722 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 5, MAY 2005

FastPlace: Efficient Analytical Placement Using Cell
Shifting, Iterative Local Refinement,
and a Hybrid Net Model

Natarajan Viswanathan, Member, IEEE, and Chris Chong-Nuen Chu, Member, IEEE

Abstract—In this paper, we present FastPlace—a fast, iterative,
flat placement algorithm for large-scale standard cell designs.
FastPlace is based on the quadratic placement approach. The
quadratic approach formulates the wirelength minimization
problem as a convex quadratic program that can be solved effi-
ciently by some analytical techniques. However it suffers from
some drawbacks. First, the resulting placement has a lot of overlap
among cells. Second, the resulting total wirelength may be long as
the quadratic wirelength objective is only an indirect measure of
the linear wirelength. Third, existing net models tend to create a
lot of nonzero entries in the connectivity matrix that slows down
the quadratic program solver. To handle the above problems
we propose: 1) an efficient cell shifting technique to remove cell
overlap from the quadratic program solution and also accelerate
the convergence of the solver. This technique produces a global
placement with even cell distribution in a very short time; 2)
an iterative local refinement technique to reduce the wirelength
according to the half-perimeter measure; and 3) a hybrid net model
that is a combination of the traditional clique and star models.
This net model greatly reduces the number of nonzero entries in
the connectivity matrix and results in a significant speedup of the
solver. Experimental results show that FastPlace is on average
13.4x,102X, and 19.9 X faster than state-of-the art academic
placers Capo, Dragon, and Gordian-Domino, respectively, on a set
of IBM benchmarks.

Index Terms—Analytical placement, computer-aided design, net
models, standard cell placement.

I. INTRODUCTION

N RECENT years, the role of placement in the physical de-

sign of large chips has grown dramatically [1], [2]. The main
reason is that placement of circuit modules determines intercon-
nect length to a large extent, and hence, interconnect delay and
routing resource demand. Interconnect delay has become the de-
termining factor of circuit performance in present day integrated
circuits. Hence, placement has become a major contributor to
timing closure results. Current circuits often contain over a mil-
lion placeable components, and it is predicted that circuit sizes
will continue to double every three years [3]. Also, Cong et al.
[4], [5] showed that existing placement algorithms are not scal-
able and stable. Therefore, it is likely that existing approaches

Manuscript received June 14, 2004; revised October 10, 2004. This paper was
recommended by Guest Editor L. Scheffer.

The authors are with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011 USA (e-mail: nataraj@iastate.edu;
cnchu@iastate.edu).

Digital Object Identifier 10.1109/TCAD.2005.846365

may not be able to handle future circuits much larger in size.
Hence, it is very essential to have extremely efficient placement
algorithms.

Over the last few years, many placement algorithms have
been proposed to handle the objective of wirelength minimiza-
tion. These algorithms apply various approaches including
analytical placement [6]-[13] simulated annealing [14], [15],
and partitioning/clustering [16]-[18]. Analytical placement
is a very promising approach for fast placement algorithm
design. Analytical placement algorithms commonly utilize a
quadratic wirelength objective function. Although the quadratic
objective is only an indirect measure of the wirelength, its main
advantage is that it can be minimized quite efficiently. As a
result, analytical placement algorithms are relatively efficient in
handling large problems. They typically employ a flat method-
ology so as to maintain a global view of the placement problem
[7]-[11], [13]. For simulated annealing and partitioning/clus-
tering-based approaches, a hierarchical methodology is almost
always employed to reduce the problem size and speed up the
resulting algorithms [14]-[18]. Note that when the placement
problem is so large that a flat analytical approach cannot handle
it effectively, a hierarchical analytical approach is beneficial.
One way to convert to a hierarchical approach is to incorporate
the fine granularity clustering technique proposed by Hu et
al. [19]. This technique essentially introduces a two-level
hierarchy to reduce the size of large-scale placement problems.

A major concern with the quadratic objective is that it re-
sults in a placement with a large amount of overlap among cells.
Also, the quadratic objective by itself does not give the best
possible wirelength. To handle these problems, Kleinhans et
al. [10] used a placement-based bisection technique to recur-
sively divide the circuit and add linear constraints to pull the
cells in each partition to the center of the corresponding region.
The FM [20] min-cut algorithm was used to improve the bi-
section and hence the wirelength. Vygen [13] applied a posi-
tion-based quadrisection technique instead. A splitting-up tech-
nique to modify the netlist was also proposed to ensure that cells
will stay in the assigned region. This technique also breaks down
long nets and hence makes the objective behave like a linear
function to some extent. Eisenmann et al. [7] introduced addi-
tional constant forces to each cell based on cell distribution to
pull cells away from dense regions. Etawil et al. [8] added re-
pelling forces for cells sharing a net to maintain a target distance
between them and attractive forces by fixed dummy cells to pull
cells from dense to sparse regions. Hu et al. [9] introduced the
idea of fixed-point as a more general way to add forces for cell

0278-0070/$20.00 © 2005 IEEE

VISWANATHAN AND CHU: FASTPLACE: EFFICIENT ANALYTICAL PLACEMENT

spreading. Hur et al. [12] used the spreading force of [7] to di-
rect and control the ripple move optimization of Mongrel [21]
to spread the cells. Kahng ef al. [6] combined the cell spreading
objective of [22] with a wirelength objective to achieve simul-
taneous cell spreading and wirelength optimization.

In this paper, we present a fast, iterative, flat placement al-
gorithm called FastPlace for large-scale standard cell designs.
FastPlace is based on the quadratic placement approach. The
main contributions of our work are:

D an efficient cell shifting technique to remove cell
overlap and accelerate the convergence of the quadratic
program solver. The cell shifting technique roughly
maintains the relative order of the cells in both hor-
izontal and vertical directions as we believe that the
quadratic objective function can determine a proper
cell ordering. Hence, a high-quality global placement
with even cell distribution can be produced in a short
time.

2) an iterative local refinement technique to reduce the
wirelength according to the half-perimeter measure.
This technique is interleaved with cell shifting and
global optimization during the final iterations of global
placement. It makes use of the wirelength and cell
distribution information provided by a coarse global
placement and hence is very effective.

