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ABSTRACT 
As integrated circuits are migrated to more advanced technologies, it 
has become clear that crosstalk is an important physical 
phenomenon that must be taken into account. Crosstalk has 
primarily been a concern for ASICs, multi-chip modules, and 
custom chips, however, it will soon become a concern in FPGAs. In 
this paper, we describe the first published crosstalk-aware router that 
targets FPGAs. We show that, in a representative FPGA architecture 
implemented in a 0.18µm technology, the average routing delay in 
the presence of crosstalk can be reduced by 7.1% compared to a 
router with no knowledge of crosstalk. About half of this 
improvement is due to a tighter delay estimator, and half is due to an 
improved routing algorithm. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – placement and routing.  

General Terms 
Algorithms. 

Keywords 
Field-Programmable Gate Arrays, Routing Algorithms, Crosstalk. 

1. INTRODUCTION 
As integrated circuits are migrated to more advanced technologies, 
new physical phenomena have come to light. Recently, crosstalk, or 
inter-wire capacitance, has become a critical concern among 
integrated circuit designers. Crosstalk occurs when a change in 
voltage on one trace causes a change in voltage on a nearby trace. 
This can cause a system to fail in two ways: 
1. If the affected trace (called the victim) is a dynamic node, a 

clock signal, or an asynchronous set or reset, the induced pulse 
might cause the circuit to change state incorrectly. This sort of 
functional error is also a concern in mixed-signal designs, in 
which the victim trace carries an analog signal. 

2. The switching time of the victim may be affected. If the 
switching time increases too much, the path delay may 
increase. This may cause timing failures. 

As the minimum feature size of integrated circuits decreases, 
crosstalk becomes more important. In part, this is because metal 
traces are getting taller and narrower; by 2004, it is expected that a 
trace will be three times taller than it is wide [1]. This increases the 

effective capacitance between neighbouring traces, and hence 
increases the potential that crosstalk will cause system failure. 
To ensure crosstalk does not cause system failure, it must be taken 
into account by CAD tools. There has been much work in routers 
that understand crosstalk [2,3,4,5,6,7,8,9]. There are two types of 
crosstalk-aware routers: 
1. Routers that strive to ensure the correctness of a circuit: Given 

a list of crosstalk constraints, these routers attempt to find a 
minimum-cost routing that meets the given crosstalk 
constraints. The constraints are usually given to ensure specific 
nets (such as clock nets) are not routed adjacent to more than a 
specified number of other nets. 

2. Routers that optimize for delay in the presence of crosstalk:  
The effects of crosstalk can be modeled by an increase or 
decrease in the wiring capacitance of the victim net. This 
modified capacitance can then be used in timing models. 

In this paper, we focus on the second goal.  
All of the previously published crosstalk-aware routers target 
standard cell, multi-chip modules, or full custom designs. In these 
technologies, inter-wire capacitance is the dominant contribution to 
the capacitance of a wire. Thus, crosstalk-induced changes in this 
capacitance will have a significant effect on the delay of a net. In an 
FPGA, however, the inter-wire capacitance is comparable to the 
capacitances of the buffers and switches attached to the trace, so 
crosstalk will have a smaller effect on the speed of an FPGA circuit. 
Yet, developing crosstalk-aware routing algorithms for FPGAs is 
still important. As we will show in this paper, even at 0.18µm, 
significant performance improvements can be obtained by taking 
crosstalk into account. Technology shrinks will continue, and 
eventually crosstalk will be a dominating factor in FPGA 
performance. When this happens, algorithms such as the one 
described in this paper will become essential. 
Simply extending the ASIC-based algorithms to FPGAs will not 
work well. The primary reason is that a standard cell (or similar) 
router has much more flexibility than an FPGA router. One of the 
primary goals of a crosstalk-aware router is to route critical signals 
away from other nets, so that the critical signals are less likely to be 
crosstalk victims. In an ASIC router, there are far more options for 
each net. Consider Figure 1. In this diagram, a critical net 
connecting to the logic block pin is to be routed. Only tracks B and 
D can be used, since these are the only two tracks which can be 
connected to the logic block pin. Both B and D are bad choices; 
both are adjacent to a previously-routed net. A potential solution is 
to re-route the pre-routed net; however, this net will have its own 
constraints regarding which tracks can be used. In an ASIC router, 
the task is easier; in most cases, any available horizontal position (A 
to E) could be used. In addition, in an ASIC router, if a previously-
routed net does need to be moved, it can likely be done easily. 
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Because of this lack of flexibility, it is important that crosstalk be 
handled not just as a post-processing step, as it is in [5,9], or during 
detailed routing, as it is in [2,3,6,7,8]. If an FPGA router can only 
optimize for crosstalk during detailed routing, the limited switch and 
connection block flexibilities make it unlikely that any optimizations 
will be possible. Thus, it is important to take crosstalk into account 
during the entire routing process.  
In this paper, we present a combined global/detailed FPGA router 
which optimizes for delay in the presence of crosstalk. The 
algorithm is based on the VPR router [10] which is representative of 
industrial tools. The algorithm applies regardless of the underlying 
architecture and technology; we will evaluate it using an island-style 
FPGA implemented in a 0.18µm CMOS process.  
This paper is organized as follows. Section 2 reviews the baseline 
VPR routing algorithm. Section 3 then shows how this algorithm 
can be extended to understand crosstalk. Finally, Section 4 presents 
experimental evidence that the algorithm works well across a wide 
variety of architectures. 

