
620 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 1 1 , NO. 5 , MAY 1992

A Detailed Router for Field-Programmable Gate
Arrays

Stephen Brown, Student Member, IEEE, Jonathan Rose, Member, IEEE, and
Zvonko G . Vranesic, Senior Member, IEEE

Abstract-This paper describes a new kind of detailed routing
algorithm that has been designed specifically for field-program-
mable gate arrays (FPGA’s). The algorithm is unique in that it
approaches this problem in a general way, allowing it to be
used over a wide range of different FPGA routing architee-
tures. The detailed routing of FPGA’s is a new problem and
can be more difficult than classic detailed routing because the
wiring segments that are available for routing are Preplaced
and can only be ~onnected together in specified patterns. In
some FPGA’s, the routing architecture places exacting limita-
tions on the routing choices for any connection, and in such
cases there will routing channels in the FPGA where overlap-
ping routing alternatives of two or more connections create

Detailed routing for FPGA’s can be more difficult than
classical detailed routing [141, [151 because connections
are made using wiring segments that are already in place
and Joins between segments are possible Only at predeter-
mined places where routing switches exist. The imple-
mentation of routing switches could take the form of static
RAM controlled pass transistors [2], [3], [7], [9], anti-
fuses 141, ~51, [131, EPROM transistors 161, [81, [1 11,
[12], Or

A key problem in the detailed routing of FPGA’s is that
the routing of one connection mav unnecessarily block

[lo].

Y

Competition for the same Wiring segments. Resolving this com-
petition is essential for achieving 100% routing in these FPGA’s.
The algorithm described here, called the coarse graph expan-
sion (CGE) detailed router for FPGA’s. addresses the issue of

another. Consider Fig. 1, which shows three views of the
same section of an FPGA. Each view gives the routing
Options for One Of connections A, B, and c. In the figure,

scare routing resources by considering the side effects that the
routing of one connection has on another, and also has the abil-

a routing switch is shown as an x, a wiring segment as a
dotted line. and a Dossible route as a solid line. Now.

ity to optimize the routing delays Of time-critical connections.
CGE has been used to obtain excellent routing results for sev-

era1 industrial circuits implemented in FPGA’s with various
routine. architectures. The results show that CGE is able to

assume that a router first completes connection A. If the
wiring segment numbered is chosen for A, then one of
connections and cannot be routed because they both

route ielatively large FPGA’s in very close to the minimum
number of tracks as determined by global routing, and it can
SUCCeSSfUlly Optimize the routing delays Of time-critical connec-
tions. CGE has a linear run time over circuit size.

rely on the same single remaining option, namely the wir-
ing segment numbered 1. The correct solution is for the
router to choose the wiring segment numbered 2 for con-
nection A, in which case both B and C are also routable.
Although this is a simple example, it illustrates the es-
sence of the problems that occur because of limited rout- I. INTRODUCTION

IELD-PROGRAMMABLE gate arrays (FPGA’s) rep- F resent a new approach to application-specific inte-
grated circuits (ASIC’s) that reduces IC manufacturing
time from months to minutes, and manufacturing costs
from thousands of dollars to under $100. An FPGA has
an array of logic cells connected by a general routing
structure, like a mask programmable gate array, but it is
programmed by the user in the same way as a program-
mable logic device (PLD). The FPGA was first intro-
duced in [l] , with newer versions presented in [2]-1131.
The complexity of FPGA’s has reached the point where
it is essential to have automatic design tools in order to
make effective use of them. This paper focuses on the
problem of FPGA routing.

Manuscript received January 17, 1991. This work was supported by
NSERC Operating Grants URF0043298 and OGP0005280 and by research
grants from Bell-Northern Research and ITRC. This paper was recom-
mended by Associate Editor M. Marek-Sadowska.

The authors are with the Department of Electrical Engineering, Univer-
sity of Toronto, Toronto, Ont.. Canada M5S 1A4.