3) a hybrid net model that is a combination of the tradi-
tional clique and star [23] net models. We prove the
equivalence of the hybrid net model to the clique and
star models. On average, the hybrid net model results
in a 2.95X reduction in the number of nonzero entries
in the connectivity matrix as compared to the clique
model. Consequently, it results in a 1.5x speed-up of
the quadratic program solver.

The rest of the paper is organized as follows. Section II pro-
vides an overview of the algorithm. Section III describes the
global optimization step. Section IV describes the hybrid net
model. Section V describes the cell shifting technique. Sec-
tion VI describes the iterative local refinement technique and
Section VII describes the detailed placement technique. Exper-
imental results are presented in Section VIII followed by the
conclusion in Section IX.

II. OVERVIEW OF THE ALGORITHM

FastPlace essentially consists of three stages. The aim of the
first stage is to simultaneously minimize the wirelength and
spread the cells over the placement region to obtain a coarse
global placement. It is composed of an iterative procedure
in which we alternate between global optimization and cell
shifting. Global optimization involves minimizing the quadratic
objective function. During cell shifting, the entire placement
region is divided into equal-sized bins and the utilization of
each bin is determined. This gives a measure of the current
placement distribution. The cells are then shifted around the
placement region based on their respective bins and its current
utilization. Finally, a spreading force is added to the cells to
account for their movement during shifting. This is done to

723

Algorithm FASTPLACE

Stage 1: Coarse Global Placement (CGP)
1. Repeat
2. Perform Global Optimization.
3. Perform Cell Shifting and Add Spreading Forces.
4. Until the placement is roughly even.

Stage 2: Wirelength Improved Global Placement (WIGP)
1. Repeat
2. Perform Global Optimization.
3. Perform Iterative Local Refinement.
4. Perform Cell Shifting and Add Spreading Forces.
5. Until the placement is very even.

Stage 3: Detailed Placement (DP)
1. Repeat
2. Further reduce wirelength using a greedy heuristic.
3. Legalize the current placement solution.
4. Until no significant improvement in wirelength.

Fig. 1. FASTPLACE algorithm.

prevent the cells from collapsing back to their original positions
during the next global optimization step.

The second stage refines the global placement by interleaving
an iterative local refinement technique with global optimization
and cell shifting. This is done during the final stages of global
placement. The iterative local refinement technique is employed
to reduce the wirelength based on the half-perimeter measure
and to speed up the convergence of the algorithm. This stage
of global placement yields a very well distributed placement
solution with a very good value for the total wirelength.

The third stage is detailed placement. This consists of le-
galizing the current placement by assigning cells to predefined
rows in the placement region. Within each row, the cells are then
assigned to legal positions and any overlap among them is re-
moved. It also consists of further reducing the wirelength by a
greedy heuristic.

The algorithm FASTPLACE is summarized in Fig. 1 and the
individual components of the flow are discussed in more detail
in Sections II-VIL.

III. GLOBAL OPTIMIZATION

This section describes the quadratic programming step of
global placement referred to as global optimization, which
is the terminology used in [10]. The quadratic placement
approach uses springs to model the connectivity of the circuit.
The total potential energy of the springs, that is a quadratic
function of their length, is minimized' to produce a placement
solution. In order to model the circuit by a spring system, each
multipin net needs to be transformed into a set of two-pin nets
by a suitable net model. In the following, we assume that this
transformation has been applied. The net model used will be
discussed in Section I'V.

Let n be the number of movable cells in the circuitand (z;, y;)
the coordinates of the center of cell 7. A placement of the circuit
is given by the two n-dimensional vectors x = (21, Za, . .., %)

IEquivalently, a force equilibrium state of the spring system is found.

724 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 5, MAY 2005

andy = (y1,¥2,---,Yn). Consider the net between two mov-
able cells 7 and j in the circuit. Let W;; be its weight. Then. the
cost of the net between the cells is

1
§Wij[($i — ;)% + (yi — y;)°]- ey

If acell ¢ is connected to a fixed cell f with coordinates (x5,),
the cost of the net is given by

1
g Wisllws = 5)% + (i = yp)?]. 2
The objective function that sums up the cost of all the nets can
be written in matrix notation as [24]

1 1
O(z,y) = 5:pTQaz: +dlx + EyTQy + dgy + constant (3)

where () is an n X m symmetric positive definite matrix and
dy,d, are n-dimensional vectors. Since (3) is separable into
®(z,y) = ®(z) + ®(y), only the the z-dimension is consid-
ered for subsequent discussion, which is

1
®(z) = inQSE + d¥ x + constant. 4)

Let ¢;; be the entry in row 7 and column j of matrix (). From
expression (1), the cost in the z-direction between two movable
cells ¢ and j is 3Wi;(x7 + 23 — 2x;2;). The first and second
terms contribute W;; to ¢;; and q;;, respectively. The third term
contributes —W;; to ¢;; and q;;. From expression (2), the cost
in the z-direction between a movable cell 7 and a fixed cell f
is $Wif(x} 4+ 23 — 2w, 5). The first term contributes Wi to
gii- The third term contributes —W; sz s to the vector d, at row
1 and the second term contributes to the constant part of (4).
The objective function (4) is minimized by solving the system
of linear equations represented by

Qz +d, = 0. (5)

Equation (5) gives the solution to the unconstrained problem
of minimizing the quadratic function in (4). In FastPlace, we
solve such an unconstrained minimization problem throughout
the placement process. We do not add any constraint to the
problem formulation. This is because the spreading forces added
during cell shifting are produced by pseudo nets connecting the
cells to the chip boundary. This only introduces some terms in
the form of expression (2) and causes some changes to the di-
agonal of matrix () and the vector d, as described above.

IV. HYBRID NET MODEL

To handle the large placement problem size, a fast and accu-
rate technique is needed to solve (5). Since matrix () is sparse,
symmetric, and positive definite, we solve (5) by the precon-
ditioned conjugate gradient method. The incomplete Cholesky
factorization of matrix () is used as the preconditioner [25],
[26]. The runtime of the solver is directly proportional to the
number of nonzero entries in matrix (). This in turn is equal
to the number of two-pin nets in the circuit. Hence, it becomes
imperative to choose a good net model so as to have minimal
nonzero entries in matrix Q).