2. BASELINE ALGORITHM 
Our algorithm is based on the VPR router described in [10], which 
uses an algorithm similar to that employed by Pathfinder, described 
in [11]. Nets are routed sequentially using a maze-routing algorithm. 
Initially, nets are allowed to share physical tracks. Once all nets have 
been routed, the cost of two nets sharing a track is increased slightly. 
Each net is then ripped-up and re-routed. This is repeated for several 
iterations; each time the cost of sharing becomes slightly higher. 
When, at the end of an iteration, no track is shared between more 
than one net, a legal routing has been found, and the algorithm 
terminates.  
During maze-routing, the fitness of each potential segment n that 
might be added to the net is evaluated using the following cost 
function: 

Cost(n) = Crit • delay(n)  +  (1-Crit) • b(n) • h(n) • p(n) 

where delay(n) is the Elmore delay of the segment n, and b(n), h(n), 
and p(n) are the base cost, the historical congestion cost, and the 
present congestion cost of using segment n. The quantity Crit is 
called the criticality of the currently routed net (or the current sink 
on the currently routed net if the net has more than one sink). The 

criticality of a given net is close to 1 if the net is close to being on 
the critical path of the circuit. Nets that are not on the critical path 
have a lower criticality (an equation for the criticality of a net is 
given in [10]).  
Notice that Equation 1 contains two terms. The first represents the 
delay of the currently routed net, while the second represents the 
congestion cost for the current segment. Nets with a high value of 
Crit (ie. nets on or near the critical path) are thus routed primarily 
for speed, while other nets are routed primarily for congestion. This 
ensures that, as routing progesses, nets which are not critical are 
moved away from congested regions. 
The delay term in Equation 1 is computed using the VPR timing 
model. The timing model uses the Elmore delay, along with a 
detailed description of the underlying architecture (including 
segmentation strategy, buffer placement and size, parasitic 
resistances and capacitances, etc). In [10], it is shown that the 
Elmore delay gives good fidelity; that is, it correctly ranks choices 
during routing.  

3. ENHANCED ALGORITHM 
In this section, we describe how the VPR router can be enhanced to 
optimize for delay in the presence of crosstalk. There are 
components within VPR that are of concern: the timing model, 
which is used to evaluate potential routes (as well as the final 
solution), and the cost-function used by the maze router. Both are 
treated separately below. 

3.1 Timing Model 
There has been a significant amount of work developing models that 
describe the effects of crosstalk [3,12,13,14,15]. In this paper, we 
assume a simple model, in which crosstalk between two traces is 
modeled by a change in the effective capacitance seen by both 
traces. The magnitude of this change depends on the relative 
switching activity of the two traces. 
The capacitance of a trace i can be written as: 

Ci = Cfixed + Σ
j ε T, j=i

λ i,j Cc  li,j
η

di,j 
γ

 
where Cfixed is the capacitance of the metal trace itself, as well as any 
switches or buffers attached to the trace, T is the set of all traces, li,j 
is the distance that traces i and j are adjacent, di,j is the distance 
between trace i and j, λi,j is a parameter described below, and γ, η, 
and Cc are process-dependent constants (typical values of γ and η 
are 1.8 and 0.92 respectively). [4]. 
Note that Equation 2 assumes traces i and j have no trace between 
them. In an FPGA, this is only true for neighbouring tracks within a 
channel. Thus, the summation only needs to be carried out for those 
wires. By assuming all tracks are within a channel are separated by 
the same distance, by combining di,j with the technology dependent 
terms, and approximating η as 1, we can write: 

