
A Crosstalk-Aware Timing-Driven Router for FPGAs

Steven J. E. Wilton
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, B.C., Canada
stevew@ece.ubc.ca

ABSTRACT
As integrated circuits are migrated to more advanced technologies, it
has become clear that crosstalk is an important physical
phenomenon that must be taken into account. Crosstalk has
primarily been a concern for ASICs, multi-chip modules, and
custom chips, however, it will soon become a concern in FPGAs. In
this paper, we describe the first published crosstalk-aware router that
targets FPGAs. We show that, in a representative FPGA architecture
implemented in a 0.18µm technology, the average routing delay in
the presence of crosstalk can be reduced by 7.1% compared to a
router with no knowledge of crosstalk. About half of this
improvement is due to a tighter delay estimator, and half is due to an
improved routing algorithm.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – placement and routing.

General Terms
Algorithms.

Keywords
Field-Programmable Gate Arrays, Routing Algorithms, Crosstalk.

1. INTRODUCTION
As integrated circuits are migrated to more advanced technologies,
new physical phenomena have come to light. Recently, crosstalk, or
inter-wire capacitance, has become a critical concern among
integrated circuit designers. Crosstalk occurs when a change in
voltage on one trace causes a change in voltage on a nearby trace.
This can cause a system to fail in two ways:
1. If the affected trace (called the victim) is a dynamic node, a

clock signal, or an asynchronous set or reset, the induced pulse
might cause the circuit to change state incorrectly. This sort of
functional error is also a concern in mixed-signal designs, in
which the victim trace carries an analog signal.

2. The switching time of the victim may be affected. If the
switching time increases too much, the path delay may
increase. This may cause timing failures.

As the minimum feature size of integrated circuits decreases,
crosstalk becomes more important. In part, this is because metal
traces are getting taller and narrower; by 2004, it is expected that a
trace will be three times taller than it is wide [1]. This increases the

effective capacitance between neighbouring traces, and hence
increases the potential that crosstalk will cause system failure.
To ensure crosstalk does not cause system failure, it must be taken
into account by CAD tools. There has been much work in routers
that understand crosstalk [2,3,4,5,6,7,8,9]. There are two types of
crosstalk-aware routers:
1. Routers that strive to ensure the correctness of a circuit: Given

a list of crosstalk constraints, these routers attempt to find a
minimum-cost routing that meets the given crosstalk
constraints. The constraints are usually given to ensure specific
nets (such as clock nets) are not routed adjacent to more than a
specified number of other nets.

2. Routers that optimize for delay in the presence of crosstalk:
The effects of crosstalk can be modeled by an increase or
decrease in the wiring capacitance of the victim net. This
modified capacitance can then be used in timing models.

In this paper, we focus on the second goal.
All of the previously published crosstalk-aware routers target
standard cell, multi-chip modules, or full custom designs. In these
technologies, inter-wire capacitance is the dominant contribution to
the capacitance of a wire. Thus, crosstalk-induced changes in this
capacitance will have a significant effect on the delay of a net. In an
FPGA, however, the inter-wire capacitance is comparable to the
capacitances of the buffers and switches attached to the trace, so
crosstalk will have a smaller effect on the speed of an FPGA circuit.
Yet, developing crosstalk-aware routing algorithms for FPGAs is
still important. As we will show in this paper, even at 0.18µm,
significant performance improvements can be obtained by taking
crosstalk into account. Technology shrinks will continue, and
eventually crosstalk will be a dominating factor in FPGA
performance. When this happens, algorithms such as the one
described in this paper will become essential.
Simply extending the ASIC-based algorithms to FPGAs will not
work well. The primary reason is that a standard cell (or similar)
router has much more flexibility than an FPGA router. One of the
primary goals of a crosstalk-aware router is to route critical signals
away from other nets, so that the critical signals are less likely to be
crosstalk victims. In an ASIC router, there are far more options for
each net. Consider Figure 1. In this diagram, a critical net
connecting to the logic block pin is to be routed. Only tracks B and
D can be used, since these are the only two tracks which can be
connected to the logic block pin. Both B and D are bad choices;
both are adjacent to a previously-routed net. A potential solution is
to re-route the pre-routed net; however, this net will have its own
constraints regarding which tracks can be used. In an ASIC router,
the task is easier; in most cases, any available horizontal position (A
to E) could be used. In addition, in an ASIC router, if a previously-
routed net does need to be moved, it can likely be done easily.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
FPGA 2001, February 11-13, 2001, Monterey, CA, USA.
Copyright 2001 ACM 1-58113-341-3/01/0002…$5.00.