IEEE Log Number 9105724.

ing options in FPGA’s.
Common approaches used for detailed routing in other

types of devices are not suitable for FPGA’s. Maze
routers [161 are ineffective because they are inherently se-
quential and so, when routing one connection, they can-
not consider the side effects on other connections. Chan-
nel routers [17] are not appropriate because the general
routing problem cannot be subdivided into independent
channels. Note that a channel routing algorithm is used in
[18] for Actel-like FPGA’s [4], [5]. This is possible for
these types of FPGA’s because the logic cells are ar-
ranged in rows separated by routing channels and the
routing switches are such that each logic cell pin can con-
nect to all the wiring segments in the channels above and
below it, and each horizontal wiring segment can connect
to all the vertical wiring segments that cross it. This rout-
ing flexibility cannot be assumed for the general model of
the FPGA that is used in this paper.

An earlier version of the work presented here appeared
in [19]. The rest of this paper is organized as follows:
Section I1 presents the model used for the FPGA; Section

0278-0070/92$03.00 0 1992 IEEE

BROWN et a l . : A DETAILED ROUTER 62 I

Options for Connection A Options for Connection B Options for Connection C

.......................................

......

..... 5 1
.....................................
............ I I :

Fig. 1 . Routing conflicts.

I11 defines the detailed routing problem; Section IV de-
scribes the CGE routing algorithm; Section V presents the
results from tests of the router; and Section VI gives con-
cluding remarks.

11. THE FPGA MODEL

The FPGA is modeled as a two-dimensional array of
logic cells interconnected by vertical and horizontal rout-
ing channels, similar to [l]. It comprises three major parts:
the logic (L), connection (C), and switch (S) blocks, as
shown in Fig. 2. The L blocks are programmable cells
which house the combinational and sequential logic that
form the functionality of a circuit. In general, an L block
has a number of pins, each of which may connect to the
four adjacent C blocks. The I/O blocks appear as L blocks
on the periphery of the chip.

The C blocks are rectangular switch boxes with con-
nection points on all four sides, and are used to connect
the L block pins to the routing channels, via program-
mable switches. Depending on the topology of the C
block, each L block pin may be switchable to either all or
some fraction of the wiring segments that pass through
the C block. The fewer wiring segments connectable in
the C blocks, the harder the FPGA is to route. Connec-
tions along a routing channel may also pass straight
through a C block, but in a typical routing architecture no
switch would be involved for such connections.

The S blocks are also rectangular switch boxes. They
are used to connect wiring segments in one channel seg-
ment to those in another. Depending on the topology, each
wiring segment on one side of an S block may be switch-
able to either all or some fraction of the wiring segments
on each other side of the S block. Again, the fewer wiring
segments that can be switched to, the harder the FPGA is
to route. A connection that passes through an S block may
do so through a switch or it may be hard-wired. A con-
nection will have a lower routing delay if it uses hard-
wired wiring segments than if it passes through switches.

In Fig. 2, each L block has two pins that appear on all
four of its sides, and there are three tracks in each routing
channel. The figure also defines several terms, such as
channel segment, wiring segment, and routing channel.
The two-dimensional grid that is overlaid on the FPGA is
used later as a means of describing the connections to be
routed.

............

................................... 1-x- 5

..........

Grid
line

Channel
segment

4

Horizontal 4 3
Routing Channel

2

wiring Segm.1-l-

0

Grid
line

Channel
Segment

0 1 2 3 4

JI vertical
Routing Channel

Fig. 2. The FPGA model

111. GENERAL APPROACH AND PROBLEM DEFINITION
As in other design styles, FPGA routing is a complex

combinatorial problem. The general approach used here
is the usual two-stage method of global routing followed
by detailed routing. This allows the separation of two dis-
tinct problems: balancing the densities of all routing chan-
nels, and assigning specific wiring segments for each con-
nection. The global router used is an adaptation of the
LocusRoute global routing algorithm for standard cells
[20]. This global router divides multipoint nets into two-
point connections and routes them in minimum distance
paths. Its main goal is to distribute the connections among
the channels so that the channel densities are balanced.

The global router defines a course route for each con-
nection by assigning it a sequence of channel segments.
Fig. 3(a) shows a representation of a typical global route
for one connection. It gives a sequence of channel seg-
ments that the global router might choose to connect some
pin of a logic block at grid location 2, 2 to another at 4,
4. The global route is called a coarse graph, G(V, A) ,
where the L block at 2, 2 is referred to as the root of the
graph and the L block at 4, 4 is called the leaf. The ver-
tices V , and edges, A , of G(V, A) are identified by the
grid of Fig. 2. Since the global router splits all nets into
two-point connections, the course graphs always have a
fan-out of 1.

