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Abstract-This paper describes a new kind of detailed routing 
algorithm that has been designed specifically for field-program- 
mable gate arrays (FPGA’s). The algorithm is unique in that it 
approaches this problem in a general way, allowing it to be 
used over a wide range of different FPGA routing architee- 
tures. The detailed routing of FPGA’s is a new problem and 
can be more difficult than classic detailed routing because the 
wiring segments that are available for routing are Preplaced 
and can only be ~onnected together in specified patterns. In 
some FPGA’s, the routing architecture places exacting limita- 
tions on the routing choices for any connection, and in such 
cases there will routing channels in the FPGA where overlap- 
ping routing alternatives of two or more connections create 

Detailed routing for FPGA’s can be more difficult than 
classical detailed routing [ 141, [ 151 because connections 
are made using wiring segments that are already in place 
and Joins between segments are possible Only at predeter- 
mined places where routing switches exist. The imple- 
mentation of routing switches could take the form of static 
RAM controlled pass transistors [2], [3], [7], [9], anti- 
fuses 141, ~51, [ 131, EPROM transistors 161, [81, [ 1 11, 
[12], Or 

A key problem in the detailed routing of FPGA’s is that 
the routing of one connection mav unnecessarily block 

[lo]. 

Y 

Competition for the same Wiring segments. Resolving this com- 
petition is essential for achieving 100% routing in these FPGA’s. 
The algorithm described here, called the coarse graph expan- 
sion (CGE) detailed router for FPGA’s. addresses the issue of 

another. Consider Fig. 1, which shows three views of the 
same section of an FPGA. Each view gives the routing 
Options for One Of connections A,  B, and c. In the figure, 

scare routing resources by considering the side effects that the 
routing of one connection has on another, and also has the abil- 

a routing switch is shown as an x, a wiring segment as a 
dotted line. and a Dossible route as a solid line. Now. 

ity to optimize the routing delays Of time-critical connections. 
CGE has been used to  obtain excellent routing results for sev- 

era1 industrial circuits implemented in FPGA’s with various 
routine. architectures. The results show that CGE is able to 

assume that a router first completes connection A. If the 
wiring segment numbered is chosen for A,  then one of 
connections and cannot be routed because they both 

route ielatively large FPGA’s in very close to the minimum 
number of tracks as determined by global routing, and it can 
SUCCeSSfUlly Optimize the routing delays Of time-critical connec- 
tions. CGE has a linear run time over circuit size. 

rely on the same single remaining option, namely the wir- 
ing segment numbered 1. The correct solution is for the 
router to choose the wiring segment numbered 2 for con- 
nection A, in which case both B and C are also routable. 
Although this is a simple example, it illustrates the es- 
sence of the problems that occur because of limited rout- I. INTRODUCTION 

IELD-PROGRAMMABLE gate arrays (FPGA’s) rep- F resent a new approach to application-specific inte- 
grated circuits (ASIC’s) that reduces IC manufacturing 
time from months to minutes, and manufacturing costs 
from thousands of dollars to under $100. An FPGA has 
an array of logic cells connected by a general routing 
structure, like a mask programmable gate array, but it is 
programmed by the user in the same way as a program- 
mable logic device (PLD). The FPGA was first intro- 
duced in [ l ] ,  with newer versions presented in [2]-1131. 
The complexity of FPGA’s has reached the point where 
it is essential to have automatic design tools in order to 
make effective use of them. This paper focuses on the 
problem of FPGA routing. 
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ing options in FPGA’s. 
Common approaches used for detailed routing in other 

types of devices are not suitable for FPGA’s. Maze 
routers [ 161 are ineffective because they are inherently se- 
quential and so, when routing one connection, they can- 
not consider the side effects on other connections. Chan- 
nel routers [17] are not appropriate because the general 
routing problem cannot be subdivided into independent 
channels. Note that a channel routing algorithm is used in 
[18] for Actel-like FPGA’s [4], [5]. This is possible for 
these types of FPGA’s because the logic cells are ar- 
ranged in rows separated by routing channels and the 
routing switches are such that each logic cell pin can con- 
nect to all the wiring segments in the channels above and 
below it, and each horizontal wiring segment can connect 
to all the vertical wiring segments that cross it. This rout- 
ing flexibility cannot be assumed for the general model of 
the FPGA that is used in this paper. 

