 Z FanD X, X e > G
0O 0 O 1 X3) 7 2

0 0 1 0

0 1 0 1 _ _ —

o 1 1 0 For =(Z+G)(X, + G)(x, +z + G)

1 0 0 1

A Favo = (X5 +Z)(X, + Z)(X, + X, +2)

1 1 1 1

4

F =F. -Fanp = (X5 + Z)(X, + Z)(X; + X, +2)(Z + G)(X, + G)(x, +z+ G)

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: SAT Solvers

(] SAT Theorem:
» |In order for a given logic network, represented by a characteristic
equation F, to be equivalent to a logic function H, then for all x:s,

F(G=H) must be SAT.
X2 \Xléy

% Example: Assume H = x,+x,, find outif G=H ? X3 ;T

U This question is equivalent to see if F(G= x,+x,) is SAT for all x;,x, ,x; values?

F(G, .)= (x5 + 2006 + 2)(%s + 5, +2)(Z+ X, +3,)(X, + (X + X)X, +2+ (%, + %))

X3 =0 F=X; +X;X;, (Not SAT for all x,, x, values)

So we can NOT implement an OR function in F

© M. Shabany, ASIC/FPGA Chip Design

SAT Theorem

(] SAT Theorem:

Characteristic Equation F represents H if and only if:

Vi, Vj, Vx;3dz;F(G=H): SAT

= x. : Literals
"z Internal wires

© M. Shabany, ASIC/FPGA Chip Design

Quantified SAT (QSAT) Problem:

SAT Problem QSAT Problem
X2 _\"1A \ G X2 X1 =] G
— T o D
Question: Question:
Can F(G) implement H Can F(G) implement
for all x;,x, ,x3 values? H=x,+x, for all x,,x,
values by adjusting B,?

© M. Shabany, ASIC/FPGA Chip Design

Quantified SAT (QSAT) Problem:

] Step 1: Generate CE for F(G):
F =(B, +Z)(x, +Z)(B, + X, +z)(Z + G)(X, + G)(x, +z+ G)

 Step 2: For each valuation of x,, x,, determine what B, should be in order
for G to implement H

> i) <, (G) = (By +2)(2)(1)(z + G)(1)(z + G)
H(x, =0,x,=0)=0 G=0 z=0 B,: don’t care
70 R = (By+7)(1)(B, +2)(z +G)(1)(z + G)

H(x, =0,x, =1)=1 G=1 z=1 B, =1

© M. Shabany, ASIC/FPGA Chip Design

Quantified SAT (QSAT) Problem:

] Step 2, Cont’d:

»>iii) F__ =(B,+2Z)(Z)()(z + G)(G)(D)

1X2

H(x, =1,x,=0)=1 G=1 z=0

>) FXlXZ(G) = (B, +Z)(B, +z)(1)(z + G)(G)(1)
H(X1=1,X2=1):1 G=1 7=1

z=0

B,: don’t care

B, =1

SAT

B, =0

Contradicts the results from FX1x2

All Fs are SAT and B,=1 is the consistent solution

© M. Shabany, ASIC/FPGA Chip Design

Quantified SAT (QSAT) Problem:

QSAT Problem
X, _\Xlg} X1 G
_j n < > X2:>7
Question: Answer:

Can F(G) implement

H=x,+x, for all x,,x, YES for B,=1

values by adjusting B,?

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: SAT Solvers

 Can we solve this problem with a single equation?
> Yes, solve SAT for

F= F)_(liz . Fflxz . Fxliz . Fx1x2
» G is replaced with H(x,, x,)
» Note that signal z should be replicated as
> z, for FXlX
> z, for Fi)

2

»This is b/c z is an intermediate variable and based on the above calculations z

results in a conflict
» The choice of By=1 will be resolved due to conflict clauses

© M. Shabany, ASIC/FPGA Chip Design

QSAT Theorem

] QSAT Theorem:

Characteristic Equation F represents H if and only if:

Vi, Vj, Vk, 3B, Vx, 32, F(G = H) : SAT

= x. : Literals
"z Internal wires

© M. Shabany, ASIC/FPGA Chip Design

QSAT Theorem

d Can we implement function H = x;+x, into:

Bo ﬁﬁ G
A=

 We are looking for a value for B, and a value for B,

(1 Step 1: Represent G as a logic expression. This expression is the

characteristic equation .