Because of this lack of flexibility, it is important that crosstalk be
handled not just as a post-processing step, as it is in [5,9], or during
detailed routing, as it is in [2,3,6,7,8]. If an FPGA router can only
optimize for crosstalk during detailed routing, the limited switch and
connection block flexibilities make it unlikely that any optimizations
will be possible. Thus, it is important to take crosstalk into account
during the entire routing process.
In this paper, we present a combined global/detailed FPGA router
which optimizes for delay in the presence of crosstalk. The
algorithm is based on the VPR router [10] which is representative of
industrial tools. The algorithm applies regardless of the underlying
architecture and technology; we will evaluate it using an island-style
FPGA implemented in a 0.18µm CMOS process.
This paper is organized as follows. Section 2 reviews the baseline
VPR routing algorithm. Section 3 then shows how this algorithm
can be extended to understand crosstalk. Finally, Section 4 presents
experimental evidence that the algorithm works well across a wide
variety of architectures.

2. BASELINE ALGORITHM
Our algorithm is based on the VPR router described in [10], which
uses an algorithm similar to that employed by Pathfinder, described
in [11]. Nets are routed sequentially using a maze-routing algorithm.
Initially, nets are allowed to share physical tracks. Once all nets have
been routed, the cost of two nets sharing a track is increased slightly.
Each net is then ripped-up and re-routed. This is repeated for several
iterations; each time the cost of sharing becomes slightly higher.
When, at the end of an iteration, no track is shared between more
than one net, a legal routing has been found, and the algorithm
terminates.
During maze-routing, the fitness of each potential segment n that
might be added to the net is evaluated using the following cost
function:

Cost(n) = Crit • delay(n) + (1-Crit) • b(n) • h(n) • p(n)

where delay(n) is the Elmore delay of the segment n, and b(n), h(n),
and p(n) are the base cost, the historical congestion cost, and the
present congestion cost of using segment n. The quantity Crit is
called the criticality of the currently routed net (or the current sink
on the currently routed net if the net has more than one sink). The

criticality of a given net is close to 1 if the net is close to being on
the critical path of the circuit. Nets that are not on the critical path
have a lower criticality (an equation for the criticality of a net is
given in [10]).
Notice that Equation 1 contains two terms. The first represents the
delay of the currently routed net, while the second represents the
congestion cost for the current segment. Nets with a high value of
Crit (ie. nets on or near the critical path) are thus routed primarily
for speed, while other nets are routed primarily for congestion. This
ensures that, as routing progesses, nets which are not critical are
moved away from congested regions.
The delay term in Equation 1 is computed using the VPR timing
model. The timing model uses the Elmore delay, along with a
detailed description of the underlying architecture (including
segmentation strategy, buffer placement and size, parasitic
resistances and capacitances, etc). In [10], it is shown that the
Elmore delay gives good fidelity; that is, it correctly ranks choices
during routing.

3. ENHANCED ALGORITHM
In this section, we describe how the VPR router can be enhanced to
optimize for delay in the presence of crosstalk. There are
components within VPR that are of concern: the timing model,
which is used to evaluate potential routes (as well as the final
solution), and the cost-function used by the maze router. Both are
treated separately below.