After global routing the problem is transformed to the
following: for each two-point connection, the detailed

622 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. I I . NO 5 . MAY 1992

c 3.4

L :I 4.4

(a) (b)
Fig. 3. (a) A typical coarse graph and (b) its expanded graph

router must choose specific wiring segments to implement
the channel segments assigned during global routing. As
this requires complete information about the FPGA rout-
ing architecture, CGE uses the details of the L, C, and S
blocks, as described in the following sections.

IV. THE CGE DETAILED ROUTER ALGORITHM
The basic algorithm is split into two phases. In the first

phase, it enumerates a number of alternatives for the de-
tailed route of each coarse graph, and then in the second
phase, viewing all the alternatives at once, it makes spe-
cific choices for each connection. The decisions made in
phase 2 are driven by a cost function that is based on the
alternatives enumerated in phase 1 . Multiple iterations of
the two phases allow the algorithm to conserve memory
and run time while converging to its final result, as dis-
cussed in subsection IV-c.

A . Phase 1: The Expansion of the Coarse Graphs
During phase 1, CGE expands each coarse graph and

records a subset of the possible ways that the connection
can be implemented. For each G(V, A) , the expansion
phase produces an expanded graph, called D(N, E). N are
the vertices of D , and E are its edges, with each edge
referring to a specific wiring segment in the FPGA. The
edges are labeled with a number that refers to the corre-
sponding wiring segment.

In the expansion algorithm, the procedures that define
the connection topology of the C and S blocks are treated
as black-box functions. The black-box function for a C
block is denoted as f,([d,, d2, 13, d,) and for an S block
asf,([d,, d2, 13 , d,). The parameters in square brackets
define an edge that connects vertex d, to vertex d2, using
a wiring segment labeled 1. Such an edge is later referred
to as e, where e = (d l , dZ, 1). The parameter d3 is the
successor vertex of d2. The task of the function call can
be stated as: If the wiring segment numbered 1 is used to
connect vertex dl to d2, what are the wiring segments that
can be used to reach d3 from d2. The function call returns
the set of edges that answer this question. As explained
in subsection IV-D, this black-box approach is the key to
the algorithm’s independence with respect to any specific
FPGA routing architecture. The result of a graph expan-
sion is illustrated in Fig. 3(b), which shows a possible
expanded graph for the coarse graph of Fig. 3(a). The

graph expansion process for each coarse graph operates
as follows:

Create D and give it the same root as G. Make the
immediate successor to the root of D the same as for
the root of G.

While traversing D breadth first, enumerate the paths
originating at each vertex according to:
Expand a C vertex in D by callingf,(ec, n) = Z. ec

is the edge in D that has already been chosen to
connect to C from its predecessor. n is the re-
quired successor vertex to C (in G) and Z is the
set of edges returned by f,(). The call to f,() adds
IZI edges to D .

Expand an S vertex in D by callingf,(es, n) = Z.
es is the edge in D that has already been chosen
to connect to S from its predecessor. n is the re-
quired successor vertex of S (in G) and Z is the
set of edges returned byf,(). The call tof,() adds
IZI edges to D .

Endwhile

B. Phase 2: Connection Formation
After expansion, each D(N, E) may contain a number

of alternative paths. CGE places all the paths from all the
expanded graphs into a single path list. Based on a cost
function, the router then selects paths from the list; each
selected path defines the detailed route of its correspond-
ing connection. Because the cost function allows it to con-
sider all the paths at once, CGE can be said to route the
connections “in parallel. ” Phase 2 proceeds as follows
(the terms cfcost and c, cost will be defined later in this
section) :

Put all the paths in the expanded graphs into the path
list

While the path list is not empty
If there are paths in the path list that are known to

be essential
Select the essential path that has the lowest cf

cost.
Else if there are paths in the path list that correspond

to time-critical connections
Select the critical path with the lowest c, cost.

Else
Select the path with the lowest cf cost

Mark the graph corresponding to the selected path
as routed-remove all paths in this graph from the
path list.

Find all paths that would conflict with the selected
path and remove them from the path list (see
note). If a connection loses all of its alternative
paths, reexpand its coarse graph-if this results
in no new paths, the connection is deemed un-
routable (see subsection 1V-C for a discussion re-
lating to failed connections).