Bo ﬁ\

Bl 1/

© M. Shabany, ASIC/FPGA Chip Design

QSAT Theorem

] Step 1: Represent MUX as a logic expression. This expression is the
characteristic equation of the MUX

X1 Bo B:1 x1 z Fmux

) B,+x,+2Z \I\ 0 0 o0 o [1
Bo 0 o 0 0 1 0 —»

i O 0 1 0 1

. = o o0 1 1 0

) B, +Xx,+2 B1 1/ o 1 0 0 1
o 1 o0 1 0 I

- o 1 1 0 0
1) B, +x, +2 o 1 1 1 1 "

1 0 0 O 0

1 0 0 1 1
= — 1 0O 1 o0 1 I

IV) Bl X, T2 1 0 1 1 0

1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

Faux = (B, + %, +Z)(B, + X, +2)(B, + X, +2)(B, + X, +2)

© M. Shabany, ASIC/FPGA Chip Design

Boolean Satisfiability: SAT Solvers

X2 . G "OR
For = (X, +G)(Z +G)(z +x, + G) o o 0 .
0 0 1 0o 7z G
0 1 0 0 :}>7
o 1 1 1 X2
1 0 O 0
1 0 1 1
1 1 0 0
1 1 1 1

[Thus the complete characteristic equation for the logic structure is:
F=(B, +x, +Z)(B, + X, +z)(B, + X, +2)(B, + X, +z)(x, +z+ G)(X, + G)(Z + G)
1 Step2: Take F and see if a given logic expression can be implemented in it.

This means that we need to find a value for B, and B, such that for all x;, x,
values, B, and B, are consistent.

© M. Shabany, ASIC/FPGA Chip Design

Quantified SAT (QSAT) Problem:

J Step 2: For each valuation of x,, x,, determine what B, and B, should be in
order for G to implement H = x,+x,

»>i) F

X1X;

(G) =(B, +Z,)(1)(B, +z,)(1)(z, + G)(1)(z, + G)
G hasto be equalto H, i.e., 0

G=0 z,=0 B,=0 H=0 v/

> i) F . = (0B, +2)(1)(B, +2,)(z, + G)(1)(z, +G)

G hasto be equaltoH,i.e, 1
G=1 z, =1 B,=1 H=1 \/

© M. Shabany, ASIC/FPGA Chip Design

Quantified SAT (QSAT) Problem:

> iii) Fex, (G) =(By + Z,)(1)(B, +z5)(1)(1)(G)(z, + G)

H=1

> iv) Fex,

G=1 z; =0 B,=0 v

= (1)(B, +7,)(1)(B, +2,)(1)(G)(Z, + G)

v
X

1
0

B. = Z
G:]_ 1 4
B,=0 Z,

Find a consistent value: B,=1and B,=0

© M. Shabany, ASIC/FPGA Chip Design

No surprise as when
X,=1 then z, has to be
equal to B,

Quantified SAT (QSAT) Problem:

>) T O
Bly-

Question: Answer:

Can F(G) implement

H=x,+x, for all x;,x, YES for B,=0 and B,=1

values by adjusting B,?

© M. Shabany, ASIC/FPGA Chip Design

Outline

J Technology Mapping

» ASIC/FPGA-oriented Technology Mapping

© M. Shabany, ASIC/FPGA Chip Design

85

Logic Synthesis

1 Logic synthesis normally in two steps:

» Technology independent
=" Manipulate equations
= Optimize the logic equations
" Independent of target IC media

» Technology dependent (Technology Mapping (TM))
= Equations are turned into netlist of the available gates

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping

J Problem Definition:
» Given:
1. Boolean network G(v,e), where
v eV : represent logic functions
e e E : represent dependencies between logic functions
2. Library of available gates

» Find:
= Netlist of gates from library that implements logic function G
so as to minimize some of the following metrics:

O Area

O Delay
O Power
O Defect

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping (TM)

** Example: Implement function y=t(a+g) given the following library

Area Delay
(sq units) (nsec)

INV >07 3 1ns
AND D_ 8 2.5ns
NAND —}7 6 2 ns

— 8 2.5ns

Library Element

OR

AND-OR j‘>:} 25 4 ns

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping (TM)

1 Possible Implementations:
Area Delay

| t
g :A_‘>_)1- 25 @ Best Delay
| |

r——————

B |
g —_D,_,_i-i_)';F 5 BestArea

rFr————————— =

r——— | I I
o 7~ P[>0 w7 5.5
g ! I !