Ci = Cfixed + Σ
j ε Ν(i)

λ i,j Ccouple  li,j

 
 

Logic B lock

Track  A  (Ava ila b le )

T rack  B  (Ava ila b le )

T rack  C  (N ot Ava ilab le

T rack  D  (Ava ilab le )

T rack  E  (Ava ila b le )

P rogra mma ble
Sw itches

Pre-ro u ted  N et

P in

Figure 1: An Example Routing on an FPGA
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where N(i) is the set of neighbours of i (note that a track may have 
more than two neighbours if the track spans more than one logic 
block). From Equation 3, it is clear that the capacitance of a track 
depends on the capacitances of the neighbouring track(s) within the 
same channel. 

The parameter λi,j takes into account the switching activity between 
tracks i and j. If the two tracks are switching in the same direction, 
λi,j can be approximated as 0, since there is no induced crosstalk for 
signals switching together. If the two signals are switching in the 
opposite direction,  λi,j can be approximated as 2. If only one of the 
signals is changing, λi,j can be approximated as 1. During routing, it 
is difficult to determine the relative switching activities of each 
signal. Thus, our timing model makes the following pessimistic 
assumptions when computing the effective capacitance of track i: 

1. For all neighbours j which are used to carry a signal, we 
assume the worst-case crosstalk ensues (ie. λi,j is 2). 

2. For all neighbours j which are unused, we assume that j is tied 
to a constant voltage, so λi,j is 1. 

Thus, for any given routing, the effective capacitance of each track 
can be computed, and this can be used in the Elmore delay to 
estimate the delay of the net.  

3.1 Cost Function 
The intelligence of any iterative maze-router is encapsulated in its 
cost function. This subsection describes how the VPR cost function 
can be modified to account for crosstalk. 
There are two ways in which the new cost function takes crosstalk 
into account. The first is that the delay(n) quantity from Equation 1 
is modified to use the new timing model from Section 3.1. In this 
way, the delay of using a segment is computed using not only the 
capacitance of the segment itself, but the extra capacitance due to 
any previously-routed nets. This will tend to route nets away from 
other nets, thereby lowering the crosstalk effect, and possibly 
lowering the critical path delay of the circuit. 
This is not enough, however. Consider Figure 2. Suppose a high-
criticality net (net on the critical path) has previously been routed 
onto track F. Now suppose logic block pins PA and PB are to be 
connected using a low-criticality net (a net that is not on the critical 
path). There are two options. The pins could be connected using 
track E which spans two logic blocks. Alternatively, the pins could 
be connected using tracks C and D (there is a programmable switch 
between tracks C and D). In a router which does not understand 

crosstalk, the first option (track E) would be preferred, since only 
one segment needs to be used.  
Now consider a crosstalk-aware router, in which the delay(n) 
quantity from Equation 1 is modified to use the new timing model as 
described above. Depending on the criticality of the net being 
routed, either the first option (track E) or second option (tracks C 
and D) may be chosen. The second option will suffer less crosstalk, 
but recall from Equation 1, the net delay (and hence the crosstalk 
penalty) is multiplied by the criticality of the net being routed. In our 
example in Figure 2, we are routing a low-criticality net, meaning 
the crosstalk contribution to the overall cost function will be small. 
Thus, the first option (Track E) may be preferred. However, this is 
probably a bad choice, since using track E will also increase the 
crosstalk seen by the critical path net routed on track F. This will 
cause the critical path of the system to become longer. This 
motivates our need for a mechanism for low-priority nets to 
understand the anti-social behaviour of routing next to a high-
priority net.  
Such a mechanism can be implemented by modifying the cost 
function of Equation 1 as follows: 
   Cost(n) = Crit  delay(n) + penalty(n) +  
              (1-Crit)  b(n)  h(n)  p(n) 
where 

penalty(n) =

m ε Ν(n)

Crit(k) ∆delay(k,m,n)ΣΣ
k ε U(m)

In Equation 5, N(n) is the set of neighbours of track n, U(m) is the 
set of previously-routed connections using track m, Crit(k) is the 
criticality of connection k, and ∆delay(k,m,n) is the increase in the 
delay of connection k (routed on track m) that occurs if a new signal 
is routed using track n. This latter quantity can be computed as: 
 

