ASIC/FPGA Chip Design

Power Dissipation

Mahdi Shabany

Department of Electrical Engineering
Sharif University of technology

Outline

- Introduction
- Dynamic Power Dissipation
- Static Power Dissipation

Outline

- Introduction
- Dynamic Power Dissipation
- Static Power Dissipation

Why Power Matters?

- ☐ Packaging costs
- ☐ Power supply rail design
- ☐ Chip and system cooling costs
- Noise immunity and system reliability
- ☐ Battery life (in portable systems)
- ☐ Environmental concerns

Why worry about power? Chip Power Density

Why worry about power? Standby Power

Year	2002	2005	2008	2011	2014
Power supply V _{dd} (V)	1.5	1.2	0.9	0.7	0.6
Threshold V _T (V)	0.4	0.4	0.35	0.3	0.25

Drain leakage will increase as V_T decreases to maintain noise margins and meet frequency demands, leading to excessive battery draining standby power consumption.

Power and Energy Figures of Merit

- ☐ Power consumption in Watts
 - > Determines battery life in hours
- ☐ Peak power
 - Determines power ground wiring designs
 - > Sets packaging limits
 - Impacts signal noise margin and reliability analysis
- ☐ Energy efficiency in Joules
 - > Rate at which power is consumed over time
- ☐ Energy = power * delay
 - > Joules = Watts * seconds
 - > Lower energy number means less power to perform a computation at the same frequency

Power is the rate at which energy is delivered or exchanged; Power dissipation is the rate at which energy is taken from the source and converted into heat

Power vs. Energy

Power and Energy

- \square Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.
- ☐ Instantaneous Power:

$$P(t) = I(t)V(t)$$

☐ Energy:

$$E = \int_{0}^{T} P(t)dt$$

☐ Average Power:

$$P_{\text{avg}} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} P(t) dt$$

Power in Circuit Elements

$$P_{VDD}\left(t\right) = I_{DD}\left(t\right)V_{DD}$$

$$P_{R}(t) = \frac{V_{R}^{2}(t)}{R} = I_{R}^{2}(t)R$$

$$E_C = \int_0^\infty I(t)V(t)dt = \int_0^\infty C\frac{dV}{dt}V(t)dt$$
$$= C\int_0^{V_C} V(t)dV = \frac{1}{2}CV_C^2$$

$$\bigvee_{C}^{+} \bigcup_{C} \bigvee_{T} C \bigvee_{T} I_{C} = C \ dV/dt$$

Power Dissipation

☐ Power: Due to the current flowing from supply to ground

$$P = I_D V_{DD}$$

- ☐ Power Dissipation:
 - > Dynamic Power: Occurs only when the gate switches
 - Charging/discharging of load capacitances
 - Short-circuit power during switching (when both NMOS and PMOS are ON)
 - > Static Power: Due to the presence of a path in the gate b/w the power supply & GND
 - In CMOS, when circuit is quiescent (no switching) one of the transistors is OFF thus ideally no current flows through an OFF transistor so no current b/w VDD and GND thus zero static power

Power Dissipation

CMOS Total Energy & Power Equations

$$E = C_L V_{DD}^2 \alpha_{0\rightarrow 1} + \alpha_{sc} V_{DD}^2 C_L + V_{DD} I_{static}$$

$$f_{0\to 1} = \alpha_{0\to 1} * f_{Clk}$$

$$P = C_L V_{DD}^2 f_{0\rightarrow 1} + \alpha_{sc} V_{DD}^2 C_L f_{Clk} + V_{DD} I_{static}$$

Dynamic Power Short-circuit Power Static Power

(~8% today and decreasing absolutely)

(~2% today and increasing)

(~90% today and decreasing relatively)