(Xa,y4)
(Xs,Ys5) 4¥4 xave Star Node (x4,ya)
(xao) (Xa,Y3)
(X1,Y1) (Xz,Yz) (X1,Y1) (Xz,yz)
(a) (b)
k (= 5) Pin Net

Fig. 2. Net models.

We propose a hybrid net model that is a combination of
the clique and star net models. We show experimentally in
Section VIII that the hybrid net model reduces the number of
nonzero entries in matrix @ by 2.95x over the traditional clique
model. In the subsequent discussion, we give a brief overview
of the clique and star net models, and introduce the hybrid net
model. Then, we prove the equivalence of the clique and star
models, and hence the consistency of the hybrid net model.

A. Clique, Star, and Hybrid Net Models

The clique model is the traditional model used in analytical
placement algorithms. In the clique model, a k-pin net is re-
placed by k(k — 1)/2 two-pin nets forming a clique. Let W be
the weight of the k-pin net. Some commonly used values for the
weight of the two-pin nets are W/(k—1) (e.g., [13]) and 2W/k
(e.g., [7] and [10]). The clique model for a five-pin net is illus-
trated in Fig. 2(a).

Recently, Mo et al. [23] utilized the star net model in a macro-
cell placer. In the star model, each net has a star node to which
all pins of the net are connected. Hence, a k-pin net will yield
k two-pin nets. The star model for a five-pin net is illustrated in
Fig. 2(b). Mo et al. [23] create a star node even for two-pin nets
and point out that the clique model generates on average 30%
more two-pin nets than the star model for the Microelectronics
Center of North Carolina 1992 (MCNC’92) macro block bench-
marks. Vygen [13] also switches to a star model for very large
nets to reduce the number of terms in the objective function, but
has not shown the validity of mixing the clique and star models
in quadratic placement. In addition, neither paper has discussed
the method to set the weight of the nets introduced by the star
model.

In the following section, we prove that for a k-pin net of
weight W, if we set the weight of the two-pin nets introduced,
to YW in the clique model and kyW in the star model for any
v, the clique model is equivalent to the star model in quadratic
placement. Therefore, the two models can be used interchange-
ably.

We propose a hybrid net model that uses a clique model for
two- and three-pin nets, and a star model for nets with four or
more pins. We set y to 1/(k — 1) in FastPlace as it works well
experimentally. By using the star model for nets with four or
more pins, we will generate much fewer two-pin nets and con-
sequently fewer nonzero entries in the matrix) than the clique
model. By using the clique model for two-pin nets, we will not

VISWANATHAN AND CHU: FASTPLACE: EFFICIENT ANALYTICAL PLACEMENT

introduce one extra net and two extra variables (corresponding
to the « and y dimensions) per two-pin net as in [23]. We choose
to use the clique model for three-pin nets because it is better
than the star model for the following reasons: First, if two cells
are connected by more than one two-pin or three-pin net in the
original netlist, the two-pin nets generated by the clique model
between the two cells can be combined and will only introduce
a single nonzero entry in the matrix). Second, it will not intro-
duce an extra pair of variables.

B. Equivalence of the Hybrid Net Model to the
Clique and Star Net Models

In this section, we show that the clique model is equivalent to
the star model in quadratic placement if net weights are set ap-
propriately. It follows that the clique, star and hybrid net models
are all equivalent.

Lemma 1: For any net in the star model, the star node under
force equilibrium is at the center of gravity of all pins of the net.

Proof: Consider a k-pin net. Let = be the z-coordinate
of the star node and let W be the weight of the two-pin nets
introduced. Then, the total force on the star node by all the pins
is given by

k

F= ZWS(:L’]- — Zs).

=1

Under force equilibrium, the total force F' = 0. Therefore,

k
D=1 %

i (6)

Ts =
Hence, the lemma follows. [|
Theorem 1: For a k-pin net, if the weight of the two-pin nets
introduced is set to W, in the clique model and kW, in the
star model, the clique model is equivalent to the star model in
quadratic placement.
Proof: For the clique model, the total force on a pin ¢ by
all the other pins is given by

k
W, S (@)

J=1,j7i

)

For the star model, all the pins of the net are connected to the
star node. The force on a pin ¢ due to the star node is given by

FP = kW (zs — x;)

k
i1 Ly
= kW, <Q - :LL> by Lemma 1

k

k
=W, in — kz;

j=1

k
W, S ()

J=1 i

— Fclique

725

As the forces are same in both models for all pins, the lemma
follows. [|

A combination of the clique and star models has been used in
the industry and academia. Previously, the star model has been
only used for high degree nets, so as to reduce the number of
nonzero entries in matrix () and speed-up the solver. However,
the validity of mixing the clique and star models in quadratic
placement has not been proven. Also, there has been no men-
tion about the method to set the weights of the two-pin nets
introduced by the two models if they are combined. Gordian
[10] also uses a star node to formulate the problem for multipin
nets. However, to reduce the number of variables, they explic-
itly state that they substitute the coordinates of the star nodes
with the mean values of the coordinates of the pins. In doing so,
even though they have fewer variables, they still have the same
number of nonzero entries in matrix () as the traditional clique
model.

In the star model used in our algorithm, we introduce two
extra variables (one for each x and y dimension) in the matrix
corresponding to the star node. By introducing these variables,
even though the total number of variables has increased, the
total number of nonzero entries in the matrix has been greatly
reduced. Considering the case of a k-pin net, our approach
will only introduce k£ nonzero entries in the matrix for the
star model. Whereas, the approach followed in [10] will still
introduce k(k — 1)/2 nonzero entries in the matrix.

Also, in this paper, we have described the method to set the
weights of the two-pin nets introduced by the clique and star
models. Consequently, based on the weights of the two-pin nets,
we have proven the equivalence of the two models and hence the
validity of mixing them in quadratic placement. Based on the
proof, the main novelty of our hybrid net model is that we can
use the star model even for nets with just four or more pins. We
no longer have to restrict its usage to only high-degree nets. If a
combination of the clique and star models are used, the hybrid
net model will give the minimum possible nonzero entries in
matrix Q.