     ∆delay(k,m,n) = Rupstream,m,k Ccouple lm,n 
 

where lm,n is the distance that traces m and n are adjacent, Ccouple is a 
technology constant as in Equation 3, and Rupstream,m,k is the 
resistance between track m and the source of net k. This upstream 
resistance is already computed in VPR for use in the timing 
analyzer; thus, Equations 4 through 6 can be easily computed. Note 
that Equation 6 describes the increase in a delay in a two-pin net; 
experiments have shown that this gives good results for nets with 
more than two pins as well. 
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Intuitively, the penalty term from Equation 5 represents the increase 
in delay of all adjacent nets weighted by the criticality of the 
adjacent nets. In the example of Figure 2, the new net would see a 
high penalty for using track E, since criticality of the adjacent net is 
high. Thus, the router would prefer to use tracks C and D, which, 
overall, should lead to a faster circuit. 
 
4. EXPERIMENTAL RESULTS 
To evaluate the proposed enhancements, we experimentally mapped 
seventeen large benchmark circuits onto a model FPGA. We 
assumed an island-style FPGA, where each logic block contains four 
4-input lookup tables and four flip-flops. The switch block from 
[16] was used, but the number, length, and driving capacity of each 
routing track was varied throughout the experiments. The number of 
connections between each logic block pin and the adjacent routing 
channel (Fc in [17]) was also varied throughout the experiments. In 
every case, we assumed a 0.18µm CMOS process available from 
TSMC. Although we do not expect crosstalk to become an over-
riding concern for FPGAs until they are well below 0.15µm, this 
section will show that, even at 0.18µm, significant performance 
improvements can be gained by taking crosstalk into account during 
routing.  
Each circuit was first mapped to 4-input lookup tables and flip-flops 
using Flowmap/Flowpack [18]. The lookup tables and flip-flops 
were then packed into logic blocks using a timing-driven packing 
algorithm [10]. The logic blocks were then placed on an 
appropriately sized FPGA using the timing driven placement tool 
described in [19]. We then ran the baseline VPR timing-driven 
router to find the minimum number of routing tracks needed for 
100% routability. This number was then increased by 30%, and the 
routing repeated, this time with both the baseline VPR algorithm 
and the enhanced algorithm described in Section 3.0. This “low-
stress” routing is representative of the routing performed in real 
industrial designs. Note that , when comparing the baseline and 

enhanced routing algorithms, the same number of tracks is used in 
each case, therefore, the area required in both cases is the same. 
Table 1 shows the results assuming each routing segment spans 
eight logic blocks, assuming the segments are separated by re-
powering buffers, and assuming each logic block pin can connect to 
60% of the tracks in the adjacent channel (ie. Fc=0.6). The third 
column shows the number of tracks used to route each circuit (this is 
the minimum number of tracks for each circuit increased by 30%).  
When comparing the original VPR router and our enhanced 
crosstalk-aware router, there are two components that should be 
measured separately. The first component is due to the enhanced 
timing analyzer. The original VPR timing analyzer has no notion of 
crosstalk, so (to be pessimistic) we need to assume the worst-case 
coupling capacitance between each pair of neighbouring tracks, 
regardless of whether these tracks are used. Our new timing analyzer 
provides a tighter estimate on the speed of the circuit, by taking into 
account whether neighbouring tracks of a given track are used or 
unused. To get an idea of the amount of improvement due to the 
enhanced timing analyzer, we first ran the original VPR tool, and 
gathered the results in columns four and five of Table 1. Column 
five shows the critical path of each circuit, while column four shows 
the portion of the critical path due to routing (the routing delay). We 
then used the same routing solutions for each circuit, but used the 
new timing analyzer to get a tighter bound on the speed of each 
implementation. Columns six and seven show this data. Comparing 
columns four/five with six/seven, we can see that an improvement of 
3.8% in the routing delay (1.9% in the critical path) was obtained by 
the new timing analyzer. 
The second component of the improvement is due to the routing 
algorithm itself. The above comparisons both assumed a router that 
did not optimize for crosstalk. We ran our enhanced algorithm on 
each circuit, and gathered the results in columns eight and nine. 
Comparing columns six/seven to columns eight/nine, it can be seen 
that the new router reduces the routing delay by an additional 3.4%, 

Baseline VPR
(worstcase crosstalk)