Outline

- Introduction
- Dynamic Power Dissipation
- Static Power Dissipation

Power Dissipation

Power Dissipation: Main Dynamic Power

☐ Due to the charging/discharging the load capacitances

$$P_{avg} = \frac{1}{T} \int_{0}^{T} v(t)i(t)dt$$

$$P_{avg} = \frac{1}{T} \begin{bmatrix} \frac{T/2}{J} (V_{out}) C_L \frac{dV_{out}}{dt} dt + \int_{T/2}^{T} V_{out} (-C_L \frac{dV_{out}}{dt}) dt \end{bmatrix}$$

$$\Rightarrow P_{\text{avg}} = \frac{1}{T} \left[\left(\frac{V_{\text{out}}^2}{2} C_L \right)_0^{\text{T/2}} - \left(\frac{V_{\text{out}}^2}{2} C_L \right)_{\text{T/2}}^{\text{T}} \right] = \frac{1}{T} V_{\text{DD}}^2 C_L = C_L V_{\text{DD}}^2 f_{\text{Clk}}$$

Power Dissipation: Dynamic Power

- ☐ Average Dynamic Power:
 - > Linearly dependent to f_{Clk} (Clock frequency)
 - Independent of the transistor sizing
- ☐ Considering the utilization factor:

$$P_{avg} = \alpha C_L V_{DD}^2 f_{Clk}$$
 α : Activity Factor

- ☐ In general, a chip with higher area burns more power unless its utilization factor is lower
- ☐ Power Delay Product: (dissipated as heat in transistors)

$$PDP = C_L V_{DD}^2$$

Charging a Capacitor

- ☐ When the gate output rises
 - Energy stored in capacitor is

$$E_C = \frac{1}{2}C_L V_{DD}^2$$

> But energy drawn from the supply is

$$E_{VDD} = \int_{0}^{\infty} I(t)V_{DD}dt = \int_{0}^{\infty} C_{L} \frac{dV}{dt} V_{DD}dt$$
$$= C_{L}V_{DD} \int_{0}^{V_{DD}} dV = C_{L}V_{DD}^{2}$$

- ➤ Half the energy from V_{DD} is dissipated in the PMOS transistor as heat, other half stored in the capacitor
- ☐ When the gate output falls
 - Energy in capacitor is dumped to GND
 - Dissipated as heat in the NMOS transistor

Dynamic Power Consumption

$$P_{dyn}$$
 = Energy/transition * f = $C_L * V_{DD}^2 * \alpha_{0\rightarrow 1} * f$

$$P_{dyn} = C_{eff} * V_{DD}^2 * f$$
 where $C_{eff} = \alpha_{0\rightarrow 1} C_L$

- Not a function of transistor sizes!
- Data dependent a function of switching activity!

Lowering Dynamic Power

Lowering Dynamic Power

- ☐ Try to minimize:
 - ➤ Activity factor
 - **≻**Capacitance

Supply voltage
$$P_{dyn} = C_L V_{DD}^2 \alpha_{0\rightarrow 1} f$$

Lowering Dynamic Power – Activity Factor

☐ Probability that output is "zero" in one cycle and will be "one" in the next cycle

$$\alpha_{0\to 1} = P_0 P_1 = \frac{N_0}{2^N} \frac{N_1}{2^N} = \frac{N_0 (2^N - N_0)}{2^{2N}}$$

> where

 N_0 : Number of zero entries in the output column of the function truth table

N₁: Number of one entries in the output column of the function truth table

Example: A 2-input NOR

$$\alpha_{0\to 1} = \frac{3(4-3)}{2^4} = \frac{3}{16} \Rightarrow P_{avg} = \frac{3}{16} C_L V_{DD}^2 f_{Clk}$$

Example

- ☐ A 4-input AND is built out of two levels of gates
- \Box Estimate the activity factor at each node if the inputs have P = 0.5

Lowering Dynamic Power: Clock Gating

- ☐ The best way to reduce the activity is to turn off the clock to registers in unused blocks
 - \triangleright Saves clock activity ($\alpha = 1$)
 - > Eliminates all switching activity in the block
 - > Requires determining if block will be used

