
RQL: Global Placement via Relaxed Quadratic Spreading
and Linearization ∗

Natarajan Viswanathan 1,2, Gi-Joon Nam 1, Charles J. Alpert 1,
Paul Villarrubia 1, Haoxing Ren 1, Chris Chu 2

1IBM Corporation, 11501 Burnet Road, Austin, TX 78758
{nviswan, gnam, alpert, pgvillar, haoxing}@us.ibm.com

2 Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011
{nataraj, cnchu}@iastate.edu

ABSTRACT
This paper describes a simple and effective quadratic place-
ment algorithm called RQL. We show that a good quadratic
placement, followed by local wirelength-driven spreading can
produce excellent results on large-scale industrial ASIC de-
signs. As opposed to the current top performing academic
placers [4, 7, 11], RQL does not embed a linearization tech-
nique within the solver. Instead, it only requires a simpler,
pure quadratic objective function in the spirit of [8,10,23].

Experimental results show that RQL outperforms all avail-
able academic placers on the ISPD-2005 placement contest
benchmarks. In particular, RQL obtains an average wire-
length improvement of 2.8%, 3.2%, 5.4%, 8.5%, and 14.6%
versus mPL6 [5], NTUPlace3 [7], Kraftwerk [20], APlace2.0
[11], and Capo10.2 [18], respectively. In addition, RQL is
three, seven, and ten times faster than mpL6, Capo10.2, and
APlace2.0, respectively. On the ISPD-2006 placement con-
test benchmarks, on average, RQL obtains the best scaled
wirelength among all available academic placers.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuits, Design Aids]:
Placement and routing

General Terms
Algorithms, Design

Keywords
Analytical Placement, Force-vector Modulation

1. INTRODUCTION
Global placement is a fundamental and still highly rele-

vant problem in VLSI CAD because the quality of the place-
ment significantly impacts the ability of a physical synthesis

∗
This work was partially supported by IBM custom funding through

SRC Task ID 1206 and NSF under grant CCF-0540998.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

tool (or designer) to achieve design closure. An industry-
strength placer must be reasonably fast, yet still obtain high-
quality solutions. It should also be scalable with design size.
The last few years have seen significant advances in the qual-
ity of global placement algorithms (e.g., [5,7,11,20] etc.) in
large part due to the recent availablity of large, challenging
testcases [13,14].

Existing placement algorithms can be broadly classified
into three categories: simulated annealing [19,21], top-down
partitioning [1, 3, 6, 25] and analytic placement (which in-
cludes force-directed approaches) [4,7,8,10–12,15,20,23].

In recent years analytical placement techniques have gen-
erated a great deal of attention because they have gener-
ated the best results at the two recent ISPD placement con-
tests [13,14]. These analytic placers can be further divided
into those that utilize a quadratic objective [8,10,12,15,20,23]
or a non-linear objective [4, 7,11].

This work presents a placer that not only surpasses the
quality of existing state-of-the-art placers, but also has the
additional advantage of being (relatively) simple. It uses a
pure quadratic function in the solver, and does not require
the popular log-sum-exponential function of Naylor et al.
[16]. The primary advantages and features of our approach
are:

• Unlike [4,7,11], the solver actually uses a pure quadratic
wirelength objective and does not rely on the patent of
Naylor et al., which prohibits its widespread adoption
by the EDA industry.

• RQL utilizes a new linearization technique called Force-
vector Modulation that restructures the placement at
a global scale to minimize the wirelength without sac-
rificing the degree of spreading.

• RQL exploits efficient Density-aware Module Spreading
and wirelength-driven Local Spreading techniques to
spread the modules over the placement region.

• Finally, RQL utilizes a simple, but effective multi-
level global placement framework incorporating the
above techniques to yield a high-quality placement al-
gorithm.

The rest of this paper is organized as follows: In Section 2
we describe our global placement algorithm in detail. In Sec-
tion 3, we present the Force-vector Modulation technique.
Experimental results are reported in Section 4 followed by
conclusions in Section 5.