Baseline Router,
Enhanced Timing

Enhanced Router and
Timing Model

Circuit Number
4-LUTs /
flip-flops

Number
Tracks
per
channel

Routing
Delay

Critical
Path

Routing
Delay

Critical
Path

Routing
Delay

Critical
Path

apex1 696 / 0 49 7.78 ns 12.98 ns 7.60 ns 12.80 ns 7.38 ns 11.88 ns
apex3 867 / 0 49 8.94 ns 13.44 ns 8.58 ns 13.08 ns 8.46 ns 12.95 ns
apex4 1262 / 0 53 10.27 ns 14.77 ns 9.96 ns 14.46 ns 9.53 ns 14.03 ns
cordic 466 / 0 36 8.54 ns 15.15 ns 8.26 ns 14.87 ns 7.89 ns 14.50 ns
cps 749 / 0 42 9.08 ns 12.88 ns 8.76 ns 12.56 ns 7.39 ns 11.18 ns
dalu 500 / 0 33 7.92 ns 12.41 ns 7.39 ns 11.89 ns 6.93 ns 10.72 ns
dsip 1370 / 224 38 5.37 ns 7.61 ns 5.25 ns 7.49 ns 4.99 ns 7.23 ns
ex5p 1064 / 0 57 9.23 ns 14.43 ns 8.91 ns 14.11 ns 8.95 ns 14.15 ns
k2 515 / 0 40 8.49 ns 12.99 ns 8.21 ns 12.70 ns 7.13 ns 12.33 ns
pair 641 / 0 40 6.64 ns 11.14 ns 5.74 ns 10.94 ns 6.53 ns 11.73 ns
planet 266 / 6 21 4.24 ns 7.33 ns 4.12 ns 7.21 ns 4.32 ns 7.42 ns
s298 1930 / 8 38 16.97 ns 27.64 ns 16.71 ns 27.36 ns 16.74 ns 27.41 ns
s1488 296 / 6 21 4.34 ns 7.44 ns 4.12 ns 7.21 ns 3.95 ns 7.04 ns
s5378 572 / 160 38 5.68 ns 10.18 ns 5.46 ns 9.96 ns 4.90 ns 9.40 ns
sbc 372 / 27 29 5.07 ns 8.16 ns 4.93 ns 8.03 ns 4.76 ns 7.85 ns
table5 483 / 0 44 7.50 ns 12.00 ns 7.21 ns 11.71 ns 7.10 ns 11.60 ns
tseng 1046 / 385 36 8.51 ns 17.78 ns 8.35 ns 17.61 ns 8.21 ns 17.47 ns
Average 7.92 ns 12.84 ns 7.62 ns 12.59 ns 7.36 ns 12.29 ns

Table 1: Timing results assuming segment length=8,  fc=0.6,  30% extra tracks



and the critical path by an additional 2.4%. Overall, our average 
routing delay is 7.1% smaller than the original VPR results, while 
the average critical path is 4.5% smaller.  
To gain further insight into how well our routing algorithm is 
performing, we define the isolation factor of a routing as follows. 
For a given routing, assume G is the set of segments that lie on the 
critical path (or paths). For each element g ε G, define N(g) as the 
set of tracks adjacent to g, and define ln,g as the length of the 
adjacency between tracks g and n, in terms of logic blocks. Further 
define H(n) to be 0 if track n is used, and 1 otherwise. Then, the 
isolation factor of a routing is defined as: 

Isolation Factor = 100 x
g ε  G

l n,g H(n)ΣΣ
n ε N(g)

g ε  G

l n,gΣΣ
n ε N(g)

 
Informally, the isolation factor is an indication of how well the 
router is isolating the critical path from other nets. A value of 0 
indicates every segment of the critical path(s) is adjacent to another 
net, while a value of 100 means that every segment of the critical 
path(s) is not adjacent to any other net.  Table 2 shows the isolation 
factors for both the base and enhanced routers for each of our 
benchmark circuits. As the table shows, the isolation factor is 
increased by, on average, 31% in the enhanced router. 