M This is a small function with small library 3 choices
J Larger designs + libraries many more choices

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping (TM)

d Algorithmic approach to TM (DAGON Keutzer 80s)
1. Take input Boolean network and do a simple mapping into a network
of “base functions” to create a “subject graph”
e.g., 2-input NANDs + inverters

F=de(a+b) b o :
5 I

—de-(ab)

“Subject Network”
G(V,E)

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping (TM)

d Algorithmic approach to TM (DAGON Keutzer 80s)
2. Take gates in library and create a “pattern graph” for each that is
functionally equivalent and expressed in the same base functions

Gate Pattern Graph

1)~ D P.(V,,E,)

.
1> _DOJ_D; P,V)
— In case there are alternatives,
different implementations have add all of the pattern graphs

different area/delay properties Do—[>o—|_:

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping (TM)

(d Now we have subject graph G(V,E) and set of pattern graphs
P,(V,,E,), P,(V,,E)),..., P (V,E,) with their area and delay properties

(d We have to cover G(V,E) with the set of pattern graphs that results
In @ minimum cost

(1 Cost: area (sum of area of all gates), delay (max delay along any path),...

[Find the minimum-cost cover is equivalent to dynamic programming (DP)
 DP Idea:

» Break the overall problem into sub-problems

» Solve sub-problems optimally (store results in a table)

» Use solutions to sub-problems, construct solution to the overall problem

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping (TM)

(1 DP for TM: (Work Backward)

» Begin at leafs of tree and find optimal mapping of each leaf node

» Move up tree find optimal mappings for sub-trees using already-
computed mappings Subject Graph

Create subject graph
using base functions

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping (TM)

1 DP for TM: (Work Backward)

Subject Graph List of gates, costs, and pattern graphs

SLEE

I
I
I
I
I
I
: Area Cost
I
I
I
I
I
I
I

A B C D
Pattern Graph # ¢ % g

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping (TM)

J Begin at leafs, traverse all nodes

» Find all pattern graphs that match at each node (match the entire
pattern graph all the way back (with trace back))
» Record the best total cost to implement sub-tree rooted at node

1) B matches, cost=1 record this match + cost

2) B matches, cost=1 record this match + cost

3) A matches, cost = 0.5 +1 (cost shared for node 1)
C matches, cost =1.2 record this match + cost

4) Same as node 3
5) B matches,cost=1+1.2+1.2=34
|D matches, cost=1.2+1+1=3.2 Best for node 5

Solution: D for node 5, B for nodes 1 and 2 (Optimal Mapping)

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping (TM)

ot
3 Optimal Solution: B | I .
1

II 2
I |

I U g

3 4

¥

» If we later need to implement the output of 3 explicitly (as the input to
another gate), we need only consider using C for node 3 (DP result).

D

q
I
I
I

d
I
I
I
I
I
I
I
I
I

r————————

J Key DP point:

© M. Shabany, ASIC/FPGA Chip Design

Technology Mapping (TM)

d Summary:

» Post-order tree traversal (from leaves to the root)

» For each node, find all the pattern graphs that match with trace back
» Choose the one with the best cumulative cost

» At root of tree, have optimal cost, trace back to construct mapping

» Can also be used for delay (carry forward the longest path delay)

© M. Shabany, ASIC/FPGA Chip Design

FPGA Technology Mapping (TM)

] Target gates: LUTs with K-inputs that can implement any function
with K inputs

 Subject graph need not be in base functions
(J Nodes must have less than K inputs (K-bounded network)
(J Same bottom-up DP TM algorithm

» Matching is different
» Only need to care about # of inputs not functionality

© M. Shabany, ASIC/FPGA Chip Design

FPGA Technology Mapping (TM)

s* Example:
» Mapping to 3-LUTs (K=3)

J What are matches at node 37
» Each match is a cut

» Cuts of nodes 3: / \ / \
= {i1, 2, 2} i1 i2 i3 i4
= {i3,i4, 1}
= {1,2}

 Finding all matches at a node = finding set of K-feasible cuts for that node

A cut is K-feasible if its size is less than K

© M. Shabany, ASIC/FPGA Chip Design