To the best of our knowledge, the aforementioned proof and
treatment of the star model has not been reported in prior liter-
ature.

V. CELL SHIFTING

Global optimization essentially minimizes the quadratic
objective function. However, it does not consider the overlap
among cells. Therefore, the resulting placement has a lot of cell
overlap and is not distributed over the placement region. Cell
shifting evens out the placement by distributing the cells over
the placement region while retaining their relative ordering
obtained from the global optimization step. In the next sections,
we describe the steps involved in cell shifting.

A. Calculation of Bin Utilization

Initially, the placement region is divided into equal-sized bins
(Fig. 3). Each bin can accommodate an average of four cells.
Based on the placement obtained from global optimization, the
utilization of each bin (U;) is then computed. U; is defined as the
total area of all the cells inside bin 7 divided by the bin area. In

726 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 5, MAY 2005

[} O] (])

ml O

H O

ul O

ul O

ml O
M | ml | n

Fig. 3. Regular bin structure.

calculating the total area of all the cells, we sum the areas of all
cells completely covered by bin ¢ and the overlap area between
the bin and the cell for cells that partially overlap with bin 3.
The cells are then shifted around the placement region based on
their respective bins and its current utilization.

B. Shifting of Cells

Let us consider the case where the cells are shifted in the z-di-
mension. To shift cells, we go through every row of the reg-
ular bin structure and move cells present in the row. Shifting of
cells is a two step process. First, based on the current utilization
of all the bins in a particular row an unequal bin structure re-
flecting the current bin utilization is constructed. Second, every
cell belonging to a particular bin in the regular bin structure is
then linearly mapped to the corresponding bin in the unequal
bin structure. As a result of this mapping, cells in bins with a
high utilization will shift in a way so as to reduce their utiliza-
tion and the overlap among themselves. Once all the rows of the
regular bin structure have been considered, we go through every
column and shift the cells in the y-dimension by following the
two steps mentioned above.

To illustrate the shifting in the 2-dimension, consider a partic-
ular row in the regular bin structure (shaded row in Fig. 3). The
utilization of all the bins in this row is given in Fig. 4(a). The
unequal bin structure constructed from the regular bin structure
is illustrated in Fig. 4(b). To get the equation for the new bin
structure, from Fig. 4 let

1) OB; : x-coordinate of the boundary of bin 4 corre-

sponding to the regular bin structure.

2) N B; : x-coordinate of the boundary of bin ¢ corre-

sponding to the unequal bin structure.

Then,

OB;—1(Uit+1 + 6) + OB;11(U; +)

NB; =
Ui + Uiy + 26

®)

The idea behind cell shifting is to even out the utilization
among adjacent bins. Hence, the intuition behind the above for-
mula is to construct the new bin such that it averages the utiliza-
tion of bin ¢ and bin ¢ 4+ 1. The reason for having the parameter
0 is as follows. Let 6 = 0 and U;41 = 0, then from (8) it can be
seen that NB; = OB;4; and NB;;; = OB,. This results in

Utilization

Bini

Bin i+1

GB.; GB B,

(b)
NB;
Fig. 4. (a) Regular bin structure. (b) Unequal bin structure and utilization after
shifting.

a crossover of bin boundaries in the unequal bin structure that
results in improper mapping of the cells. To avoid this problem,
we need the parameter 6 that is set to a value of 1.5.
For performing the linear mapping of cells, If
1) z; : z-coordinate of cell j in bin ¢ before mapping
(obtained from the global optimization step).

2) @) : z-coordinate of cell j in bin 7 after mapping.
Then,
Tj — OBi,1 _ ZIZ'; — NBi—l
OB; —OB;_1 NB; — NB;_1
or,
:L‘l» _ NBZ(.TJ — OBZ;l) + NBbfl(OBl — :Ej).

J OB; —0B;_4
©)

During the initial placement iterations, a few bins in the place-
ment region will have an extremely high bin utilization. Conse-
quently, cells in these bins will have a tendency to shift over
large distances. This will perturb the current placement solution
by a large amount. This effect will get added over iterations and
result in a final placement with a high value of the total wire-
length. Therefore, to control the actual distance moved by any
cell during shifting, we introduce two movement control param-
eters, a; and o, (< 1) for the « and y dimensions. «, and «
are increasing functions that are inversely proportional to the
maximum bin utilization and have a very small value during the
initial placement iterations. In the x dimension, say, once the
position of cell 5 has been determined after mapping, the actual
distance moved by the cell is v, |z/; — ;|

Thus, the cells are shifted over very small distances during
the initial placement iterations. During the final stages of global
placement, the cells will be distributed quite evenly, and not
have a tendency to shift over large distances. Then, « can take a

VISWANATHAN AND CHU: FASTPLACE: EFFICIENT ANALYTICAL PLACEMENT

ion

Maximum Bin Utilizat

8 9 1011121314 1516 17 18 19
Iteration

[
o 4
~

Fig. 5. Maximum bin utilization versus iteration number for circuit ibmO1.
2.8 4
26
2.4
2.2 -
24
1.8 4
1.6 1
1.4+
1.2 4
0.8 -
0.6 -

0.4 T

1

Wirelength

8 9 10 11 12131:4151617181920
Iteration

Fig. 6. Wirelength versus iteration number for circuit ibmO1.

larger value to accelerate convergence. The expressions for o,
and o, are:

0.5
y =002 4+ ——
Yy + max(U;)
0.02 + 0.5 averageCellWidth
Q= U. 7
max(U;) cellHeight

We use the maximum utilization among all bins as a mea-
sure of the evenness of cell distribution. The lesser the max-
imum utilization, the more distributed are the cells. The max-
imum bin utilization can also be used as a measure of the effi-
ciency of the cell shifting technique. Fig. 5 shows the change
in the maximum bin utilization value over placement iterations
for the circuit ibmO1. It can be seen that within 19 iterations
of global placement the cells are spread out quite evenly over
the placement region and the maximum bin utilization reaches
the required threshold for us to begin detailed placement. This
also shows that cell shifting is very effective in accelerating the
convergence of the quadratic program solver. Correspondingly,
Fig. 6 gives the change in the wirelength over global placement
iterations. This figure also includes the final wirelength obtained
after detailed placement shown as iteration number 20. We can
see a jump in the wirelength value between iterations 9 and 11.