3.1 Timing Model
There has been a significant amount of work developing models that
describe the effects of crosstalk [3,12,13,14,15]. In this paper, we
assume a simple model, in which crosstalk between two traces is
modeled by a change in the effective capacitance seen by both
traces. The magnitude of this change depends on the relative
switching activity of the two traces.
The capacitance of a trace i can be written as:

Ci = Cfixed + Σ
j ε T, j=i

λ i,j Cc li,j
η

di,j
γ

where Cfixed is the capacitance of the metal trace itself, as well as any
switches or buffers attached to the trace, T is the set of all traces, li,j
is the distance that traces i and j are adjacent, di,j is the distance
between trace i and j, λi,j is a parameter described below, and γ, η,
and Cc are process-dependent constants (typical values of γ and η
are 1.8 and 0.92 respectively). [4].
Note that Equation 2 assumes traces i and j have no trace between
them. In an FPGA, this is only true for neighbouring tracks within a
channel. Thus, the summation only needs to be carried out for those
wires. By assuming all tracks are within a channel are separated by
the same distance, by combining di,j with the technology dependent
terms, and approximating η as 1, we can write:

Ci = Cfixed + Σ
j ε Ν(i)

λ i,j Ccouple li,j

Logic B lock

Track A (Ava ila b le)

T rack B (Ava ila b le)

T rack C (N ot Ava ilab le

T rack D (Ava ilab le)

T rack E (Ava ila b le)

P rogra mma ble
Sw itches

Pre-ro u ted N et

P in

Figure 1: An Example Routing on an FPGA

(1)

(2)

(3)

where N(i) is the set of neighbours of i (note that a track may have
more than two neighbours if the track spans more than one logic
block). From Equation 3, it is clear that the capacitance of a track
depends on the capacitances of the neighbouring track(s) within the
same channel.

The parameter λi,j takes into account the switching activity between
tracks i and j. If the two tracks are switching in the same direction,
λi,j can be approximated as 0, since there is no induced crosstalk for
signals switching together. If the two signals are switching in the
opposite direction, λi,j can be approximated as 2. If only one of the
signals is changing, λi,j can be approximated as 1. During routing, it
is difficult to determine the relative switching activities of each
signal. Thus, our timing model makes the following pessimistic
assumptions when computing the effective capacitance of track i:

1. For all neighbours j which are used to carry a signal, we
assume the worst-case crosstalk ensues (ie. λi,j is 2).

2. For all neighbours j which are unused, we assume that j is tied
to a constant voltage, so λi,j is 1.

Thus, for any given routing, the effective capacitance of each track
can be computed, and this can be used in the Elmore delay to
estimate the delay of the net.

3.1 Cost Function
The intelligence of any iterative maze-router is encapsulated in its
cost function. This subsection describes how the VPR cost function
can be modified to account for crosstalk.
There are two ways in which the new cost function takes crosstalk
into account. The first is that the delay(n) quantity from Equation 1
is modified to use the new timing model from Section 3.1. In this
way, the delay of using a segment is computed using not only the
capacitance of the segment itself, but the extra capacitance due to
any previously-routed nets. This will tend to route nets away from
other nets, thereby lowering the crosstalk effect, and possibly
lowering the critical path delay of the circuit.
This is not enough, however. Consider Figure 2. Suppose a high-
criticality net (net on the critical path) has previously been routed
onto track F. Now suppose logic block pins PA and PB are to be
connected using a low-criticality net (a net that is not on the critical
path). There are two options. The pins could be connected using
track E which spans two logic blocks. Alternatively, the pins could
be connected using tracks C and D (there is a programmable switch
between tracks C and D). In a router which does not understand

crosstalk, the first option (track E) would be preferred, since only
one segment needs to be used.
Now consider a crosstalk-aware router, in which the delay(n)
quantity from Equation 1 is modified to use the new timing model as
described above. Depending on the criticality of the net being
routed, either the first option (track E) or second option (tracks C
and D) may be chosen. The second option will suffer less crosstalk,
but recall from Equation 1, the net delay (and hence the crosstalk
penalty) is multiplied by the criticality of the net being routed. In our
example in Figure 2, we are routing a low-criticality net, meaning
the crosstalk contribution to the overall cost function will be small.
Thus, the first option (Track E) may be preferred. However, this is
probably a bad choice, since using track E will also increase the
crosstalk seen by the critical path net routed on track F. This will
cause the critical path of the system to become longer. This
motivates our need for a mechanism for low-priority nets to
understand the anti-social behaviour of routing next to a high-
priority net.
Such a mechanism can be implemented by modifying the cost
function of Equation 1 as follows:
 Cost(n) = Crit delay(n) + penalty(n) +
 (1-Crit) b(n) h(n) p(n)
where

penalty(n) =

m ε Ν(n)