2. THE RQL ALGORITHM
The quadratic placement approach models the connectiv-

ity of the circuit using a system of springs by transforming
the netlist hypergraph into a set of two-pin connections. The
objective is to minimize the total squared wirelength (EQ
1) of all the two-pin connections, which corresponds to the
minimum potential energy of the spring system.

1

2

X

∀(i,j)

Wij [(xi − xj)
2 + (yi − yj)

2] (1)

EQ (1) can be written in matrix notation [9] and the prob-
lem can be efficiently solved using SOR or conjugate gradi-
ent based methods. However, the resulting placement has
significant module overlap. Hence, quadratic placement al-
gorithms typically follow an iterative procedure, where in
each iteration, the overlap is progressively reduced.

In this section, we first give an overview of our iterative
quadratic global placement algorithm. We then describe the
individual components of the flow in more detail.

2.1 Multilevel Global Placement Algorithm

Algorithm 1 The RQL Algorithm

1: Phase 0: Clustering

2: initial number of modules ← module count in flat netlist

3: while number of modules > target number of modules do

4: cluster netlist using the Best-choice clustering algorithm
5: end while

6: end

7: Phase 1: Coarsened netlist placement

8: solve initial quadratic program (QP)
9: while max bin util > target util threshold do

10: perform Density-aware Module Spreading
11: calculate spreading forces for all the modules
12: rank modules based on the spreading force magnitude
13: modulate the spreading force for the top x% of modules
14: add spreading forces to QP formulation
15: solve the quadratic program
16: end while

17: repeat

18: perform wirelength-driven Local Spreading
19: perform Density-aware Module Spreading
20: until max bin util ≤ 1.0
21: uncluster movable macro-blocks
22: legalize and fix movable macro-blocks
23: end

24: Phase 2: Refinement

25: while number of modules < initial number of modules do

26: uncluster netlist
27: perform wirelength-driven Local Spreading
28: end while

29: end

Figure 1: The RQL placement algorithm.

Figure 1 gives the overall flow of the RQL algorithm. The
key components of RQL are:

1. Clustering: We use a multilevel approach to improve
the efficiency and scalability of our placer and use
the Best-choice clustering algorithm [15] to reduce the
placement problem size. In addition, clustering also
has an indirect linearization effect. Clustered modules
are often placed in close proximity and this helps re-
duce the gap between quadratic and linear wirelength.

2. Coarsened netlist placement: We then perform quadratic
placement on the coarse netlist. Quadratic placement
is an iterative procedure comprising of three steps: (a)
solving the quadratic program (QP) (b) Density-aware

Module Spreading to determine the spreading forces
(Sec 2.2) (c) addition of spreading forces to the subse-
quent QP formulation to account for the spreading.

3. Force-vector Modulation: During quadratic placement,
we modulate the spreading force on the modules to re-
structure the placement at a global scale to further
minimize the wirelength (Sec 3).

4. Local Spreading: After quadratic placement, we use a
Local Spreading technique to further spread the mod-
ules while simultaneously minimizing the half-perimeter
wirelength (Sec 2.4).

5. Refinement: Once we obtain a placement of the coars-
ened netlist, we perform a series of unclustering and
Local Spreading-based refinement steps until we obtain
a placement of the original flat netlist.

2.2 Density-aware Module Spreading (DMS)
Solving the quadratic objective with only the netlist based

forces results in a placement with significant module overlap.
To reduce this overlap and distribute the modules over the
placement region we use an efficient Density-aware Module
Spreading (DMS) algorithm.

In [17] Ren et al. proposed a diffusion based spreading
algorithm for placement legalization. Based on the density
map of the placement region, their scheme uses the diffu-
sion process to move the modules from high to low con-
centration regions. The technique proposed in [17] can be
viewed as global diffusion, because modules will spread as
long as there exists any density gradient among the bins in
the current density map. However, using such an approach
within global placement will cause excessive spreading and
adversely impact the wirelength.