727

Pseudo Pin
O\
p &%
/
* Pseudo Net
Target pF, . Spreading
Position Force
o:// LR
’, 1
» !
74 5
Chip Boundary —
Resultant
Force

Fig. 7. Pseudopin and pseudonet addition.

This is when the algorithm transitions from the coarse global
placement (CGP) to the wirelength improved global placement
(WIGP) stage.

C. Addition of Spreading Forces

After the cells have been shifted in the x and y dimensions,
additional forces need to be added to them so that they do not
collapse back to their previous positions during the next global
optimization step. This is achieved by connecting each cell to a
corresponding pseudopin added at the boundary of the place-
ment region. The pseudopin and pseudonet addition is illus-
trated in Fig. 7.

Let (:1:;c , yjf) be the target position of cell j after cell shifting.
When it is moved to the target position, it will experience a force
due to its connectivity with the other cells or star nodes in the
placement region. This force can also be viewed as the force
required to move the cell from its original position (before cell
shifting) to the target position. The spreading force added to the
cell corresponds to this force experienced by the cell in its target
position.

To illustrate the addition of the spreading force, consider
Fig. 7. When cell 5 (solid circle) is moved to its target position,
it will experience a force due to the other cells connected to it
(empty circles). When determining this force, we assume that
all cells connected to cell j are still in their original positions
(before cell shifting). The resultant force due to the cells
connected to cell 5 is given by the resultant force vector. The
spreading force has the same magnitude as the resultant force
vector but is in the opposite direction.

To determine the position of the pseudopin and the spring
constant of the pseudonet if

1) pF, : xz-component of the spreading force;

2) pF, : y-component of the spreading force;

3) pD, : xz-component of the distance between the pseu-
dopin and target position of cell j;

4) pD, : y-component of the distance;

then the position of the pseudopin can be determined by the in-
tersection of the spreading force vector with the chip boundary.
A pseudonet for cell j is one that connects the cell from its target
position to its pseudopin. The spring constant for the pseudonet

728

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 5, MAY 2005

TABLE 1
PLACEMENT BENCHMARK STATISTICS

Ckt [#Nodes | #Pads [#Nets | #Pins | #Rows [Ckt [#Nodes | #Pads | #Nets | #Pins [#Rows
ibmO1 12506 246 14111 50566 96 PekoO1 12506 488 14111 50566 113
ibm02 19342 259 19584 81199 109 Peko02 19342 608 19584 81199 140
1ibm03 22853 283 27401 93573 121 Peko03 22853 660 27401 93573 152
ibm04 27220 287 31970 105859 136 Peko04 27220 718 31970 105859 166
ibm05 28146 1201 28446 126308 139 Peko05 28146 732 28446 126308 169
1ibm06 32332 166 34826 128182 126 Peko06 32332 784 34826 128182 181
ibm07 45639 287 48117 175639 166 Peko07 45639 932 48117 175639 215
1bm08 51023 286 50513 204890 170 Peko08 51023 984 50513 204890 227
ibm09 53110 285 60902 222088 183 Peko09 53110 1004 60902 222088 231
ibm10 68685 744 75196 297567 234 Pekol0 68685 1144 75196 297567 263
ibml1 70152 406 81454 280786 208 Pekoll 70152 1154 81454 280786 266
ibm12 70439 637 77240 317760 242 Pekol2 70439 1156 77240 317760 266
ibm13 83709 490 99666 357075 224 Pekol3 83709 1260 99666 357075 290
ibm14 147088 517 152772 | 546816 305 Pekol4 147088 1672 152772 | 546816 385
ibml5 161187 383 186608 | 715823 303 Pekol5 161187 1748 186608 | 715823 402
ibm16 182980 504 190048 | 778823 347 Pekol6 182980 1864 190048 | 778823 429
ibml7 184752 743 189581 860036 379 Pekol7 184752 1872 189581 860036 431
ibml8 | 210341 272 201920 | 819697 361 Pekol8 | 210341 1998 201920 | 819697 460

is given by 8 = | /pF? + pF2/,/pD2 + pD?. During each it- TABLE II

eration of Global Placement, a new spreading force and corre-
sponding pseudopin position is determined for every cell.

Since the pseudopin is a fixed pin present at the boundary, we
know from (2) and the subsequent analysis in Section III that
only the diagonal of matrix () and the d,, and d,, vectors need to
be updated for every cell. Hence, it takes only a single pass of
O(n) time, where n is the total number of movable cells in the
circuit, to regenerate the connectivity matrix for the next global
optimization step.

Thus we have incorporated an extremely fast cell shifting
technique to distribute the cells over the placement region.

VI. ITERATIVE LOCAL REFINEMENT

Since the quadratic objective function is only an indirect mea-
sure of the linear wirelength, it does not yield the best possible
result in terms of wirelength. To offset this disadvantage, we
incorporate an Iterative Local Refinement technique to further
reduce the wirelength.

The iterative local refinement technique is interleaved with
the global optimization and cell shifting steps during the WIGP
stage. This technique acts on a coarse global placement ob-
tained from the previous stage and hence is very effective in
minimizing the wirelength. Unlike other approaches, this tech-
nique uses the actual position of a cell and the half-perimeter
bounding rectangle measure of all nets connected to the cell to
move it around the placement region. The technique is based
on a greedy heuristic that mainly tries to minimize the wire-
length while trying to reduce the maximum bin utilization so as
to speed-up the convergence of the algorithm.