Crit(k) ∆delay(k,m,n)ΣΣ
k ε U(m)

In Equation 5, N(n) is the set of neighbours of track n, U(m) is the
set of previously-routed connections using track m, Crit(k) is the
criticality of connection k, and ∆delay(k,m,n) is the increase in the
delay of connection k (routed on track m) that occurs if a new signal
is routed using track n. This latter quantity can be computed as:

 ∆delay(k,m,n) = Rupstream,m,k Ccouple lm,n

where lm,n is the distance that traces m and n are adjacent, Ccouple is a
technology constant as in Equation 3, and Rupstream,m,k is the
resistance between track m and the source of net k. This upstream
resistance is already computed in VPR for use in the timing
analyzer; thus, Equations 4 through 6 can be easily computed. Note
that Equation 6 describes the increase in a delay in a two-pin net;
experiments have shown that this gives good results for nets with
more than two pins as well.

Logic
B lock

Logic
B lock

Logic
B lock

Logic
B lock

P in PA Pin PB

Switch B lock Program mable Sw itchProgram mable Sw itch

T rack E

Track A Track B

Track C Track D

Track F

T rack G

Pre-R outed
H igh-C ritica lity

N et

Figure 2: Example Illustrating Crosstalk Routing

(4)

(5)

Intuitively, the penalty term from Equation 5 represents the increase
in delay of all adjacent nets weighted by the criticality of the
adjacent nets. In the example of Figure 2, the new net would see a
high penalty for using track E, since criticality of the adjacent net is
high. Thus, the router would prefer to use tracks C and D, which,
overall, should lead to a faster circuit.

4. EXPERIMENTAL RESULTS
To evaluate the proposed enhancements, we experimentally mapped
seventeen large benchmark circuits onto a model FPGA. We
assumed an island-style FPGA, where each logic block contains four
4-input lookup tables and four flip-flops. The switch block from
[16] was used, but the number, length, and driving capacity of each
routing track was varied throughout the experiments. The number of
connections between each logic block pin and the adjacent routing
channel (Fc in [17]) was also varied throughout the experiments. In
every case, we assumed a 0.18µm CMOS process available from
TSMC. Although we do not expect crosstalk to become an over-
riding concern for FPGAs until they are well below 0.15µm, this
section will show that, even at 0.18µm, significant performance
improvements can be gained by taking crosstalk into account during
routing.
Each circuit was first mapped to 4-input lookup tables and flip-flops
using Flowmap/Flowpack [18]. The lookup tables and flip-flops
were then packed into logic blocks using a timing-driven packing
algorithm [10]. The logic blocks were then placed on an
appropriately sized FPGA using the timing driven placement tool
described in [19]. We then ran the baseline VPR timing-driven
router to find the minimum number of routing tracks needed for
100% routability. This number was then increased by 30%, and the
routing repeated, this time with both the baseline VPR algorithm
and the enhanced algorithm described in Section 3.0. This “low-
stress” routing is representative of the routing performed in real
industrial designs. Note that , when comparing the baseline and