An earlier version of the work presented here appeared 
in [19]. The rest of this paper is organized as follows: 
Section I1 presents the model used for the FPGA; Section 
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Fig. 1 .  Routing conflicts. 

I11 defines the detailed routing problem; Section IV de- 
scribes the CGE routing algorithm; Section V presents the 
results from tests of the router; and Section VI gives con- 
cluding remarks. 

11. THE FPGA MODEL 

The FPGA is modeled as a two-dimensional array of 
logic cells interconnected by vertical and horizontal rout- 
ing channels, similar to [l].  It comprises three major parts: 
the logic (L), connection (C), and switch (S) blocks, as 
shown in Fig. 2. The L blocks are programmable cells 
which house the combinational and sequential logic that 
form the functionality of a circuit. In general, an L block 
has a number of pins, each of which may connect to the 
four adjacent C blocks. The I/O blocks appear as L blocks 
on the periphery of the chip. 

The C blocks are rectangular switch boxes with con- 
nection points on all four sides, and are used to connect 
the L block pins to the routing channels, via program- 
mable switches. Depending on the topology of the C 
block, each L block pin may be switchable to either all or 
some fraction of the wiring segments that pass through 
the C block. The fewer wiring segments connectable in  
the C blocks, the harder the FPGA is to route. Connec- 
tions along a routing channel may also pass straight 
through a C block, but in a typical routing architecture no 
switch would be involved for such connections. 

The S blocks are also rectangular switch boxes. They 
are used to connect wiring segments in one channel seg- 
ment to those in another. Depending on the topology, each 
wiring segment on one side of an S block may be switch- 
able to either all or some fraction of the wiring segments 
on each other side of the S block. Again, the fewer wiring 
segments that can be switched to, the harder the FPGA is 
to route. A connection that passes through an S block may 
do so through a switch or it may be hard-wired. A con- 
nection will have a lower routing delay if it uses hard- 
wired wiring segments than if it passes through switches. 

In Fig. 2, each L block has two pins that appear on all 
four of its sides, and there are three tracks in each routing 
channel. The figure also defines several terms, such as 
channel segment, wiring segment, and routing channel. 
The two-dimensional grid that is overlaid on the FPGA is 
used later as a means of describing the connections to be 
routed. 
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Fig. 2.  The FPGA model 

111. GENERAL APPROACH AND PROBLEM DEFINITION 
As in other design styles, FPGA routing is a complex 

combinatorial problem. The general approach used here 
is the usual two-stage method of global routing followed 
by detailed routing. This allows the separation of two dis- 
tinct problems: balancing the densities of all routing chan- 
nels, and assigning specific wiring segments for each con- 
nection. The global router used is an adaptation of the 
LocusRoute global routing algorithm for standard cells 
[20]. This global router divides multipoint nets into two- 
point connections and routes them in minimum distance 
paths. Its main goal is to distribute the connections among 
the channels so that the channel densities are balanced. 

The global router defines a course route for each con- 
nection by assigning it a sequence of channel segments. 
Fig. 3(a) shows a representation of a typical global route 
for one connection. It gives a sequence of channel seg- 
ments that the global router might choose to connect some 
pin of a logic block at grid location 2, 2 to another at 4, 
4. The global route is called a coarse graph, G(V, A ) ,  
where the L block at 2, 2 is referred to as the root of the 
graph and the L block at 4, 4 is called the leaf. The ver- 
tices V ,  and edges, A ,  of G(V, A )  are identified by the 
grid of Fig. 2. Since the global router splits all nets into 
two-point connections, the course graphs always have a 
fan-out of 1. 