A. Bin Structure

This technique also employs a regular bin structure to esti-
mate the current utilization of a placement region for performing
wirelength improvement. Cells are then moved from source to
target bins based upon the wirelength improvement and target
bin utilization. During the first iteration of the WIGP stage, the

CLIQUE NET MODEL VERSUS HYBRID NET MODEL

#Non-zero Entries Ratio Runtime

Circuit (#Clique/ | (Clique/

(Clique) | (Hybrid) | #Hybrid) | Hybrid)
ibmO1 109183 41164 2.65 1.5
ibm02 343409 70014 4.90 2.4
ibm03 206069 74680 2.76 1.4
ibm04 220423 84556 2.61 1.2
ibm05 349676 108282 3.23 1.3
ibm06 321308 106835 3.01 1.6
ibm07 373328 147009 2.54 1.3
1bm08 732550 173541 422 2.0
1bm09 478777 185102 2.59 1.4
ibm10 707969 251101 2.82 1.6
ibml1 508442 230865 2.20 1.2
ibm12 748371 270849 2.76 1.6
ibm13 744500 295048 2.52 1.5
ibml4 | 1125147 | 456474 2.46 1.3
ibmlS | 1751474 | 607289 2.88 1.4
ibml16 | 1923995 | 668491 2.88 1.3
ibm17 | 2235716 | 753507 297 1.4
ibml8 | 2221860 | 711702 3.12 1.4
Avg 2.95 1.5

width and height of each bin for the refinement is set to five
times that of the bin used during cell shifting. Such large bins
are constructed to enable cell movement over large distances.
This is to minimize the wirelength of long nets that might span
a large part of the placement area. The width and height of the
bins are gradually brought down to the values used in the cell
shifting step over subsequent iterations of the WIGP stage.

B. Description of the Technique

Once the utilization of all the bins in the placement region has
beendetermined, wetraverse throughall the cellsin the placement
region and determine their respective source bins. For every cell
presentinabin, we compute four scores corresponding to the four
possible cell movement directions. For calculating the score, we
assume that a cell is moving from its current position in a source

VISWANATHAN AND CHU: FASTPLACE: EFFICIENT ANALYTICAL PLACEMENT

729

TABLE III
GLOBAL PLACEMENT ITERATIONS AND BREAK-UP OF TOTAL RUNTIME

With Iterative Local Refinement Without Iterative Local Refinement
Ckt GP. Global Cell ILR Det. Total HPWL GP. Global Cell Det. Total HPWL
Iters. Opt. Shifting Place (sec) (X 10e6) | Iters. Opt. Shifting | Place (sec) (X 10e6)
ibm01 19 3.73 1.42 6.83 1.17 13.15 1.89 19 4.06 1.43 1.62 7.11 2.10
ibm02 22 7.93 2.81 15.49 2.90 29.13 3.90 24 8.54 3.28 4.61 16.43 4.40
1bm03 21 9.24 3.23 17.94 2.00 32.41 5.25 22 10.07 3.54 3.73 17.34 6.06
1bm04 21 10.1 4.06 17.81 2.54 34.51 6.22 26 11.22 6.30 5.31 22.83 7.10
ibm05 24 9.18 5.74 26.53 6.61 48.06 10.72 24 10.4 5.7 9.61 25.71 11.94
ibm06 21 14.77 4.43 23.57 3.13 45.90 5.44 21 16.4 4.41 7.84 28.65 6.04
1bm07 24 30.78 8.39 29.24 5.08 73.49 9.01 27 33.77 10.46 8.87 53.1 10.17
1bm08 23 29.26 8.91 43.64 5.01 86.82 9.78 26 32.88 11.34 14.24 58.46 11.12
ibm09 29 44.45 13.90 36.72 7.30 102.37 10.84 30 46.37 14.72 11.06 72.15 12.35
ibm10 22 64.85 11.78 62.69 10.07 | 149.39 18.89 27 66.68 16.88 17.18 | 100.74 21.87
ibm11 25 61.83 15.21 50.05 7.15 134.24 15.54 28 62.68 17.89 1570 | 96.27 17.56
ibm12 25 66.31 14.42 73.58 6.27 160.58 24.48 31 74.67 21.30 18.07 | 114.05 27.79
ibml3 24 77.26 15.74 71.12 11.66 | 175.78 19.08 28 85.15 20.99 22.97 | 129.11 22.02
ibm14 25 159.86 31.12 118.51 | 15.74 | 325.23 35.67 30 241.87 41.85 36.46 | 320.18 42.56
ibm15 31 221.53 47.82 258.74 | 21.12 | 549.21 43.99 37 240.18 63.12 50.76 | 354.06 52.59
ibm16 31 250.32 56.50 236.10 | 34.08 | 577.00 46.59 34 261.55 65.60 71.41 | 398.56 54.01
ibm17 26 261.87 41.91 260.00 | 38.24 | 602.02 67.66 41 316.33 87.00 96.13 | 499.46 81.41
ibm18 25 265.08 48.70 401.93 | 54.57 | 770.29 46.39 33 311.84 79.58 95.97 | 487.39 56.91
bin to the same position in a target bin that is adjacent to it. That TABLE 1V
is, we move the cell by one bin width. Each score is a weighted COMPRISION BETWEEN THE FLOWS WITH AND WITHOUT
) .) ITERATIVE LOCAL REFINEMENT
sum of two components. The first being the wirelength reduction
for the move and the second being a function of the utilization of Total Runtime (sec) HPWL (x10e6)
the source and target bins. For the first component, the wirelength Ckt With | Without | % dec | With [Without | % inc
. . . ILR ILR ILR ILR
is computed as the total half-perimeter of the bounding rectangle =
.- 1bm01 13.15 7.11 45.9 1.89 2.10 11.1
of all nets connected to the cell. Hence, it is much more accurate -~ 2013 643 136 390 240 338
than the quadratic objective function. Since the local refinement ibm03 32.41 17.34 6.5 525 6.06 154
technique is mainly used toreduce the wirelength, ahigherweight ~_ibm04 | 34.51 22.83 33.9 6.22 7.10 14.2
is used for the first component. If all the four scores are negative, ~_ibm05 | 48.06 | 2571 | 46.5 | 1072 | 1194 | 114
the cell will remain in the current bin. Otherwise, it will move to ~ —om06 | 45.90 28.65 376 244 6.04 1.0
rem : : » LWL . ibm07 | 73.49 531 278 9.01 1017 | 12.9
the target bin with the highest score for the move. During one it- bmos | 86.82 538.46 327 9.78 1112 137
eration of the local refinement, we traverse through all the binsin ~ ibm09 | 102.37 72.15 29.5 10.84 12.35 13.9
the placement region and follow the above steps for cell move- 1‘;‘“}? }‘3‘333 190602774 ;ég 1222 ?;EZ igg
. 10m R
ment. Sgbsequently, thls 1tera¥10n is repeateq untlll there is no sig- Bmis T 16058 T 11405 390 5243 775 35
nificantimprovementin the wirelength. Theiterative localrefine- —<pmi3 T 17578 | 129.11 365 19.08 33.02 154
ment technique is then followed by cell shifting wherein we add ibm14 | 32523 | 320.18 1.55 35.67 42.56 19.3
the spreading forces as described previously to reflect the current ~ _ibml5 | 549.21 | 35406 | 355 43.99 52.59 19.5
placement. ibm16 577.00 | 398.56 30.9 46.59 54.01 15.9
. s . . ibm17 | 602.02 499.46 17.0 67.66 81.41 20.3
To judge the contribution of the iterative local refinementtech- —5n18 T 57029 | 43739 | 367 7639 5691 357
nique on the overall runtime and wirelength, we ran two different Average 323 15.1