enhanced routing algorithms, the same number of tracks is used in
each case, therefore, the area required in both cases is the same.
Table 1 shows the results assuming each routing segment spans
eight logic blocks, assuming the segments are separated by re-
powering buffers, and assuming each logic block pin can connect to
60% of the tracks in the adjacent channel (ie. Fc=0.6). The third
column shows the number of tracks used to route each circuit (this is
the minimum number of tracks for each circuit increased by 30%).
When comparing the original VPR router and our enhanced
crosstalk-aware router, there are two components that should be
measured separately. The first component is due to the enhanced
timing analyzer. The original VPR timing analyzer has no notion of
crosstalk, so (to be pessimistic) we need to assume the worst-case
coupling capacitance between each pair of neighbouring tracks,
regardless of whether these tracks are used. Our new timing analyzer
provides a tighter estimate on the speed of the circuit, by taking into
account whether neighbouring tracks of a given track are used or
unused. To get an idea of the amount of improvement due to the
enhanced timing analyzer, we first ran the original VPR tool, and
gathered the results in columns four and five of Table 1. Column
five shows the critical path of each circuit, while column four shows
the portion of the critical path due to routing (the routing delay). We
then used the same routing solutions for each circuit, but used the
new timing analyzer to get a tighter bound on the speed of each
implementation. Columns six and seven show this data. Comparing
columns four/five with six/seven, we can see that an improvement of
3.8% in the routing delay (1.9% in the critical path) was obtained by
the new timing analyzer.
The second component of the improvement is due to the routing
algorithm itself. The above comparisons both assumed a router that
did not optimize for crosstalk. We ran our enhanced algorithm on
each circuit, and gathered the results in columns eight and nine.
Comparing columns six/seven to columns eight/nine, it can be seen
that the new router reduces the routing delay by an additional 3.4%,

Baseline VPR
(worstcase crosstalk)

Baseline Router,
Enhanced Timing

Enhanced Router and
Timing Model

Circuit Number
4-LUTs /
flip-flops

Number
Tracks
per
channel

Routing
Delay

Critical
Path

Routing
Delay

Critical
Path

Routing
Delay

Critical
Path

apex1 696 / 0 49 7.78 ns 12.98 ns 7.60 ns 12.80 ns 7.38 ns 11.88 ns
apex3 867 / 0 49 8.94 ns 13.44 ns 8.58 ns 13.08 ns 8.46 ns 12.95 ns
apex4 1262 / 0 53 10.27 ns 14.77 ns 9.96 ns 14.46 ns 9.53 ns 14.03 ns
cordic 466 / 0 36 8.54 ns 15.15 ns 8.26 ns 14.87 ns 7.89 ns 14.50 ns
cps 749 / 0 42 9.08 ns 12.88 ns 8.76 ns 12.56 ns 7.39 ns 11.18 ns
dalu 500 / 0 33 7.92 ns 12.41 ns 7.39 ns 11.89 ns 6.93 ns 10.72 ns
dsip 1370 / 224 38 5.37 ns 7.61 ns 5.25 ns 7.49 ns 4.99 ns 7.23 ns
ex5p 1064 / 0 57 9.23 ns 14.43 ns 8.91 ns 14.11 ns 8.95 ns 14.15 ns
k2 515 / 0 40 8.49 ns 12.99 ns 8.21 ns 12.70 ns 7.13 ns 12.33 ns
pair 641 / 0 40 6.64 ns 11.14 ns 5.74 ns 10.94 ns 6.53 ns 11.73 ns
planet 266 / 6 21 4.24 ns 7.33 ns 4.12 ns 7.21 ns 4.32 ns 7.42 ns
s298 1930 / 8 38 16.97 ns 27.64 ns 16.71 ns 27.36 ns 16.74 ns 27.41 ns
s1488 296 / 6 21 4.34 ns 7.44 ns 4.12 ns 7.21 ns 3.95 ns 7.04 ns
s5378 572 / 160 38 5.68 ns 10.18 ns 5.46 ns 9.96 ns 4.90 ns 9.40 ns
sbc 372 / 27 29 5.07 ns 8.16 ns 4.93 ns 8.03 ns 4.76 ns 7.85 ns
table5 483 / 0 44 7.50 ns 12.00 ns 7.21 ns 11.71 ns 7.10 ns 11.60 ns
tseng 1046 / 385 36 8.51 ns 17.78 ns 8.35 ns 17.61 ns 8.21 ns 17.47 ns
Average 7.92 ns 12.84 ns 7.62 ns 12.59 ns 7.36 ns 12.29 ns

Table 1: Timing results assuming segment length=8, fc=0.6, 30% extra tracks

and the critical path by an additional 2.4%. Overall, our average
routing delay is 7.1% smaller than the original VPR results, while
the average critical path is 4.5% smaller.
To gain further insight into how well our routing algorithm is
performing, we define the isolation factor of a routing as follows.
For a given routing, assume G is the set of segments that lie on the
critical path (or paths). For each element g ε G, define N(g) as the
set of tracks adjacent to g, and define ln,g as the length of the
adjacency between tracks g and n, in terms of logic blocks. Further
define H(n) to be 0 if track n is used, and 1 otherwise. Then, the
isolation factor of a routing is defined as:

Isolation Factor = 100 x
g ε G

l n,g H(n)ΣΣ
n ε N(g)

g ε G

l n,gΣΣ
n ε N(g)

Informally, the isolation factor is an indication of how well the
router is isolating the critical path from other nets. A value of 0
indicates every segment of the critical path(s) is adjacent to another
net, while a value of 100 means that every segment of the critical
path(s) is not adjacent to any other net. Table 2 shows the isolation
factors for both the base and enhanced routers for each of our
benchmark circuits. As the table shows, the isolation factor is
increased by, on average, 31% in the enhanced router.

4.1 Parameter Sweep: Extra Tracks per
 Channel
To investigate the effectiveness of the algorithm across different
architectures, we swept three parameters: the number of extra tracks
per channel, the number of connections per logic block pin (Fc), and
the length of each segment.
First consider the extra number of tracks in each channel. The
results in Tables 1 and 2 assume each channel has 30% more tracks
the minimum number of tracks required for 100% routability. To
investigate the effect that the number of tracks has on our algorithm,
we varied the number of extra tracks, and in each case, measured the
isolation factor and the routing delay. Intuitively, we would expect
that as the number of extra tracks goes up, the new algorithm is
better able to reduce crosstalk. Figure 3 shows that this is true. The
first graph in Figure 3 shows the isolation factor (averaged over all
benchmark circuits) of the enhanced algorithm and the baseline

algorithm (with the enhanced timing model) as a function of the
number of extra tracks. The second graph in Figure 3 shows the
percent improvement in the isolation factor. The trend is clear: the
improvement increases until the isolation factor of the enhanced
algorithm approaches 100%. At this point, there is no further
improvement possible in the enhanced algorithm isolation factor, so
the percentage improvement drops. Figure 4 shows the affect on the
routing delay of the two algorithms (again, the baseline algorithm
includes the enhanced timing model). The trends in these graphs are
less clear; but it appears that the improvement in routing delay
improves as the number of extra tracks increases.

4.2 Parameter Sweep: Connection Block
Flexibility

Now consider the number of connections per logic block pin (Fc).
Intuitively, the larger the value of Fc, the more flexibility that is
available to the enhanced router. Therefore, we would expect that as
Fc increases, the new algorithm is better able to isolate tracks. On
the other hand, a larger Fc means there is more fixed capacitance
attached to each routing track; this capacitance will tend to reduce
the improvement obtained by isolating the critical path. Figures 5
and 6 show experimental results. Clearly, both the isolation factor
improvement and the routing delay improvement increase as Fc
increases.

4.3 Parameter Sweep: Segment Length
 Finally, we investigated the effect of the length of each routing
segment on the effectiveness of our algorithm. Figures 7 and 8 show
the isolation factor experimental results and the routing delay
experimental results as a function of segment length. In each case,
an architecture consisting of buffered switches is assumed; the size
of each buffer increases as the segment length increases (for each
segment length, the optimum buffer size was found). As the graphs
show, the improvement in isolation factor increases as the segment
length increases, but no trend is observable in the delay graph. We
experimented with other architectures, and got similar results.

5. CONCLUSIONS
In this paper, we have presented an FPGA router than optimizes for
delay in the presence of crosstalk. By optimizing an existing FPGA
router, we were able to improve the average routing delay of circuits
by 7.1% compared to an FPGA router which assumes the worst-case
coupling capacitance between all neighbouring tracks. About half of

(7)

Isolation Factor Isolation FactorCircuit
Baseline
Router

Enhanced
Router

Circuit
Baseline
 Router

Enhanced
Router

apex1 18.5 27.5 pair 29.3 48.3
apex3 27.0 26.9 planet 21.1 27.4
apex4 31.1 26.9 s298 26.9 32.9
cordic 19.1 33.8 s1488 16.9 26.5
cps 28.8 38.6 S5378 27.8 48.5
dalu 26.9 35.6 sbc 33.1 28.7
dsip 26.0 43.0 table5 17.8 34.2
ex5p 29.5 21.1 tseng 26.9 41.3
k2 29.8 31.1 Average 25.7 33.7