Lowering Dynamic Power: Capacitance

- ☐ Gate capacitance
 - > Fewer stages of logic
 - Small gate sizes
- ☐ Wire capacitance
 - ➤ Good floorplanning to keep communicating blocks close to each other
 - > Drive long wires with inverters or buffers rather than complex gates

Lowering Dynamic Power: Voltage / Frequency

- ☐ Run each block at the lowest possible voltage and frequency that meets performance requirements
- ☐ Voltage Domains
 - Provide separate supplies to different blocks
 - ➤ Level converters required when crossing from low to high V_{DD} domains

- ☐ Dynamic Voltage Scaling
 - ➤ Adjust V_{DD} and f according to workload

Power Dissipation: Dynamic Power

☐ In a digital CMOS circuit:

$$t_p \cdot I_{sat} = C\Delta V$$

$$t_p \cdot K (V_{DD} - V_t)^2 = C \Delta V \Rightarrow t_p \propto \frac{C V_{DD}}{\left(V_{DD} - V_t\right)^2} \\ \Rightarrow f_{max} \propto \frac{\left(V_{DD} - V_t\right)^2}{V_{DD}} \propto V_{DD}$$

☐ Therefore, it can be shown that

$$P_{avg} \propto CV_{DD}^2 f \propto V_{DD}^3$$

$$\Rightarrow V_{DD} \uparrow \Rightarrow delay \downarrow \Rightarrow Power \uparrow$$

Throughput can be compromised for power

PDP and EDP

- □ Power-delay product (PDP) = $P_{av} * t_p = C_L V_{DD}^2$
 - > PDP is the average energy consumed per switching event (Watts * sec = Joule)
 - Lower power design could simply be a slower design
 - For a given structure the PDP may be made arbitrarily low by reducing the supply voltage that comes at the expense of performance.
- □ Energy-delay product (EDP) = PDP * $t_p = P_{av} * t_p^2$
 - EDP is the average energy consumed multiplied by the computation time required
 - > Takes into account that one can trade increased delay for lower energy/operation (e.g., via supply voltage scaling that increases delay, but decreases energy consumption)

PDP and **EDP**

Rule-of-thumb:
$$V_{DD}^{Opt} = \frac{3}{2} \left(V_t + \frac{V_{DS}^{Sat}}{2} \right)$$

Understanding Tradeoffs

□ Which design is the "best" (fastest, coolest, both)?

Power Dissipation

Short Circuit Power Consumption

 \Box Finite slope of the input signal causes a direct current path between V_{DD} and GND for a short period of time during switching when both the NMOS and PMOS transistors are conducting.

Short Circuit Currents Determinates

$$\mathbf{t}_{sc} = \mathbf{t}_{sc}^{r} + \mathbf{t}_{sc}^{f}$$

$$I = C \frac{dv}{dt} \Rightarrow t_{sc}I_{sc,avg} = C_{sc}V_{DD}$$

$$I_{SC} = \frac{t_{SC} \cdot I_{SC,avg}}{T}$$

Peak and duration of I_{sc} both increase as the input slope decreases

$$P_{sc} = I_{sc}V_{DD} = t_{sc}I_{sc,avg}V_{DD}f$$

$$\Rightarrow$$
 $P_{sc} = C_{sc}V_{DD}^2f = \alpha_{sc}C_LV_{DD}^2f$

$$\Rightarrow$$
 E_{sc} = C_{sc}V_{DD}² = α _{sc}C_LV_{DD}²

Short Circuit Currents Determinates

$$P_{sc} = \alpha_{sc}C_L V_{DD}^2 f$$

$$E_{sc} = \alpha_{sc}C_L V_{DD}^2$$

$$\mathsf{E}_{\mathsf{sc}} = \alpha_{\mathsf{sc}} \mathsf{C}_{\mathsf{L}} \mathsf{V}_{\mathsf{DD}}^2$$

- ☐ I_{peak} determined by
 - > Saturation current of the P and N transistors, which depend on their sizes, process technology, temperature, etc.
 - > Strong function of the ratio between input and output slopes
 - Function of C₁

Impact of C_L on I_{sc}

Large capacitive load

Output fall time significantly larger than input rise time.