Update the cost of all affected paths.
Endwhile

BROWN et a l . : A DETAILED ROUTER 623

Options for Connection D Options for Connection E Options for Connection F

..... 1 A ! 1

...... 2 2

.................................... H 3 3 $=k:: 5

Fig. 4. An essential wiring segment.

Note: When a wiring segment is chosen for a particular
connection, it and any other wiring segments in the
FPGA that are hard-wired to it must be eliminated
as possible choices for connections that are in other
nets. This requires a function analogous tofJ) and
f,() that understands the connectivity of a particular
FPGA configuration. CGE calls this routine update
(e)-the parameter e is an edge in the selected path
and update (e) returns the set of edges that are hard-
wired to e .

with e) . Thus, the cf cost of an edge e that has j other
occurrences (e , , e 2 , - , e,) is defined as

where alt (e ,) is the number of edges in parallel with e,.
Because of the summing process in cf(e) , the more

graphs e occurs in, the higher will be its cost. This reflects
the fact that e is an edge that is in high demand and urges
CGE to avoid using e when there are other choices. Note

a time-critical connection. Otherwise, paths are selected
according to their cf cost. The cf cost has two goals:

1) To select a path that has a relatively small negative
effect on the remaining connections, in terms of
routability. The cost deters the selection of paths
that contain wiring segments that are in great de-
mand.

2) It is used to identify a path that is essential for a
connection. Such a connection has only one path re-
maining in the FPGA, because previous path selec-
tions have consumed its alternatives.

The reason for using wiring segment demand was illus-
trated in Fig. 1, where connection A should be routed
with wiring segment 2, because wiring segment 3 is in
greater demand.

The importance of essential wiring segments is illus-
trated by the example in Fig. 4. If the router were to com-
plete connection D first, then wiring segments 1 and 2
would be equal candidates according to their demand,
since they both appear in one other graph. However, wir-
ing segment 1 is essential for the completion of connec-
tion E, and to ensure the correct assignment of the essen-
tial wiring segment, connection E should be routed first.

To determine whether an edge, e , is in great demand,
the router could simply count the number of occurrences
of e that are in expanded graphs of other nets. However,
some occurrences of e are less likely to be used than oth-
ers because there may be alternatives (edges in parallel

C. Controlling Complexity
Although the definition of graph expansion implies that

all possible paths in an FPGA are recorded during expan-
sion, this is not practical because the number of paths can
be very large in some architectures. For example, con-
sider the connection of two pins on two different L blocks.
Assume that each pin can connect to F, of the wiring seg-
ments in the channel segments adjacent to each L block,
and that the L blocks are separated by n switch blocks. If
each wiring segment that enters one side of a switch block
can connect to F, wiring segments on the other three sides,
then there are an average of F, [F, /3]" different paths from
the first pin to the last L block, and assuming W tracks in
each routing channel, there are an average of

2 151'
w 3

possible ways to form the connection. Since typical Val-
ues of F, should be 3 or greater [2 11, [2 2] , and the number
of connections is large, this complexity must be con-
trolled.

The number of paths in the expanded graphs is reduced
by pruning them as they are expanded. The pruning al-
gorithm is parameterized such that the amount of memory
space required is controlled and yet the expanded graphs
still contain as many alternatives per connection as pos-
sible. Maximizing the number of alternatives is important

624

I
I

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. I I , NO S. MAY 1992

Fig. 5 . The effect of pruning

in the context of resolving routing conflicts. The pruning
algorithm is part of the graph expansion process described
in subsection IV-A. The general flow follows (the criteria
used for pruning is given at the end of this section):

Expand two levels
Prune; keep at most K vertices at this level, and assign

each a unique group number. Discard the other ver-
tices and the paths they terminate.

Expand two more levels. Assign each added vertex the
group number of its predecessor.

While the leaf level has not been reached.
Prune; keep at most k vertices with each group

number at this level. Discard the other vertices
and the paths they terminate.

Expand two more levels. Assign each added vertex
the group number of its predecessor.