After global routing the problem is transformed to the 
following: for each two-point connection, the detailed 
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(a) (b) 
Fig. 3. (a) A typical coarse graph and (b) its expanded graph 

router must choose specific wiring segments to implement 
the channel segments assigned during global routing. As 
this requires complete information about the FPGA rout- 
ing architecture, CGE uses the details of the L, C,  and S 
blocks, as described in the following sections. 

IV. THE CGE DETAILED ROUTER ALGORITHM 
The basic algorithm is split into two phases. In the first 

phase, it enumerates a number of alternatives for the de- 
tailed route of each coarse graph, and then in the second 
phase, viewing all the alternatives at once, it makes spe- 
cific choices for each connection. The decisions made in 
phase 2 are driven by a cost function that is based on the 
alternatives enumerated in phase 1 .  Multiple iterations of 
the two phases allow the algorithm to conserve memory 
and run time while converging to its final result, as dis- 
cussed in subsection IV-c.  

A .  Phase 1: The Expansion of the Coarse Graphs 
During phase 1, CGE expands each coarse graph and 

records a subset of the possible ways that the connection 
can be implemented. For each G(V, A ) ,  the expansion 
phase produces an expanded graph, called D(N, E). N are 
the vertices of D ,  and E are its edges, with each edge 
referring to a specific wiring segment in the FPGA. The 
edges are labeled with a number that refers to the corre- 
sponding wiring segment. 

In the expansion algorithm, the procedures that define 
the connection topology of the C and S blocks are treated 
as black-box functions. The black-box function for a C 
block is denoted as f,([d,, d2, 13, d,) and for an S block 
asf,([d,, d2, 13 ,  d,). The parameters in square brackets 
define an edge that connects vertex d, to vertex d2, using 
a wiring segment labeled 1. Such an edge is later referred 
to as e, where e = (d l ,  dZ, 1). The parameter d3 is the 
successor vertex of d2. The task of the function call can 
be stated as: If the wiring segment numbered 1 is used to 
connect vertex dl to d2,  what are the wiring segments that 
can be used to reach d3 from d2. The function call returns 
the set of edges that answer this question. As explained 
in subsection IV-D, this black-box approach is the key to 
the algorithm’s independence with respect to any specific 
FPGA routing architecture. The result of a graph expan- 
sion is illustrated in Fig. 3(b), which shows a possible 
expanded graph for the coarse graph of Fig. 3(a). The 

graph expansion process for each coarse graph operates 
as follows: 

Create D and give it the same root as G. Make the 
immediate successor to the root of D the same as for 
the root of G. 

While traversing D breadth first, enumerate the paths 
originating at each vertex according to: 
Expand a C vertex in D by callingf,(ec, n) = Z. ec 

is the edge in D that has already been chosen to 
connect to C from its predecessor. n is the re- 
quired successor vertex to C (in G) and Z is the 
set of edges returned by f,( ). The call to f,( ) adds 
IZI edges to D .  

Expand an S vertex in D by callingf,(es, n) = Z. 
es is the edge in D that has already been chosen 
to connect to S from its predecessor. n is the re- 
quired successor vertex of S (in G) and Z is the 
set of edges returned byf,( ). The call tof,( ) adds 
IZI edges to D .  

Endwhile 

B.  Phase 2: Connection Formation 
After expansion, each D(N, E )  may contain a number 

of alternative paths. CGE places all the paths from all the 
expanded graphs into a single path list. Based on a cost 
function, the router then selects paths from the list; each 
selected path defines the detailed route of its correspond- 
ing connection. Because the cost function allows it to con- 
sider all the paths at once, CGE can be said to route the 
connections “in parallel. ” Phase 2 proceeds as follows 
(the terms cfcost and c, cost will be defined later in this 
section) : 

Put all the paths in the expanded graphs into the path 
list 

While the path list is not empty 
If there are paths in the path list that are known to 

be essential 
Select the essential path that has the lowest cf 

cost. 
Else if there are paths in the path list that correspond 

to time-critical connections 
Select the critical path with the lowest c, cost. 