One way to control the degree of spreading within diffu-
sion is to reduce the number of time steps [17] taken dur-
ing module movement. In the limit, the module movement
can be restricted to only its neighboring bins. Such a tech-
nique can be considered as a localized version of the diffu-
sion algorithm. In principle, this technique is similar to one
that equalizes the densities of adjacent bins by migrating the
modules between them. Hence, the localized version of dif-
fusion can also be viewed as the cell-shifting [23] technique.

Density-aware Module Spreading is an improved version
of the cell-shifting algorithm with better handling of fixed
blocks and density target contraints. Note DMS does not
physically move a module to a new location. It only pro-
vides a “target location” for the module based on the current
density map of the placement region. The actual location
of the module is determined by the subsequent quadratic
optimization step.

2.2.1 Handling Fixed Blocks
During spreading, fixed blocks can cause the following

serious issues: (a) there will be abrupt transitions in the
density map at the boundaries of the fixed blocks, and (b)
quadratic optimization might place numerous modules on
top of large fixed blocks. Hence, spreading algorithms may
find it difficult to (a) enable the modules to “cross over”
the fixed blocks to find better locations, and (b) move the
modules out of large fixed blocks in an effective manner.

To aid the spreading algorithm in achieving these objec-
tives we use a smoothing transform to remove the sharp

Pseudo-net

SF(i)

Fixed-point

Target Position

Original Position

i

i

NF(i)

Figure 2: Fixed-point and spreading force.

edges in the density map corresponding to the fixed blocks.
We initially construct a density map comprising of only the
fixed blocks. A 3 × 3 Laplacian matrix is then applied as a
smoothing filter over the entire density map for a pre-defined
number of iterations. This generates a smoothed version of
the fixed block density map. This density map is updated
with the area utilized by the movable modules to generate
the complete density map of the current placement solution.
Essentially, smoothing facilitates the modules to cross over
any fixed block if necessary or slide down its slope to be
moved out of it.

2.2.2 Handling the density target constraint
To handle the density target constraint in an effective

manner, for every bin (j, k), we determine a scaled den-
sity value sj,k. The scaled density is defined as the average
density of a x × y window of bins around the bin under
consideration. If sj,k is lower than the density target for
the bin, it is blocked during DMS. Otherwise, the entire
x × y window of bins is considered for spreading. This bin
blocking prevents unnecessary spreading in regions that are
already below the density target, which in turn improves the
placement wirelength.

2.3 Addition of Fixed-points
Since DMS only gives a target location for a module based

on the bin density, we need to add a spreading force to the
module to actually move it during the subsequent quadratic
optimization. This is done by connecting the module to an
associated fixed-point via a pseudo-net. This is shown in
Figure 2, where an empty and a shaded box represents the
location of a module before and after DMS respectively. For
a module i if we define:

• NF (i): The Native Force on i due to its connections
with the other modules in the netlist.

• SF (i): The Spreading Force imposed on i to move it
to its target location obtained from DMS.

The Spreading Force vector on the module is equal in mag-
nitude and opposite in direction to the Native Force vector
experienced by the module in its target location.

The location of the fixed-point and the weight on the
pseudo-net are key elements that affect the stability of the
spreading and the placement wirelength. If the fixed-point
is too close to the module, then the spreading force will dom-
inate the native force during quadratic optimization. This
will result in extremely slow spreading and also severely de-
grade the wirelength. Adding the fixed-point to the chip
boundary for large designs makes the spreading force behave
as a “constant-force”. Constant forces are hard to control
and may lead to a “blow-up” of the placement - creating
“donuts” or empty regions in parts of the placement.

Therefore, we use an on-chip fixed-point (shown by the
hollow circle in Figure 2 whose location is in between the

two cases. We set the fixed-point distance from the mod-
ule to be proportional to the distance moved by the module
during DMS. Specifically, the fixed-point distance DF P =
K1 + K2 × f(module displacement), where K1 = K2 =
0.25(chip diagonal) and module displacement is the distance
between the original and target location of a module as
shown in Figure 2. If the fixed-point falls outside the chip
boundary, we add it at the intersection of the spreading force
vector with the chip boundary. This ensures that modules
are always placed within the placement region during the
subsequent quadratic optimization.