Table 2: Isolation factor results assuming segment length=8, fc=0.6, 30% extra tracks

this improvement was due to a tighter delay estimator, and half was
due to the new routing algorithm.
There are many ways to improve the results in this paper. One way
is to relax the pessimistic assumption that two neighbouring tracks
always result in the worst-case coupling capacitance. One way to do
this would be to assign “change windows” or “bins” for each
segment; a bin is a subset of the clock period in which a given signal
might change. Neighbouring tracks which carry signals with non-
overlapping bins will not result in the worst-case crosstalk; taking
advantage of this would give additional freedom to the router. Of
course, the effectiveness of this will depend on how tight the bin
boundaries can be (if, for most signals, the bin spans the entire clock
period, clearly no optimizations beyond those in this paper would be
possible). In addition, more advanced crosstalk models which are

currently being developed by researchers would give more accurate
crosstalk estimates, and possibly better overall results. As
technology shrinks, and crosstalk becomes more and more
significant, further optimizations such as these will become more
and more important.

6. ACKNOWLEDGMENTS
Funding was provided by the British Columbia Advanced Systems
Institute and the Natural Sciences and Engineering Research
Council of Canada. The author wishes to thank the Canadian
Microelectronics Corporation for providing process data and Mike
Sheng and Elias Ahmed for encapsulating this data into a VPR-
readable format.

Enhanced

Base line

0

10

20

30

40

50

60

70

80

90

100

Is
o

la
ti

o
n

 F
ac

to
r

% Extra Tracks

20%

30%

40%

50%

60%

70%

80%

90%

100%

200%

300%

400%

500%

% Extra Tracks

20%

30%

40%

50%

60%

70%

80%

90%

100%

200%

300%

400%

500%

15

20

25

30

35

40

Im
p

ro
ve

m
en

t
in

 Is
o

la
ti

o
n

 F
ac

to
r

(%
)

Figure 3: Effect of Number of Extra Tracks on Isolation Factor

% Extra Tracks

20%

30%

40%

50%

60%

70%

80%

90%

100%

200%

300%

400%

500%

B ase line

E nhanced

6.0

6.5

7.0

7.5

8.0

8.5

R
o

u
ti

n
g

 D
el

ay
 (

n
s)

20%

30%

40%

50%

60%

70%

80%

90%
100%

200%

300%

400%
500%

% Extra Tracks

-3

-1

1

3

5

7

9

Im
p

ro
ve

m
en

t
in

 R
o

u
ti

n
g

 D
el

ay
 (

%
)

Figure 4: Effect of Number of Extra Tracks on Routing Delay

20

25

30

35

40

45

50

1.
0

Is
o

la
ti

o
n

 F
ac

to
r

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

Fc

Enhanced

Baseline

10

20

30

40

50

60

70

Im
p

ro
vm

en
t

in
 Is

o
la

ti
o

n
 F

ac
to

r
(%

)

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

Fc

Figure 5: Effect of Fc on Isolation Factor

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

Fc

0

1

2

3

4

5

6

7

8

9

Im
p

ro
ve

m
en

t
in

 R
o

u
ti

n
g

 D
el

ay
 (

%
)

Enhanced

7.2

7.4

7.6

7.8

8.0

8.2

8.4

8.6

R
o

u
ti

n
g

 D
el

ay
 (

n
s)

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

Fc

Baseline

Figure 6: Effect of Fc on Routing Delay

1
0

10

20

30

40

50

60

Is
o

la
ti

o
n

 F
ac

to
r E nhanced

B ase line

2 4 8 16

Segment Length

0

10

20

30

40

50

60

%
 Im

p
ro

ve
m

en
t

in
 Is

o
la

ti
o

n
 F

ac
to

r

1 2 4 8 16

Segment Length

Figure 7: Effect of Segment Length on Isolation Factor

E nhanced

B ase line

6

7

8

9

10

11

R
o

u
ti

n
g

 D
el

ay
 (

n
s)