Else 
Select the path with the lowest cf cost 

Mark the graph corresponding to the selected path 
as routed-remove all paths in this graph from the 
path list. 

Find all paths that would conflict with the selected 
path and remove them from the path list (see 
note). If a connection loses all of its alternative 
paths, reexpand its coarse graph-if this results 
in no new paths, the connection is deemed un- 
routable (see subsection 1V-C for a discussion re- 
lating to failed connections). 

Update the cost of all affected paths. 
Endwhile 
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Fig. 4. An essential wiring segment. 

Note: When a wiring segment is chosen for a particular 
connection, it and any other wiring segments in the 
FPGA that are hard-wired to it must be eliminated 
as possible choices for connections that are in other 
nets. This requires a function analogous tofJ ) and 
f,( ) that understands the connectivity of a particular 
FPGA configuration. CGE calls this routine update 
(e)-the parameter e is an edge in the selected path 
and update (e )  returns the set of edges that are hard- 
wired to e .  

with e ) .  Thus, the cf cost of an edge e that has j other 
occurrences ( e , ,  e 2 ,  - , e,)  is defined as 

where alt (e , )  is the number of edges in parallel with e,. 
Because of the summing process in cf(e) ,  the more 

graphs e occurs in, the higher will be its cost. This reflects 
the fact that e is an edge that is in high demand and urges 
CGE to avoid using e when there are other choices. Note 

a time-critical connection. Otherwise, paths are selected 
according to their cf cost. The cf cost has two goals: 

1) To select a path that has a relatively small negative 
effect on the remaining connections, in terms of 
routability. The cost deters the selection of paths 
that contain wiring segments that are in great de- 
mand. 

2) It is used to identify a path that is essential for a 
connection. Such a connection has only one path re- 
maining in the FPGA, because previous path selec- 
tions have consumed its alternatives. 

The reason for using wiring segment demand was illus- 
trated in Fig. 1, where connection A should be routed 
with wiring segment 2, because wiring segment 3 is in 
greater demand. 

The importance of essential wiring segments is illus- 
trated by the example in Fig. 4. If the router were to com- 
plete connection D first, then wiring segments 1 and 2 
would be equal candidates according to their demand, 
since they both appear in one other graph. However, wir- 
ing segment 1 is essential for the completion of connec- 
tion E, and to ensure the correct assignment of the essen- 
tial wiring segment, connection E should be routed first. 

To determine whether an edge, e ,  is in great demand, 
the router could simply count the number of occurrences 
of e that are in expanded graphs of other nets. However, 
some occurrences of e are less likely to be used than oth- 
ers because there may be alternatives (edges in parallel 

C.  Controlling Complexity 
Although the definition of graph expansion implies that 

all possible paths in an FPGA are recorded during expan- 
sion, this is not practical because the number of paths can 
be very large in some architectures. For example, con- 
sider the connection of two pins on two different L blocks. 
Assume that each pin can connect to F, of the wiring seg- 
ments in the channel segments adjacent to each L block, 
and that the L blocks are separated by n switch blocks. If 
each wiring segment that enters one side of a switch block 
can connect to F, wiring segments on the other three sides, 
then there are an average of F, [F, /3]" different paths from 
the first pin to the last L block, and assuming W tracks in 
each routing channel, there are an average of 

2 151' 
w 3  

possible ways to form the connection. Since typical Val- 
ues of F, should be 3 or greater [ 2  11, [ 2 2 ] ,  and the number 
of connections is large, this complexity must be con- 
trolled. 