The reason behind a constant and variable term in the
fixed-point distance is two-fold: (a) if a module does not
move during spreading, we still have the constant term to
ensure that it stays in its current location and (b) if a mod-
ule moves by a large distance during spreading, then the
distance of the fixed-point from the module should be pro-
portional to the displacement, to ensure this large displace-
ment during the subsequent quadratic optimization step.

2.4 Local Spreading
Once quadratic placement yields a good initial placement

on the coarsened netlist, we invoke a Local Spreading tech-
nique to further refine the placement solution. Our local
spreading technique is similar to the Iterative Local Refine-
ment technique of [23, 24]. During Local Spreading, we ini-
tially bin the placement region. We determine the density of
each bin and the modules contained within the bin. We then
use a scoring function similar to the one described in [24] to
re-locate the modules in a local region.

3. PLACEMENT RESTRUCTURING VIA
FORCE-VECTOR MODULATION

Spreading techniques within analytical placement, typ-
ically retain the relative ordering of the modules as ob-
tained by solving the initial unconstrained non-linear pro-
gram. This property simplifies the problem of spreading, but
adversely affects the wirelength. To offset this disadvantage,
local optimization techniques [10, 23] have been proposed,
that change the relative ordering of the modules to improve
the wirelength. By nature, such techniques do not have
a global view of the placement and can only improve the
wirelength in a local region. To re-order the modules and
restructure the placement at a global scale, we propose an ef-
ficient and effective Force-vector Modulation technique, that
can be used within any analytical placer (i.e., irrespective of
the objective function).

3.1 Spreading Forces in Quadratic Placement
In force-directed quadratic placement, a module is being

acted upon by two conflicting forces: the Native Force that
tries to bring it closer to connected modules and the Spread-
ing Force that tries to pull it to the sparse areas within the
placement region. During quadratic placement, a careful
balance between the Native and Spreading forces is required
to achieve a good trade-off between the objectives of spread-
ing and wirelength minimization.

To understand the relationship between the spreading forces
and the wirelength, we observed the magnitude of the spread-
ing force for all the modules over successive iterations of
quadratic placement. A plot for one of the iterations is
shown in Figure 3.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 200 400 600 800 1000 1200

S
p
r
e
a
d
i
n
g

F
o
r
c
e

M
a
g
n
i
t
u
d
e

Module Index

Figure 3: Spreading force magnitude.

From the plots, we see that a small fraction of the modules
have an extremely high spreading force magnitude. Since
the spreading force is directly proportional to the native
force, such high magnitudes imply that these modules either
belong to high fanout nets or they are connected to distant
modules like boundary IOs. We experimentally observed
that retaining the full spreading force for these modules re-
sulted in a placement with a very high wirelength. Instead,
by carefully controlling the spreading force magnitudes for
these modules, we were able to substantially decrease the
wirelength without sacrificing the degree of spreading.

3.2 Force-vector Modulation
The Force-vector Modulation technique, modulates the

spreading force vectors within quadratic placement. Modu-
lation of spreading forces results in a modified distribution
of the spreading force magnitudes.

One method for modulation that we propose is to sort
the modules in a non-decreasing order of their spreading
force magnitude during each iteration of quadratic place-
ment. We then pick a fraction of the modules having a very
high spreading force and nullify the spreading force for the
subsequent quadratic optimization step. Typically only a
small fraction of around 5 − 10% of the modules are picked
for nullification. The plot of the spreading force magnitude
after nullification is shown in Figure 4.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000 1200

S
p
r
e
a
d
i
n
g

F
o
r
c
e

M
a
g
n
i
t
u
d
e

Module Index

Figure 4: Nullify top x% of spreading forces.