Endwhile

The graphs are pruned every two levels because that is
where fan-out occurs (after the first C block and after
every S block). The parameter K controls the starting
widths of the graphs and can take values from 1 to F,. (the
number of wiring segments connected to each L block
pin). Beyond the maximum value of K , parameter k al-
lows the expanded graphs to further increase in width.
The concept of group numbers isolates each of the origi-
nal K paths, which maximizes the number of alternatives
at each level of the final expanded graph. The actual val-
ues used for K and k are discussed in the next section.
The effect of the pruning algorithm is illustrated in Fig.
5 . The left half of the figure shows a fully expanded graph
from an example circuit, while the corresponding pruned
graph is on the right. Also shown are each graph’s edges
in the FPGA.

The choice of vertices to prune is based on the wiring
segment corresponding to their incoming edge, as fol-
lows. For the special case of time-critical connections,
the wiring segments with the least delay are favored. For
other connections, the wiring segments that have thus far

been used in the greatest number of other places will be
discarded. This helps the cfcost function discover the wir-
ing segments that are in the least demand.

Note that when paths are discarded because of pruning,
they are not necessarily abandoned permanently by the
router. In phase 2, as CGE chooses connections, if rout-
ing conflicts consume all of the alternatives for some
graph, CGE reinvokes the graph expansion process to ob-
tain a new set of paths if some exist.

Iterations: This subsection explains how iterations of
the two phases of CGE are used to conserve memory and
run time. The iterative approach is linked to the pruning
parameters of the graph expansion phase. Setting the
pruning parameters to large values allows the router to do
a better job of resolving routing conflicts because it sees
many alternatives for each connection. On the other hand,
with large pruning parameters more memory and run time
are required by the algorithm. ‘The key to this routing
quality versus memory and time trade-off is the realization
that most connections in an FPGA are relatively easy to
route and only a small percentage of the connections pose
real difficulties. This is because a typical routing problem
is likely to have only a few channel segments whose den-
sities are very close to the total number of wires in a rout-
ing channel. To exploit this property, the router starts with
small pruning parameters and then increases them through
successive iterations, but only for the parts of the FPGA
that are difficult to route.

For the first iteration the pruning parameters are set to
relatively small values, and the entire FPGA is routed. If
routing conflicts leave some connections unrouted, then
another iteration is required. The procedure is to erase all
the routing of any connection that overlaps any part of a
failed connection, and then to attempt to route those chan-
nel segments again using larger pruning parameters. Only
connections that touch some segment of a channel in
which a failed connection occurred are routed in the next
iteration. Iterations are continued until all connections are
routed or until further improvements are not forthcoming

BROWN er al . : A DETAILED ROUTER 625

global mute for
each connection

4- ’
I routedinproblem I ,I,

Fig. 6. The organization of CGE.

(note that it would be desirable to try different global
routes for connections that are left unrouted after all it-
erations, but no such failure-recovery mechanism is cur-
rently implemented). This approach is a minor variation
of classic rip-up and reroute schemes where individual
connections would be removed and rerouted to try to re-
solve routing conflicts. The technique employed here al-
lows CGE’s cost function to solve the routing problem,
but conserve memory and time where the problem is not
difficult and to expend them only where it is required.

The specific values used for the pruning parameters in
each iteration affect the total number of iterations required
but do not appreciably affect the quality of the final result.
This indicates a robustness in the algorithm because the
quality of the routing does not depend on the specific val-
ues chosen for the program’s parameters.

D. Independence of CGE from FPGA Routing
Architectures

CGE achieves the ability to route arbitrary FPGA rout-
ing architectures by isolating the parts of the code that are
architecture-specific. This is illustrated in Fig. 6, which
shows the overall flow of the algorithm. The code that is
dependent on the routing architecture is enclosed in cir-
cles. As shown, the separate code includes thef,() , f s (),
and update () routines. Any architecture that fits the gen-
eral model described in Section I1 can be routed by chang-
ing these isolated routines. This generality was used as a
research tool in recent papers on FPGA routing architec-
tures [21], [22]. Fig. 6 also shows the organization of the
phases of CGE and the feedback path used over multiple
iterations.

V. RESULTS
CGE has been used to route several industrial circuits

implemented as FPGA’s. The routing results shown in this
section are based on five circuits from four sources: Bell-
Northern Research, Zymos, and two different designers
at the University of Toronto. Table I gives the names,
size, (number of two-point connections and logic blocks),
source, and function of each circuit. For these results, the
L block used is the result of a previous study [23], and
the S and C blocks will be described in the next subsec-
tion. Results are presented for a routing architecture sim-
ilar to a commercial FPGA.