The number of paths in the expanded graphs is reduced 
by pruning them as they are expanded. The pruning al- 
gorithm is parameterized such that the amount of memory 
space required is controlled and yet the expanded graphs 
still contain as many alternatives per connection as pos- 
sible. Maximizing the number of alternatives is important 
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Fig. 5 .  The effect of pruning 

in the context of resolving routing conflicts. The pruning 
algorithm is part of the graph expansion process described 
in subsection IV-A. The general flow follows (the criteria 
used for pruning is given at the end of this section): 

Expand two levels 
Prune; keep at most K vertices at this level, and assign 

each a unique group number. Discard the other ver- 
tices and the paths they terminate. 

Expand two more levels. Assign each added vertex the 
group number of its predecessor. 

While the leaf level has not been reached. 
Prune; keep at most k vertices with each group 

number at this level. Discard the other vertices 
and the paths they terminate. 

Expand two more levels. Assign each added vertex 
the group number of its predecessor. 

Endwhile 

The graphs are pruned every two levels because that is 
where fan-out occurs (after the first C block and after 
every S block). The parameter K controls the starting 
widths of the graphs and can take values from 1 to F,. (the 
number of wiring segments connected to each L block 
pin). Beyond the maximum value of K ,  parameter k al- 
lows the expanded graphs to further increase in width. 
The concept of group numbers isolates each of the origi- 
nal K paths, which maximizes the number of alternatives 
at each level of the final expanded graph. The actual val- 
ues used for K and k are discussed in the next section. 
The effect of the pruning algorithm is illustrated in Fig. 
5 .  The left half of the figure shows a fully expanded graph 
from an example circuit, while the corresponding pruned 
graph is on the right. Also shown are each graph’s edges 
in the FPGA. 

The choice of vertices to prune is based on the wiring 
segment corresponding to their incoming edge, as fol- 
lows. For the special case of time-critical connections, 
the wiring segments with the least delay are favored. For 
other connections, the wiring segments that have thus far 

been used in the greatest number of other places will be 
discarded. This helps the cfcost function discover the wir- 
ing segments that are in the least demand. 

Note that when paths are discarded because of pruning, 
they are not necessarily abandoned permanently by the 
router. In phase 2, as CGE chooses connections, if rout- 
ing conflicts consume all of the alternatives for some 
graph, CGE reinvokes the graph expansion process to ob- 
tain a new set of paths if some exist. 

Iterations: This subsection explains how iterations of 
the two phases of CGE are used to conserve memory and 
run time. The iterative approach is linked to the pruning 
parameters of the graph expansion phase. Setting the 
pruning parameters to large values allows the router to do 
a better job of resolving routing conflicts because it sees 
many alternatives for each connection. On the other hand, 
with large pruning parameters more memory and run time 
are required by the algorithm. ‘The key to this routing 
quality versus memory and time trade-off is the realization 
that most connections in an FPGA are relatively easy to 
route and only a small percentage of the connections pose 
real difficulties. This is because a typical routing problem 
is likely to have only a few channel segments whose den- 
sities are very close to the total number of wires in a rout- 
ing channel. To exploit this property, the router starts with 
small pruning parameters and then increases them through 
successive iterations, but only for the parts of the FPGA 
that are difficult to route. 

For the first iteration the pruning parameters are set to 
relatively small values, and the entire FPGA is routed. If 
routing conflicts leave some connections unrouted, then 
another iteration is required. The procedure is to erase all 
the routing of any connection that overlaps any part of a 
failed connection, and then to attempt to route those chan- 
nel segments again using larger pruning parameters. Only 
connections that touch some segment of a channel in 
which a failed connection occurred are routed in the next 
iteration. Iterations are continued until all connections are 
routed or until further improvements are not forthcoming 
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Fig. 6.  The organization of CGE. 

(note that it would be desirable to try different global 
routes for connections that are left unrouted after all it- 
erations, but no such failure-recovery mechanism is cur- 
rently implemented). This approach is a minor variation 
of classic rip-up and reroute schemes where individual 
connections would be removed and rerouted to try to re- 
solve routing conflicts. The technique employed here al- 
lows CGE’s cost function to solve the routing problem, 
but conserve memory and time where the problem is not 
difficult and to expend them only where it is required. 