flows of the algorithm: 1) the original flow incorporating the tech-
nique and 2) without the technique. Table IV summarizes the total
runtime and final wirelength results for the two flows. It can be
seen that the flow without iterative local refinement showed an
average reduction of 32.3% in the total runtime, but resulted in a
15.1% increase in the final wirelength. Also, the increase in wire-
length is more prominent with an increase in the circuit size. This
shows that the iterative local refinement technique is quite effec-
tive in reducing the wirelength of the placement.

VII. DETAILED PLACEMENT

The detailed placement stage legalizes the solution obtained
from global placement. It assigns all the standard cells to pre-
defined rows in the placement region. Once the cells have been
assigned to the rows, any remaining overlap among them is re-

moved and they are assigned to legal positions within the rows.
During legalization, the detailed placement also tries to further
reduce the wirelength by employing a technique similar to it-
erative local refinement. The difference is that during detailed
placement, the technique acts on cells that have been assigned
to the actual rows of the placement region. Besides, it puts a
higher weight on the utilization factor than the wirelength factor
as the emphasis is on removal of overlap among cells to obtain
a legalized placement.

VIII. EXPERIMENTAL RESULTS

A. Benchmarks and Other Placers

FastPlace is implemented in C and has been tested on
a set of benchmarks derived from the ISPD’02 IBM-MS

730

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 5, MAY 2005

TABLE V
COMPARSION OF PLACEMENT RESULTS WITH CAPO 8.8 AND DRAGON 2.2.3
HPWL (X 10e6) HPWL Ratio RunTime Speed-up
Ckt Capo | Dragon | FastPlace Capo Dragon FastPlace
FastPlace FastPlace Capo Dragon
Capo Dragon FastPlace FastPlace

ibm01 1.86 1.75 1.89 1.02 1.08 3m 59s 29m 08s 13s x18.4 x134.5
1bm02 4.06 3.68 3.90 0.96 1.06 7m 15s 32m 26s 29s x15.0 xX67.1
1bm03 5.11 4.81 5.25 1.03 1.09 8m 23s 33m 49s 32s x15.7 X 63.4
ibm04 6.39 5.79 6.22 0.97 1.07 10m 46s 1h 10m 35s x18.5 x120.0
ibm05 10.56 9.84 10.72 1.01 1.09 10m 44s 1h 53m 48s x13.4 X 141.2
1bm06 5.50 5.04 5.44 0.99 1.08 12m 08s lh 21m 46s x15.8 x105.7
ibm07 9.63 8.60 9.01 0.94 1.05 18m 32s 1h 39m Im 13s x15.2 x81.4
ibm08 10.26 9.25 9.78 0.95 1.06 19m 53s 4h 32m Im 27s x13.7 X 187.6
1bm09 10.56 9.92 10.84 1.03 1.09 22m 50s 3h 5lm Im 42s x13.4 x135.9
ibm10 19.70 18.10 18.89 0.96 1.04 29m 04s 3h 29m 2m 29s x11.7 x84.2
ibml1 15.73 14.40 15.54 0.99 1.08 3lm 11s 2h 21m 2m 14s x14.0 x63.1
ibm12 25.83 23.36 24.48 0.95 1.05 30m 41s 3h 43m 2m 41s x11.4 x83.1
ibm13 18.73 17.76 19.08 1.02 1.07 39m 27s 3h 07m 2m 56s x13.5 X63.8
ibm14 36.69 33.20 35.67 0.97 1.07 1h 12m 7h 58m Sm 25s x13.3 % 88.2
ibml5 43.85 40.10 43.99 1.00 1.10 1h 30m 10h 21m 9m 09s x9.8 X67.9
ibml6 | 49.63 44.22 46.59 0.94 1.05 lh 3Im 12h 17m 9m 37s x9.5 X 76.6
ibm17 69.07 65.36 67.66 0.98 1.04 lh 43m | 27h 05m 10m 02s x10.3 X 162.0
ibm18 47.46 43.42 46.39 0.98 1.07 1h 44m | 23h 35m 12m 50s x8.1 x110.3
Average 0.983 1.069 x13.4 x102.0