By nullifying the Spreading Forces on a small fraction
of the modules, we emphasize the Native Forces acting on
them. As a result, the locations of these modules after the
subsequent quadratic optimization step will be based only
on their connections to the other modules in the netlist. This
is equivalent to optimizing the wirelength objective with no
spreading contraints on these modules. As a result, these
modules will be placed in their quadratically optimal loca-
tions.

3.2.1 Advantages of Modulation
• Modulation of spreading forces results in a placement

solution with a better wirelength since the modulated

modules are placed at their quadratically optimal lo-
cations.

• Modulation of spreading forces results in a re-ordering
of the modules at a global scale. Since we use the
quadratic optimization to perform the re-ordering, it
is done on a global scale. Also, modules no longer
retain their relative ordering as obtained after the ini-
tial quadratic optimization step. We believe that this
change in the relative ordering of the modules is the
fundamental reason for the significant decrease in the
final global placement wirelength.

• Modulation does not impact the degree of spreading.
Since we pick only a small fraction of the modules
for modulation, the unmodulated modules will still
shift towards their target locations as determined dur-
ing DMS and hence contribute towards spreading the
placement.

• Modulation can be used within any analytical placer,
irrespective of the type of objective function, i.e., ei-
ther quadratic or non-linear optimization based.

4. EXPERIMENTAL RESULTS
The RQL algorithm is implemented within the CPlace [2]

industrial placement framework. We use the ISPD-2005 [14]
and ISPD-2006 [13] placement contest benchmarks for the
results presented in this section. All runtimes are reported
on a 2.6 GHZ AMD Opteron 252 machine with 8 GB RAM.

4.1 Effect of Force-vector Modulation
Table 1 shows the effect of force-vector modulation on

the placement wirelength. We report legalized results for
two versions of our placer: (i) with force-vector modulation
and (ii) without modulation. In both cases, the placer was
run to satisfy the same density target. To show the full
effect of modulation, we ran the flat version of our placer
and did not perform wirelength minimization using the Lo-
cal Spreading technique. It can be seen that force-vector
modulation achieves upto 1.95× reduction in the legalized
wirelength without impacting the degree of spreading.

Half-Perimeter Wirelength (×10e6)

Circuit With Modulation No Modulation CaseII
CaseI

(Case I) (Case II)
adaptec1 128.84 252.11 1.95
bigblue1 114.47 168.74 1.47

Table 1: Effect of Force-vector Modulation on the
HPWL.

4.2 ISPD 05 Placement Contest Benchmarks
Table 3 compares the half-perimeter wirelength (HPWL)

of RQL in default mode with other state-of-the-art academic
placers. It is divided in two sections: Section A corresponds
to running the other placers in their default modes. Sec-
tion B corresponds to the HPWL obtained by the top three
placers during the ISPD 2005 placement contest. Please
note that during the contest, all the placers were given the
circuits in advance. There was no limit on the CPU time
and the placers were allowed to have separate parameters for
each individual circuit to obtain the best possible results.

SECTION A: In default mode, RQL obtains the best
HPWL results on all eight circuits of the ISPD-2005

benchmark suite. In particular, RQL obtains an average
wirelength improvement of 2.8%, 8.5%, 14.6%, 3.2% and
5.4% versus mPL6, APlace2.0, Capo10.2, NTUPlace3 and
Kraftwerk respectively.

SECTION B: RQL obtains an average wirelength
improvement of 1.5% as compared to APlace, which
generated the best wirelength results during the ISPD-
2005 placement contest. Till date, the APlace contest
wirelength (reproduced in column eight of Table 3) was the
best reported results in literature on these circuits.

Table 2 compares the runtime of RQL with mPL6, APlace
2.0 and Capo10.2. Unfortunately, the authors of NTU-
Place3 were unable to provide their binary because of poten-
tial patent infringement issues regarding Naylor’s lineariza-
tion work [16]; hence we could not directly compare run-
times. On average, RQL is 3.09 times, 10.22 times and 6.99
times faster than mPL6, APlace2.0 and Capo10.2 respec-
tively.