4.1 Parameter Sweep: Extra Tracks per 
    Channel 
To investigate the effectiveness of the algorithm across different 
architectures, we swept three parameters: the number of extra tracks 
per channel, the number of connections per logic block pin (Fc), and 
the length of each segment.  
First consider the extra number of tracks in each channel. The 
results in Tables 1 and 2 assume each channel has 30% more tracks 
the minimum number of tracks required for 100% routability.  To 
investigate the effect that the number of tracks has on our algorithm, 
we varied the number of extra tracks, and in each case, measured the 
isolation factor and the routing delay. Intuitively, we would expect 
that as the number of extra tracks goes up, the new algorithm is 
better able to reduce crosstalk. Figure 3 shows that this is true. The 
first graph in Figure 3 shows the isolation factor (averaged over all 
benchmark circuits) of the enhanced algorithm and the baseline 

algorithm (with the enhanced timing model) as a function of the 
number of extra tracks. The second graph in Figure 3 shows the 
percent improvement in the isolation factor. The trend is clear: the 
improvement increases until the isolation factor of the enhanced 
algorithm approaches 100%. At this point, there is no further 
improvement possible in the enhanced algorithm isolation factor, so 
the percentage improvement drops. Figure 4 shows the affect on the 
routing delay of the two algorithms (again, the baseline algorithm 
includes the enhanced timing model). The trends in these graphs are 
less clear; but it appears that the improvement in routing delay 
improves as the number of extra tracks increases. 

4.2 Parameter Sweep: Connection Block 
Flexibility 

Now consider the number of connections per logic block pin (Fc). 
Intuitively, the larger the value of Fc, the more flexibility that is 
available to the enhanced router. Therefore, we would expect that as 
Fc increases, the new algorithm is better able to isolate tracks. On 
the other hand, a larger Fc means there is more fixed capacitance 
attached to each routing track; this capacitance will tend to reduce 
the improvement obtained by isolating the critical path. Figures 5 
and 6 show experimental results. Clearly, both the isolation factor 
improvement and the routing delay improvement increase as Fc 
increases. 

4.3 Parameter Sweep: Segment Length 
 Finally, we investigated the effect of the length of each routing 
segment on the effectiveness of our algorithm. Figures 7 and 8 show 
the isolation factor experimental results and the routing delay 
experimental results as a function of segment length. In each case, 
an architecture consisting of buffered switches is assumed; the size 
of each buffer increases as the segment length increases (for each 
segment length, the optimum buffer size was found). As the graphs 
show, the improvement in isolation factor increases as the segment 
length increases, but no trend is observable in the delay graph. We 
experimented with other architectures, and got similar results. 

5. CONCLUSIONS 
In this paper, we have presented an FPGA router than optimizes for 
delay in the presence of crosstalk. By optimizing an existing FPGA 
router, we were able to improve the average routing delay of circuits 
by 7.1% compared to an FPGA router which assumes the worst-case 
coupling capacitance between all neighbouring tracks. About half of 

(7) 

Isolation Factor Isolation FactorCircuit
Baseline
Router

Enhanced
Router

Circuit
Baseline
 Router

Enhanced
Router

apex1 18.5 27.5 pair 29.3 48.3
apex3 27.0 26.9 planet 21.1 27.4
apex4 31.1 26.9 s298 26.9 32.9
cordic 19.1 33.8 s1488 16.9 26.5
cps 28.8 38.6 S5378 27.8 48.5
dalu 26.9 35.6 sbc 33.1 28.7
dsip 26.0 43.0 table5 17.8 34.2
ex5p 29.5 21.1 tseng 26.9 41.3
k2 29.8 31.1 Average 25.7 33.7

Table 2: Isolation factor results assuming segment length=8,  fc=0.6,  30% extra tracks



this improvement was due to a tighter delay estimator, and half was 
due to the new routing algorithm. 
There are many ways to improve the results in this paper. One way 
is to relax the pessimistic assumption that two neighbouring tracks 
always result in the worst-case coupling capacitance. One way to do 
this would be to assign “change windows” or “bins” for each 
segment; a bin is a subset of the clock period in which a given signal 
might change. Neighbouring tracks which carry signals with non-
overlapping bins will not result in the worst-case crosstalk; taking 
advantage of this would give additional freedom to the router. Of 
course, the effectiveness of this will depend on how tight the bin 
boundaries can be (if, for most signals, the bin spans the entire clock 
period, clearly no optimizations beyond those in this paper would be 
possible). In addition, more advanced crosstalk models which are 

currently being developed by researchers would give more accurate 
crosstalk estimates, and possibly better overall results. As 
technology shrinks, and crosstalk becomes more and more 
significant, further optimizations such as these will become more 
and more important. 
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Figure 3: Effect of Number of Extra Tracks on Isolation Factor
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Figure 4: Effect of Number of Extra Tracks on Routing Delay
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Figure 5: Effect of Fc on Isolation Factor
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Figure 6: Effect of Fc on Routing Delay
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Figure 7: Effect of Segment Length on Isolation Factor
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