The specific values used for the pruning parameters in 
each iteration affect the total number of iterations required 
but do not appreciably affect the quality of the final result. 
This indicates a robustness in the algorithm because the 
quality of the routing does not depend on the specific val- 
ues chosen for the program’s parameters. 

D. Independence of CGE from FPGA Routing 
Architectures 

CGE achieves the ability to route arbitrary FPGA rout- 
ing architectures by isolating the parts of the code that are 
architecture-specific. This is illustrated in Fig. 6,  which 
shows the overall flow of the algorithm. The code that is 
dependent on the routing architecture is enclosed in cir- 
cles. As shown, the separate code includes thef,( ) , f s (  ), 
and update ( ) routines. Any architecture that fits the gen- 
eral model described in Section I1 can be routed by chang- 
ing these isolated routines. This generality was used as a 
research tool in recent papers on FPGA routing architec- 
tures [21], [22]. Fig. 6 also shows the organization of the 
phases of CGE and the feedback path used over multiple 
iterations. 

V. RESULTS 
CGE has been used to route several industrial circuits 

implemented as FPGA’s. The routing results shown in this 
section are based on five circuits from four sources: Bell- 
Northern Research, Zymos, and two different designers 
at the University of Toronto. Table I gives the names, 
size, (number of two-point connections and logic blocks), 
source, and function of each circuit. For these results, the 
L block used is the result of a previous study [23], and 
the S and C blocks will be described in the next subsec- 
tion. Results are presented for a routing architecture sim- 
ilar to a commercial FPGA. 

A. FPGA Routing Structures 
Since the routability of an FPGA is determined by the 

topology and flexibility and its S and C blocks, those used 
in the tests of the algorithm are presented here. The gen- 
eral nature of the S block is illustrated in Fig. 7(a). Its 
flexibility is set by a parameter called F,, which defines 
the total number of connections offered to each wiring 
segment that enters the S block. For the example shown 
in Fig. 7(a), the wiring segment at the top left of the S 
block can connect to six other wiring segments, and so F, 
is 6. Although not shown, the other wiring segments are 
similarly connected. 

Fig. 7(b) illustrates the test C block. The tracks pass 
uninterrupted through it and are connected to L block pins 
via a set of switches. The flexibility of the C block, F,, 
is defined as the number of tracks that each L block pin 
can connect to. For the example shown in the figure, each 
L block pin can connect to two vertical tracks, and so F, 
is 2 .  

B .  Routing Results 
The familiar yardstick of channel density is used as a 

measure of the quality of the detailed router. The “chan- 
nel density” column in Table I1 shows the maximum 
channel density over all channels for each circuit. This is 
the theoretical minimum number of tracks per routing 
channel required for each example. However, the real 
track requirements depend on the flexibilities of the rout- 
ing structures; the maximum flexibility has F, = 3 W and 
F,. = W, where there are W tracks per channel. For the 
results in Table 11, the FPGA parameters are based on the 
Xilinx 3000 series [24] FPGA’s (F, = 6, F, = 0.6W). 
Table I1 gives the minimum number of tracks per channel 
that CGE needs in order to route 100% of the connec- 
tions. The values for Ware slightly greater than the global 
router minimum, which are excellent results considering 
the low flexibility of the FPGA routing architecture. Note 
that if F, is increased to 0.8W, CGE achieves the absolute 
minimum number of tracks for all the circuits. 

For comparison purposes, the same problems have also 
been routed using CGE with its cf cost facility disabled. 
In this mode CGE has no ability to resolve routing con- 
flicts and is thus a sequential router, similar to a maze 
router. At first glance, this may seem to be an unrealistic 
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L 
Black 

TABLE I 
EXPERIMENTAL CIRCUITS 

No. No.  
Circuit Connections Blocks Source Type 

BUSC 392 I09 UTD 1 Bus Cntl 
DMA 77 1 224 UTD2 DMA Cntl 
BNRE 1257 362 BNR Logic/Data 
DFSM 1422 4 0  1 UTDl  State Mach. 
203 2135 586 Zymos 8-bit Mult 

a 1 2  0 1 2  

0 1 2  0 1 2  
(a) (b) 

Fig. 7 .  Definitions of (a) S and (b) C block flexibility. 