A. FPGA Routing Structures
Since the routability of an FPGA is determined by the

topology and flexibility and its S and C blocks, those used
in the tests of the algorithm are presented here. The gen-
eral nature of the S block is illustrated in Fig. 7(a). Its
flexibility is set by a parameter called F,, which defines
the total number of connections offered to each wiring
segment that enters the S block. For the example shown
in Fig. 7(a), the wiring segment at the top left of the S
block can connect to six other wiring segments, and so F,
is 6. Although not shown, the other wiring segments are
similarly connected.

Fig. 7(b) illustrates the test C block. The tracks pass
uninterrupted through it and are connected to L block pins
via a set of switches. The flexibility of the C block, F,,
is defined as the number of tracks that each L block pin
can connect to. For the example shown in the figure, each
L block pin can connect to two vertical tracks, and so F,
is 2 .

B . Routing Results
The familiar yardstick of channel density is used as a

measure of the quality of the detailed router. The “chan-
nel density” column in Table I1 shows the maximum
channel density over all channels for each circuit. This is
the theoretical minimum number of tracks per routing
channel required for each example. However, the real
track requirements depend on the flexibilities of the rout-
ing structures; the maximum flexibility has F, = 3 W and
F,. = W, where there are W tracks per channel. For the
results in Table 11, the FPGA parameters are based on the
Xilinx 3000 series [24] FPGA’s (F, = 6, F, = 0.6W).
Table I1 gives the minimum number of tracks per channel
that CGE needs in order to route 100% of the connec-
tions. The values for Ware slightly greater than the global
router minimum, which are excellent results considering
the low flexibility of the FPGA routing architecture. Note
that if F, is increased to 0.8W, CGE achieves the absolute
minimum number of tracks for all the circuits.

For comparison purposes, the same problems have also
been routed using CGE with its cf cost facility disabled.
In this mode CGE has no ability to resolve routing con-
flicts and is thus a sequential router, similar to a maze
router. At first glance, this may seem to be an unrealistic

626

0 ’
\

L
Black

............

.

IEEE TRANSACTIONS Oh’ COMPUTER-AIDED DESIGN. VOL. I I . NO. 5. MAY 1992

L
Black

TABLE I
EXPERIMENTAL CIRCUITS

No. No.
Circuit Connections Blocks Source Type

BUSC 392 I09 UTD 1 Bus Cntl
DMA 77 1 224 UTD2 DMA Cntl
BNRE 1257 362 BNR Logic/Data
DFSM 1422 4 0 1 UTDl State Mach.
203 2135 586 Zymos 8-bit Mult

a 1 2 0 1 2

0 1 2 0 1 2
(a) (b)

Fig. 7 . Definitions of (a) S and (b) C block flexibility.

TABLE I1
CGE MINIMUM W FOR 100% ROUTING (F , = 0.6W)

Channel
Circuit F, Density

BUSC 6 9
DMA 6 10
BNRE 6 1 1
DESM 6 10
203 6 1 1

W Required
by CGE

10
10
12
10
13

W for CPU
“Maze” Seconds

15 25
15 59
20 122
18 103
18 215

comparison because some maze routers are guided by cost
functions that aid in finding good routes for connections.
However, the “maze” router used here has, in effect, ac-
cess to the cost function that was used to solve the global
routing, which is based on balancing the densities of all
routing channels. Notwithstanding, this is a constrained
“maze” router because it is confined within the global
route of each connection, and the comparisons are valid
only in that context. The second from the right column in
Table I1 gives the number of tracks that the maze router
requires to achieve 100% routing. These results show that
the maze router needs an average of 60% more tracks than
CGE. This shows that resolving routing conflicts is im-
portant and that CGE addresses this issue well. Fig. 8
presents the detailed routing for circuit B U S C , with the
FPGA parameters in Table 11; the L blocks are shown as
solid boxes, whereas the S and C blocks are dashed boxes.

C. Routing Delay Optimization for Critical Nets
Table 111 illustrates CGE’s ability to optimize critical

connections. For this experiment, several connections in
circuit BNRE were marked critical. Then, CGE was used
to route the circuit twice; once with CGE’s critical net
processing turned off, and once with it turned on. To fa-
cilitate this experiment, the FPGA was defined to have 18

tracks per channel, with four tracks hard-wired for the
entire length of each channel. Connections that use the
hard-wired tracks have lower routing delays because they
pass through fewer switches (transistors). As Table I11
shows, a significant reduction in the number of switches
in the critical paths was achieved.