 \square As the source-drain voltage of the PMOS is approximately 0 during transition, the device shuts off without ever delivering any current, so I_{sc} is close to zero.

Small capacitive load

Output fall time substantially smaller than the input rise time.

 \Box Drain-source voltage of PMOS equals VDD for most of the transition period, giving maximum I_{sc}

I_{peak} as a Function of C_L

When load capacitance is small, I_{peak} is large.

Short circuit dissipation is minimized by matching the rise/fall times of the input and output signals - slope engineering.

x 10⁻¹⁰

P_{sc} as a Function of Rise/Fall Times

When load capacitance is small $(t_{sin}/t_{sout} > 2 \text{ for } V_{DD} > 2V) \text{ the power is}$ dominated by P_{sc}

If $V_{DD} < V_{Tn} + |V_{Tp}|$ then P_{sc} is eliminated since both devices are never ON at the same time.

- ☐ For large capacitance values, all the power dissipation is devoted to charging and discharging the load capacitance.
- \square When the rise/fall times of inputs and outputs are equalized, most power dissipation is associated with dynamic power and only a minor fraction (<10%) is devoted to P_{sc} .

Dynamic Power Example

- ☐ 1 billion transistor chip
 - ➤ 50M logic transistors
 - Average width: 12 L_{min}
 - Activity factor = 0.1
 - ➤ 950M memory transistors
 - Average width: 4 L_{min}
 - Activity factor = 0.02
 - ➤ 1.0 V 25 nm process
 - \triangleright C = 1 fF/mm (gate) + 0.8 fF/mm (diffusion)
- ☐ Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

Dynamic Power Example

$$C_{\text{logic}} = (50 \times 10^{6})(12\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 27 \text{ nF}$$

$$C_{\text{mem}} = (950 \times 10^{6})(4\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 171 \text{ nF}$$

$$P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.02C_{\text{mem}}\right](1.0)^{2}(1.0 \text{ GHz}) = 6.1 \text{ W}$$

Outline

- Introduction
- Dynamic Power Dissipation
- Static Power Dissipation

Power Dissipation

Power Dissipation: Static Power

☐ Non-ideal Effects: small leakage current flows through the OFF transistor (I_{static})

$$P_{\text{static}} = \frac{1}{T} \int_{0}^{T} i_{\text{static}} V_{\text{DD}} dt = I_{\text{static}} V_{\text{DD}}$$

- ☐ Sources of Leakage:
 - \triangleright **Sub-threshold Conduction**: Exponentially increases as V_T scales down
 - > Tunneling through the gate oxide: Exponentially increases as oxide thickness decreases
 - (Important for 130nm and smaller technologies)
 - Leakage through reverse-biased diodes

Static power dissipation an issue in deep sub-micron processes

Power Dissipation: Static (Leakage) Power

- ☐ Sub-threshold current is the dominant factor.
- ☐ All increase exponentially with temperature!

Leakage as a Function of V_T

□ Continued scaling of supply voltage and the subsequent scaling of threshold voltage will make sub-threshold conduction a dominate component of power dissipation.