Runtime

Circuit RQL
mPL6

RQL

APlace2.0

RQL

Capo10.2

RQL
(sec)

adaptec1 626 3.22 9.42 6.57
adaptec2 1039 2.17 8.83 5.44
adaptec3 2004 3.58 11.11 6.31
adaptec4 1747 3.87 14.39 6.59
bigblue1 967 2.83 8.81 6.93
bigblue2 1884 4.14 10.64 7.06
bigblue3 4053 2.59 9.31 9.38
bigblue4 10342 2.33 9.30 7.62
Average 3.09× 10.22× 6.99×

Table 2: Runtime comparison of RQL with mPL6,
APlace2.0 and Capo10.2.

4.3 ISPD 06 Placement Contest Benchmarks
Tables 4 and 5 give the HPWL and scaled HPWL com-

parison of RQL with other academic placers. The scaled
HPWL (S HPWL) is defined as: S HPWL = HPWL ×
(1 + density overflow penalty) [13]. The results for NTU-
Place3 [7] and FastPlace3 [24] are reported from the respec-
tive publications. All other results are those reported during
the ISPD-2006 placement contest.

From Table 4, on average RQL is 12%, 5% and 4% better
in HPWL as compared to Kraftwerk, mPL6 and NTUPlace2
respectively, which were the top three placers during the
ISPD-2006 placement contest. The most current results of
NTUPlace3, shows an average improvement of 1% over RQL.

From Table 5, on average RQL is 7%, 1% and 2% better
in terms of S HPWL as compared to Kraftwerk, mPL6 and
NTUPlace2 respectively. The average S HPWL of NTU-
Place3 is comparable to that of RQL, but looking at indi-
vidual results, RQL obtains better S HPWL on 5/8 circuits
as compared to NTUPlace3.

5. CONCLUSIONS
Currently, a majority of the top performing academic plac-

ers use the patented log-sum-exponential function [16] to
minimize linear wirelength. In fact, literature [4] indicates
that a placement algorithm with a pure quadratic wirelength
objective cannot produce competitive results compared to

one using the log-sum approximation. This paper shows
that it is possible to surpass the quality of state-of-the-art
placers without infringing on the patent via a new force-
directed global placement algorithm called RQL. The RQL
algorithm relies on simple quadratic wirelength optimization
with fixed-point based module spreading. Two new tech-
niques are used to obtain high-quality placement solutions:
(1) force-vector modulation and (2) density-aware module
spreading (DMS). Force-vector modulation re-orders the mod-
ules at a global scale to improve the wirelength without im-
pacting the degree of spreading. DMS prevents unnecessary
spreading in low density regions. Experimental results show
that RQL in default mode obtains the best published wire-
length results on the ISPD-2005 benchmarks and also the
best scaled wirelength results on the ISPD-2006 benchmarks
with significant speed-up.

We are confident that there is room for further improve-
ment both in terms of quality and runtime. For example,
we can employ more clustering to reduce the problem size.
We are also looking at deploying RQL within a physical syn-
thesis framework to understand its interaction with timing
analysis and optimization.

6. REFERENCES
[1] A. R. Agnihotri, S. Ono, C. Li, M. C. Yildiz, A.

Khatkhate, C.-K. Koh, and P. H. Madden. Mixed
block placement via fractional cut recursive bisection.
TCAD, 24(5):748–761, May 2005.

[2] C. J. Alpert, G.-J. Nam, and P. G. Villarrubia.
Effective free space management for cut-based
placement via analytical constraint generation.
TCAD, 22(10):1343–1353, Oct. 2003.

[3] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can
recursive bisection produce routable placements. In
Proc. DAC, pages 477–482, 2000.

[4] T. Chan, J. Cong, and K. Sze. Multilevel generalized
force-directed method for circuit placement. In Proc.
ISPD, pages 185–192, 2005.

[5] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and
M. Xie. mPL6: Enhanced multilevel mixed-size
placement. In Proc. ISPD, pages 212–214, 2006.