Note that a better approach to routing delay optimiza-
tion would set specific timing requirements that should be
met for each critical path in a circuit. However, the op-
timization of nets and their individual connections is a
reasonable compromise.

D. Memory Requirements and Speed of CGE
For the examples used here, CGE needs between 1.5

and 7.5 Mbytes of memory. As shown in the rightmost
column of Table 11, experimental measurements show that
CGE is a linear-time algorithm, requiring from 25 to 215
SUN 3/60 CPU seconds for the smallest to the largest of
the example circuits. This run-time behavior is due to the
pruning procedure, which limits the number of routing
alternatives that the algorithm considers for each connec-
tion.

VI. CONCLUSIONS
This paper has described a new kind of detailed routing

algorithm that is designed specifically for field-program-
mable gate arrays. The algorithm is able to consider the
side effects that routing decisions made for one connec-
tion may have on another, and thus to resolve routing con-
flicts and achieve a high-quality result. The algorithm can
be used for a wide variety of FPGA routing architectures.
It can route relatively large FPGA’s in very close to the
absolute minimum number of tracks as determined by
global routing, and is capable of optimizing the routing
delays of time-critical connections.

BROWN et al.: A DETAILED ROUTER

WaA bus-m#T4.sg.. W - 10, Fa - 6, Fs - 6 Trr kq 7 16:U:m 1980

621

Fig. 8. The detailed routing of circuit BUSC.

TABLE 111
CRITICAL CONNECTION ROUTING DELAY OPTIMIZATION

Name of No. Switches Without No. Switches with
Net Critical Processing Critical Processing

#I43
#I44
#220
#280
#35 1

15
14
10
15
15

ACKNOWLEDGMENT
The authors would like to thank D. Lewis and P. Chow

for suggestions on the design of the router.

REFERENCES

W. Carter et al., “A user programmable reconfigurable gate array,”
in Proc. I986 Custom Integrated Circuits Conf., May 1986, pp. 233-
235.
H. Hsieh et al., “A 9000-gate user-programmable gate array,” in
Proc. I988 Custom Integrated Circuits Conf., May 1988, pp. 15.3.1-
15.3.7.
H. Hsieh et al., “Third-generation architecture boosts speed and den-
sity of field-programmable gate arrays,” in Proc. I990 Custom In-
tegrated Circuirs Conf., May 1990, pp. 31.2.1-31.2.7.
A. El Gamal et al., “An architecture for electrically configurable gate
arrays,’’ IEEE J. Solid-State Circuits, vol. 24, pp. 394-398, Apr.
1989.
M. Ahrens et a l . , “An FPGA family optimized for high densities and
reduced routing delay,” in Proc. I990 Custom Integrated Circuits
Conf., May 1990, pp. 31.5.1-31.5.4.
S. C. Wong, H. C. So, J . H. Ou, and J . Costello, “A 5000-gate
CMOS EPLD with multiple logic and interconnect arrays,” in Proc.
I989 Custom Integrated Circuits Conf., May 1989, pp. 5.8.1-5.8.4.
Plessey Semiconductor ERA60100 preliminary data sheet.

[8] C. Marr, “Logic array beats development time blues,’’ Electronic
System Design Magazine, pp. 38-42, Nov. 1989.

[9] K. Kawana et al., “An efficient logic block interconnect architecture
for user programmable gate array,” in Proc. 1990 Custom Integrated
Circuits Conf., May 1990, pp. 31.3.1-31.3.4.

[IO] AMD MACH I and MACH 2 Device Families Preliminary Data
Sheets, Advanced Micro Devices, 1990.

[I l l A. Gupta er al., “A user configurable gate array using CMOS-
EPROM technology,” in Proc. I990 Custom Integrated Circuits
Conf., May 1990, pp. 31.7.1-31.7.4.