TABLE I1 
CGE MINIMUM W FOR 100% ROUTING ( F ,  = 0.6W) 

Channel 
Circuit F, Density 

BUSC 6 9 
DMA 6 10 
BNRE 6 1 1  
DESM 6 10 
203 6 1 1  

W Required 
by CGE 

10 
10 
12 
10 
13 

W for CPU 
“Maze” Seconds 

15 25 
15 59 
20 122 
18 103 
18 215 

comparison because some maze routers are guided by cost 
functions that aid in finding good routes for connections. 
However, the “maze” router used here has, in effect, ac- 
cess to the cost function that was used to solve the global 
routing, which is based on balancing the densities of all 
routing channels. Notwithstanding, this is a constrained 
“maze” router because it is confined within the global 
route of each connection, and the comparisons are valid 
only in that context. The second from the right column in 
Table I1 gives the number of tracks that the maze router 
requires to achieve 100% routing. These results show that 
the maze router needs an average of 60% more tracks than 
CGE. This shows that resolving routing conflicts is im- 
portant and that CGE addresses this issue well. Fig. 8 
presents the detailed routing for circuit B U S C ,  with the 
FPGA parameters in Table 11; the L blocks are shown as 
solid boxes, whereas the S and C blocks are dashed boxes. 

C. Routing Delay Optimization for Critical Nets 
Table 111 illustrates CGE’s ability to optimize critical 

connections. For this experiment, several connections in 
circuit BNRE were marked critical. Then, CGE was used 
to route the circuit twice; once with CGE’s critical net 
processing turned off, and once with it turned on. To fa- 
cilitate this experiment, the FPGA was defined to have 18 

tracks per channel, with four tracks hard-wired for the 
entire length of each channel. Connections that use the 
hard-wired tracks have lower routing delays because they 
pass through fewer switches (transistors). As Table I11 
shows, a significant reduction in the number of switches 
in the critical paths was achieved. 

Note that a better approach to routing delay optimiza- 
tion would set specific timing requirements that should be 
met for each critical path in a circuit. However, the op- 
timization of nets and their individual connections is a 
reasonable compromise. 

D.  Memory Requirements and Speed of CGE 
For the examples used here, CGE needs between 1.5 

and 7.5 Mbytes of memory. As shown in the rightmost 
column of Table 11, experimental measurements show that 
CGE is a linear-time algorithm, requiring from 25 to 215 
SUN 3/60 CPU seconds for the smallest to the largest of 
the example circuits. This run-time behavior is due to the 
pruning procedure, which limits the number of routing 
alternatives that the algorithm considers for each connec- 
tion. 

VI. CONCLUSIONS 
This paper has described a new kind of detailed routing 

algorithm that is designed specifically for field-program- 
mable gate arrays. The algorithm is able to consider the 
side effects that routing decisions made for one connec- 
tion may have on another, and thus to resolve routing con- 
flicts and achieve a high-quality result. The algorithm can 
be used for a wide variety of FPGA routing architectures. 
It can route relatively large FPGA’s in very close to the 
absolute minimum number of tracks as determined by 
global routing, and is capable of optimizing the routing 
delays of time-critical connections. 
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Fig. 8. The detailed routing of circuit BUSC. 

TABLE 111 
CRITICAL CONNECTION ROUTING DELAY OPTIMIZATION 

Name of No. Switches Without No. Switches with 
Net Critical Processing Critical Processing 

#I43 
#I44 
#220 
#280 
#35 1 

15 
14 
10 
15 
15 
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