[6] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W.
Chang. NTUplace: A ratio partitioning based
placement algorithm for large-scale mixed-size designs.
In Proc. ISPD, pages 236–238, 2005.

[7] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and
Y.-W. Chang. A high-quality mixed-size analytical
placer considering preplaced blocks and density
constraints. In Proc. ICCAD, 2006.

[8] H. Eisenmann and F. Johannes. Generic global
placement and floorplanning. In Proc. DAC, pages
269–274, 1998.

[9] K. M. Hall. An r-dimensional quadratic placement
algorithm. Management Science, 17:219–229, 1970.

[10] B. Hu and M. Marek-Sadowska. Multilevel
fixed-point-addition-based VLSI placement. TCAD,
24(8):1188–1203, Aug. 2005.

[11] A. B. Kahng, S. Reda, and Q. Wang. Architecture and
details of a high quality, large-scale analytical placer.
In Proc. ICCAD, pages 890–897, 2005.

[12] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich.
GORDIAN: VLSI placement by quadratic
programming and slicing optimization. TCAD,
10(3):356–365, Mar. 1991.

[13] G.-J. Nam. ISPD 2006 placement contest: Benchmark
suite and results. In Proc. ISPD, pages 167–167, 2006.

[14] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter,
and M. Yildiz. The ISPD2005 placement contest and

Section A (Default Mode Runs) Section B (Placer tuned for each circuit)
Circuit RQL mPL6 [5] AP2.0 [11] CP10.2 [18] NP3 [7] KW [20] AP [11] mFAR [10] DG [22] mPL [4]

adaptec1 77.82 77.91 78.35 91.28 80.93 NA NA NA NA NA
adaptec2 88.51 91.96 95.70 100.75 89.95 93.84 87.31 91.53 94.72 97.11
adaptec3 210.96 214.05 218.52 228.47 214.20 NA NA NA NA NA
adaptec4 188.86 194.23 209.28 208.35 193.74 199.75 187.65 190.84 200.88 200.94
bigblue1 94.98 96.79 100.02 108.60 97.28 99.61 94.64 97.70 102.39 98.31
bigblue2 150.03 152.33 153.75 162.92 152.20 155.19 143.82 168.70 159.71 173.22
bigblue3 323.09 344.37 411.59 398.49 348.48 339.20 357.89 379.95 380.45 369.66
bigblue4 797.66 829.35 871.29 965.30 829.16 857.09 833.21 876.28 903.96 904.19
Average 1.000 1.028 1.085 1.146 1.032 1.054* 1.015* 1.079* 1.098* 1.105*

Table 3: HPWL (×10e6) comparison on the ISPD-2005 placement contest benchmarks. (* avg of 6 ckts)
(AP=APlace, CP=Capo, NP=NTUPlace, KW=Kraftwerk, DG=Dragon)

adaptec5 newblue1 newblue2 newblue3 newblue4 newblue5 newblue6 newblue7 Average

RQL 405.73 64.21 196.74 269.13 268.07 473.14 494.30 1031.33 1.00
Aplace3 449.61 73.26 197.42 273.63 377.55 545.90 522.58 1098.26 1.12
mFAR 448.43 77.36 211.65 303.58 307.73 567.65 527.36 1135.80 1.13
Dragon 500.24 80.76 259.95 524.41 340.70 613.34 572.19 1408.97 1.36
mPL6 425.12 66.90 197.53 283.80 294.43 530.67 510.40 1070.33 1.05
Capo 491.60 98.35 308.64 361.21 358.28 657.40 668.33 1518.49 1.40

NTUPlace2 404.98 62.40 201.95 291.14 284.99 494.57 504.39 1116.86 1.04
FastPlace 478.47 84.49 209.73 361.05 319.08 601.45 539.16 1173.12 1.20
Kraftwerk 444.07 78.29 205.87 279.94 311.09 555.48 537.32 1139.17 1.12
DPlace 463.95 102.37 324.07 379.19 305.78 600.11 674.39 1398.85 1.37