An 90mV/decade V_T roll-off - so each 255mV increase in V_T gives 3 orders of magnitude reduction in leakage (but adversely affects performance)

TSMC Processes Leakage and V_T

	CL018 G	CL018 LP	CL018 ULP	CL018 HS	CL015 HS	CL013 HS
V_{dd}	1.8 V	1.8 V	1.8 V	2 V	1.5 V	1.2 V
T _{ox} (effective)	42 Å	42 Å	42 Å	42 Å	29 Å	24 Å
L_{gate}	0.16 μm	0.16 μm	0.18 μm	0.13 μm	0.11 μm	0.08 μm
I _{DSat} (n/p) (μA/μm)	600/260	500/180	320/130	780/360	860/370	920/400
I _{off} (leakage) (ρΑ/μm)	20	1.60	0.15	300	1,800	13,000
V _{Tn}	0.42 V	0.63 V	0.73 V	0.40 V	0.29 V	0.25 V
FET Perf. (GHz)	30	22	14	43	52	80

(G: generic, LP: low power, ULP: ultra low power, HS: high speed)

Exponential Increase in Leakage Currents

Leakage Control

- ☐ Leakage and delay trade off
 - > Aim for low leakage in sleep and low delay in active mode
- ☐ To reduce leakage:
 - \triangleright Increase V_t : multiple V_t
 - Use low V_t only in critical circuits
 - ➤ Increase V_s: stack effect
 - Input vector control in sleep
 - ➤ Decrease V_b
 - Reverse body bias in sleep
 - Or forward body bias in active mode

Gate Leakage

- \Box Extremely strong function of t_{ox} and V_{gs}
 - Negligible for older processes
 - Approaches sub-threshold leakage at 65 nm and below in some processes
- ☐ An order of magnitude less for PMOS than NMOS
- \Box Control leakage in the process using $t_{ox} > 10.5 \text{ Å}$
 - High-k gate dielectrics help
 - Some processes provide multiple t_{ox}
 - e.g. thicker oxide for 3.3 V I/O transistors
- ☐ Control leakage in circuits by limiting V_{DD}

Static Power Example

- ☐ Revisit power estimation for 1 billion transistor chip
- ☐ Estimate static power consumption
 - Subthreshold leakage
 - Normal V₁: 100 nA/mm
 - High V_t : 10 nA/mm
 - High Vt used in all memories and in 95% of logic gates
 - ➤ Gate leakage 5 nA/mm
 - Junction leakage negligible

Solution

$$\begin{split} W_{\text{normal-V}_{\text{t}}} &= \left(50 \times 10^{6}\right) \left(12\lambda\right) \left(0.025\,\mu\text{m}\,/\,\lambda\right) \left(0.05\right) = 0.75 \times 10^{6}\,\,\mu\text{m} \\ W_{\text{high-V}_{\text{t}}} &= \left[\left(50 \times 10^{6}\right) \left(12\lambda\right) \left(0.95\right) + \left(950 \times 10^{6}\right) \left(4\lambda\right)\right] \left(0.025\,\mu\text{m}\,/\,\lambda\right) = 109.25 \times 10^{6}\,\,\mu\text{m} \\ I_{sub} &= \left[W_{\text{normal-V}_{\text{t}}} \times 100\,\,\text{nA}/\mu\text{m} + W_{\text{high-V}_{\text{t}}} \times 10\,\,\text{nA}/\mu\text{m}\right]/\,2 = 584\,\,\text{mA} \\ I_{gate} &= \left[\left(W_{\text{normal-V}_{\text{t}}} + W_{\text{high-V}_{\text{t}}}\right) \times 5\,\,\text{nA}/\mu\text{m}\right]/\,2 = 275\,\,\text{mA} \\ P_{static} &= \left(584\,\,\text{mA} + 275\,\,\text{mA}\right) \left(1.0\,\,\text{V}\right) = 859\,\,\text{mW} \end{split}$$

Review: Designing Fast CMOS Gates

- ☐ Transistor sizing
- Progressive transistor sizing
 - MOS closest to the output is smallest of series MOS transistors
- ☐ Transistor ordering
 - > put latest arriving signal closest to the output
- ☐ Logic structure reordering
 - replace large fan-in gates with smaller fan-in gate network
- ☐ Apply "logical effort"
- ☐ Buffer (inverter) insertion
 - > separate large fan-in from large C₁ with buffers
 - > uses buffers so there are no more than four TGs in series