[121 Plus Logic FPGA2020 Preliminary Data Sheet, 1990.
[131 Ouickloaic. “An introduction to Quicklogic’s PASIC devices and

. I

SpDE development environment,” Data Sh;eetfrim Quicklogic, Apr.
1991.
J . Soukup, “Circuit layout,” Proc. IEEE, vol. 69, pp. 1281-1304,
Oct. 1981.
B. Preas and M. Lorenzetti, Eds., Physical Design Automation of
VLSI Systems, Menlo Park, CA: Benjamin Cummings, ch. 5 .
C. Lee, “An algorithm for path connections and its applications,”
IRE Trans. Electron. Comput., vol. EC-IO, pp. 346-365, Sept. 1961.
A. Hashimoto and J . Stevens, “Wire routing by optimizing channel
assignment within large apertures,’’ in Proc. 8th Design Automar.
Conf., 1971, pp. 155-163.
J . Greene, V. Roychowdhury, S . Kaptanoglu, and A. El Gamal,
“Segmented channel routing,” in Proc. 27th Design Automar. Conf: ,
June 1990, pp. 567-572.
S. Brown, J . Rose, and Z . G. Vranesic, “A detailed router for field-
programmable gate arrays,” in Proc. Int. Conf. Computer Aided De-
sign. Nov. 1990, pp. 382-385.
J . Rose, “Parallel global routing for standard cells,’’ IEEE Trans.
Computer-Aided Design, vol. 9 , pp. 1085-1095, Oct. 1990.
J . Rose and S. Brown, “The effect of switch box flexibility on rout-
ability of field-programmable gate arrays,” in Proc. I990 Custom
Integrated Circuits Conf.., May 1990, pp. 27.5.1-27.5.4.
J . Rose and S. Brown, “Flexibility of interconnection structures in
field-programmable gate arrays,” IEEE J. Solid-State Circuits, vol.
26, pp. 277-282, Mar. 1991.
J . S . Rose, R. J . Francis, D. Lewis, and P. Chow, “Architecture of
programmable gate arrays: The effect of logic block functionality on
area efficiency,” IEEE J. Solid-State Circuits, vol. 25, pp. 1217-
1225, Oct. 1990.
7ke Programmable Gate Array Data Book. Xilinx Co., 1989.

628 IEEE

Stephen Brown (S’90) received the B.Sc.Eng.
degree from the University of New Brunswick in
1985 and the M.A.Sc. degree from the University
of Toronto in 1987, both in electrical engineering.
Presently, he is a Ph.D. candidate in the Depart-
ment of Electrical Engineering at the University
of Toronto, Canada. His research interests in-
clude CAD and architecture of VLSI Systems.

Jonathan Rose (S’80-M’86) received the
B.A.Sc. degree in engineering science in 1980 and
the M.A.Sc. and Ph.D. degrees in electrical en-
gineering in 1982 and 1986, respectively, from the
University of Toronto, Toronto, Canada.

During the summer of 1983, he was with Bell-
Northem Research Ltd., Ottawa, in the Integrated
Circuits CAD/CAM group. From 1986 to 1989,
he was a Research Associate in the Computer Sys-
tems Laboratory at Stanford University. In 1989,
he joined the faculty of the University of Toronto,

where he is currently an Assistant Professor of Electrical Engineering. His
research interests include CAD and architecture for field-programmable gate
arrays, automatic layout, and parallel CAD algorithms.

TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. I I . NO. 5 . MAY 1992

Zvonko G. Vranesic (S’67-M’68-SM’84) re-
ceived the B. A Sc , M.A.Sc., and the Ph.D. de-
grees in electrical engineering from the University
of Toronto, Toronto, Canada, in 1963, 1966, and
1968, respectively

From 1963 to 1965 he worked as a design en-
gineer for the Northern Electnc Company Ltd.,
Bramalea, Ontario, Canada. In 1968 he joined the
faculty of the Departments of Electrical Engi-
neenng and Computer Science at the University
of Toronto, where he is now a Professor. During

the academic years 1977178 and 1984/85 he was a Senior Visitor in the
Computer Laboratory at the University of Cambridge, England, and at the
Institut de Programmation of the University of Paris 6 , France His re-
search interests include computer architecture, VLSI systems, fault-toler-
ant computing, local area networks, and many-valued switching systems.

Dr. Vranesic is a member of the Association of Professional Engineers
of Ontario. He was the Chairman of the 3rd Intemational Symposium on
Multiple-valued Logic in 1973 and of the 18th International Symposium
on Computer Architecture in 1991