1 2 4 8 16

Segment Length

1 2 4 8 16

Segment Length

0

1

2

3

4

%
 Im

p
ro

ve
m

en
t

in
 R

o
u

ti
n

g
 D

el
ay

Figure 8: Effect of Segment Length on Routing Delay

REFERENCES
[1] The National Technology Roadmap for Semiconductors,
 Semiconductor Industry Association, 1994.
[2] U. Choudhury, A. Sangiovanni-Vincentelli, “Constraint-Based

Channel Routing for Analog and Mixed Analog/Digital
Circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 12, No. 4, April 1993,
pages 497-510.

[3] A. Vittal, M. Marek-Sadowska, “Crosstalk Reduction for
VLSI,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 16, No. 3, March 1997,
pages 290-298.

[4] P. Saxena, C.L. Liu, “A Postprocessing Algorithm for
Crosstalk-Driven Wire Preturbation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 19, No. 6, June 2000, pages 691-702.

[5] T. Gao, C.L. Liu, “Minimum Crosstalk Channel Routing,”
IEEE Transactions on Computer-Aided Design, Vol. 15, No.
5, May 1996, pages 465-474.

[6] T. Miyoshi, S. Wakabayashi, T. Koide, N. Yoshida, “An MCM
Routing Algorithm Considering Crosstalk,” in Proceedings of
the International Symposium on Circuits and Systems, May
1995, volume 1, pages 211-214.

[7] H. Zhou, D.F. Wong, “An Optimal Algorithm for River
Routing with Crosstalk Constraints,” in Proceedings of the
International Conference on Computer-Aided Design,
November 1996, pages 310-315.

[8] D. Wang, E. Kuh, “A Performance-Driven MCM Router with
Special Consideration of Crosstalk Reduction,” in Proceedings
of Design Automation and Test in Europe, 1998, pages 466-
470.

[9] K. Jhang, S. Ha, C.S. Jhon, “COP: A Crosstalk Optimizer for
Gridded Channel Routing”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 15, No.
4, April 1996, pages 424-429.

[10] V. Betz, J. Rose, A. Marquardt, “Architecture and CAD for
Deep-Submicron FPGAs,” Kluwer Academic Pub., 1999.

[11] C. Ebeling, L. McMurchie, S.A. Hauck, S. Burns, “Placement
and Routing Tools for the Tryptic
FPGA,” IEEE Transactions on VLSI Systems, Vol. 3, No. 4,
December 1995, pages 473-482.

[12] T. Xiao, M. Marek-Sadowska, “Efficient Delay Calculation in
the Presence of Crosstalk”, in Proceedings of the International
Symposium on Quality of Electronic Design, March 2000.

[13] B. Franzini, C. Forzan, D. Pandini, P. Scandolara, A. Dal
Fabbro, “Crosstalk Aware Static Timing Analysis: A Two Step
Approach,” in Proceedings of the International Symposium on
Quality of Electronic Design, March 2000.

[14] P. Tehrani, S. Chyou, U. Ekambaram, “Deep Sub-Micron
Static Analysis in Presence of Crosstalk,”in Proceedings of the
International Symposium on Quality of Electronic Design,
March 2000.

[15] M. Becer, I. Hajj, “An Analytical Model for Delay and
Crosstalk Estimation with Application to Decoupling,” in
Proceedings of the International Symposium on Quality of
Electronic Design, March 2000.

[16] M.I. Masud, S.J.E. Wilton, “A New Switch Block for
Segmented FPGAs,” in Lecture Notes in Computer Science
1673, Springer-Verlag, pages 274-281

[17] J.Rose, S. Brown, “Flexibility of Interconnection Structures for
Field-Programmable Gate Arrays,” IEEE JSSC, Vol. 26, No. 3,
March 1991, pages 277-282. .

[18] J. Cong, Y. Ding, “FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 13, no.
1, January 1994, pages 1-12.

[19] A. Marquardt, V. Betz, and J. Rose, "Timing-Driven Placement
for FPGAs," in Proceedings of the International Symposium
on Field-Programmable Gate Arrays, February 2000, pages
203-21