NTUPlace3 [7] 378.56 60.74 198.76 278.87 274.48 474.84 484.81 1056.78 0.99
FastPlace3 [24] 432.96 78.56 201.51 292.58 284.54 530.12 539.44 1124.55 1.10

Table 4: HPWL (×10e6) comparison on the ISPD-2006 placement contest benchmarks.

adaptec5 newblue1 newblue2 newblue3 newblue4 newblue5 newblue6 newblue7 Average

RQL 443.28 64.43 199.60 269.33 308.75 537.49 515.69 1057.79 1.00
APlace3 520.97 73.31 198.24 273.64 384.12 613.86 522.73 1098.88 1.10
mFAR 476.28 77.54 212.90 303.91 324.40 601.27 535.96 1153.76 1.10
Dragon 500.74 80.77 260.83 524.58 341.16 614.23 572.53 1410.54 1.29
mPL6 431.14 67.02 200.93 287.05 299.66 540.67 518.70 1082.92 1.01
Capo 494.64 98.48 309.53 361.25 362.40 659.57 668.66 1518.75 1.33

NTUPlace2 432.58 63.49 203.68 291.15 305.79 517.63 532.79 1181.30 1.02
FastPlace 805.63 84.55 212.30 362.99 429.78 962.06 574.18 1236.34 1.38
Kraftwerk 457.92 78.60 208.41 280.93 315.53 569.36 545.94 1170.85 1.07
DPlace 572.98 102.75 329.92 380.14 364.45 752.08 682.87 1438.99 1.40

NTUPlace3 [7] 448.58 61.08 203.39 278.89 301.19 509.54 521.65 1099.66 1.00
FastPlace3 [24] 517.56 78.75 202.98 294.77 325.06 633.21 546.72 1139.24 1.11

Table 5: Comparison of the Scaled HPWL (S HPWL) (×10e6) which includes the density target based over-
flow penalty on the ISPD-2006 placement contest benchmarks.

benchmark suite. In Proc. ISPD, pages 216–220, 2005.
[15] G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia,

and A. B. Kahng. A fast hierarchical quadratic
placement algorithm. TCAD, 25(4):678–691, Apr.
2006.

[16] W. Naylor et al. Non-linear optimization system and
method for wire length and delay optimization for an
automatic electric circuit placer, Oct. 2001.

[17] H. Ren, D. Z. Pan, C. J. Alpert, and P. Villarrubia.
Diffusion-based placement migration. In Proc. DAC,
pages 515–520, 2005.

[18] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov.
Min-cut floorplacement. TCAD, 25(7):1313–1326, July
2006.

[19] C. Sechen and A. L. Sangiovanni-Vincentelli.
TimberWolf 3.2: A new standard cell placement and
global routing package. In Proc. DAC, pages 432–439,
1986.

[20] P. Spindler and F. M. Johannes. Fast and robust
quadratic placement combined with an exact linear

net model. In Proc. ICCAD, 2006.
[21] W.-J. Sun and C. Sechen. Efficient and effective

placement for very large circuits. TCAD,
14(5):349–359, 1995.

[22] T. Taghavi, X. Yang, B.-K. Choi, M. Wang, and
M. Sarrafzadeh. Dragon2005: Large-scale mixed-size
placement tool. In Proc. ISPD, pages 245–247, 2005.

[23] N. Viswanathan and C. C.-N. Chu. FastPlace:
Efficient analytical placement using cell shifting,
iterative local refinement and a hybrid net model.
TCAD, 24(5):722–733, May 2005.

[24] N. Viswanathan, M. Pan, and C. Chu. Fastplace 3.0:
A fast multilevel quadratic placement algorithm with
placement congestion control. In Proc. ASP-DAC,
pages 135–140, 2007.

[25] M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000:
Standard-cell placement tool for large industry
circuits. In Proc. ICCAD, pages 260–263, 2000.