PekoO1 1.47 1.63 1.53 1.04 0.94 2m 25s 18m 31s 13s x11.2 X 85.5
Peko02 2.28 2.45 2.32 1.02 0.95 3m 55s 31m 46s 40s x5.9 x47.7
Peko03 2.69 2.98 291 1.08 0.98 4m 55s 36m 21s 36s x8.2 X 60.6
Peko04 3.32 4.30 3.29 0.99 0.77 6m 09s 1h 10m 32s xX11.5 x131.2
Peko05 3.60 4.03 3.90 1.08 0.97 6m 36s 1h 46m 47s x8.4 x135.3
Peko06 4.00 4.09 3.91 0.98 0.96 Tm 24s 1h 27m 47s x9.4 x111.1
Peko07 S5.11 6.36 5.67 1.11 0.89 10m 44s 1h 02m Im 22s x7.9 x45.4
Peko08 5.77 6.01 6.08 1.05 1.01 12m 08s 2h 39m 1m 40s x7.3 x95.4
Peko09 6.66 8.22 6.77 1.02 0.82 13m 27s 2h 13m Im 25s x9.5 xX93.9
Pekol10 8.95 9.05 9.81 1.10 1.08 18m 35s 3h 00m 2m 34s xX7.2 x70.1
Pekol1 8.78 8.97 9.35 1.06 1.04 18m 14s 2h 19m 2m 19s x7.9 x60.0
Pekol2 9.52 9.56 9.70 1.02 1.01 19m 25s 3h 12m 2m 24s x8.1 % 80.0
Pekol3 | 11.23 12.44 12.73 1.13 1.02 23m 23s 3h 02m 2m 57s xX7.9 xX61.7
Pekol4 | 17.06 18.26 20.55 1.20 1.12 44m 14s 4h 03m 7m 54s X5.6 %x30.8
Pekol5 | 22.68 25.10 22.86 1.01 0.91 53m 18s Sh 33m 8m 17s x6.4 xX40.2
Pekol6 | 24.59 29.18 26.29 1.07 0.90 1h 02m 6h 07m 11m 55s x5.2 x30.8
Pekol7 | 26.13 33.16 27.79 1.06 0.84 1h 04m 12h 28m 11m 56s xX5.4 X62.7
Pekol8 | 25.04 31.01 29.32 1.17 0.95 1h 11m 11h 18m 15m 13s x4.7 x44.6
Average 1.066 0.953 X7.6 x71.5

mixed-size placement benchmark suite [27], [28] and the
PEKO suite [4], [29]. The ISPD’02 IBM-MS benchmarks
consist of macro blocks and, hence, had to be modified to
be tested on FastPlace. The height of all the macro blocks
was brought down to the standard cell height. The average
width of all the modules in the original benchmark was
computed and the width of all macros exceeding four times
the average width was assigned to a value of 4x average
width. All designs in the derived set have a whitespace of 10%.
The IBM-Place benchmarks used in Dragon [15] cannot be
used because they do not have any connectivity information
between the movable cells and the fixed pads, present on
the placement boundary. This information is essential for a
quadratic placement approach. These modified benchmarks
are now available online at [30]. Statistics for the placement
benchmarks are given in Table I

In our experiments, we have compared FastPlace with
state-of-the-art academic placers—Capo 8.8 [16], Dragon
2.2.3 [15], and Gordian-Domino [10], [31].

B. Comparison Between Net Models

To determine the effect of the hybrid net model on the number
of entries in matrix () and the runtime, we consider two imple-
mentations of FastPlace: 1) incorporating the clique model and
2) incorporating the Hybrid net model. Table II gives the results
for the two implementations. It can be seen that on average, the
Hybrid model leads to 2.95 x fewer nonzero entries in matrix)
as compared to the clique model over the 18 IBM benchmarks.
Also, on average, the total runtime of the placer is 1.5x less for
the hybrid net model.

C. Runtime Analysis of the Algorithm

Table III gives the total number of global placement itera-
tions and a break-up of the total runtime of FastPlace. The table
shows the results for two flows: 1) incorporating the iterative
local refinement and 2) without the iterative local refinement.
Also, Table IV summarizes the total runtime and final wire-
length results for both of the flows. It can be seen from Column

VISWANATHAN AND CHU: FASTPLACE: EFFICIENT ANALYTICAL PLACEMENT

TABLE VI
COMPARSION OF PLACEMENT RESULTS WITH GORDIAN-DOMINO AND FASTPLACE-DOMINO
HPWL (x10e6) HPWL Ratio RunTime Speed-up
Ckt Gordian | FastPlace | FastPlace Gordian FastPlace | FastPlace
Domino Domino Gz\ﬂ-—PDO % Domino Domino GNF+PD Q E ij' PD o

ibm01 1.85 1.70 1.89 1.02 1.11 2m 04s 44s Ss x24.8 x8.8
ibm02 3.94 3.69 3.93 1.00 1.07 Sm 07s Im 56s 15s x20.5 x7.7
ibm03 5.13 495 5.27 1.03 1.06 Sm 24s Im 36s 14s x23.1 X6.9
ibm04 6.31 5.79 6.15 0.97 1.06 Sm 56s Im 59s 15s x23.7 X7.9
ibm05 10.51 10.30 10.59 1.00 1.03 10m 02s 2m 28s 19s x31.7 x7.8
ibm06 5.17 5.04 5.41 1.05 1.07 9m 08s Sm Ols 22s x24.9 x13.7
ibm07 9.33 8.64 9.10 0.98 1.05 13m 40s Sm 29s 39s x21.0 x8.4
1bm08 9.79 9.34 9.80 1.00 1.05 2Im 19s 6m 03s 52s x24.6 X7.0
ibm09 10.34 10.17 10.79 1.04 1.06 14m 27s 6m 57s 46s x18.9 x9.1
ibm10 19.41 18.13 18.97 0.98 1.05 27m 06s 10m 37s 1m 30s x18.1 x7.1
ibml1 15.57 14.56 15.52 1.00 1.07 21m 12s 11m 04s Im 18s x16.3 x8.5
ibm12 23.72 23.51 24.56 1.04 1.04 28m 29s 11m 46s 1m 28s x19.4 x8.0
ibml3 18.44 17.71 18.92 1.03 1.07 29m 12s 13m 16s 1m 54s x15.4 X7.0
ibm14 36.27 3391 35.68 0.98 1.05 52m 50s | 25m 24s 3m 22s x15.7 X7.5
ibml$5 42.97 42.16 44.38 1.03 1.05 1h 07m 27m 24s Sm 21s x12.5 x5.1
ibm16 47.88 4425 46.93 0.98 1.06 1h 17m 32m 20s Sm 06s x15.1 X6.3
ibm17 65.96 64.35 67.44 1.02 1.05 lh 35m 40m 33s Sm 59s X 15.9 X6.8
ibm18 44.61 43.63 46.26 1.04 1.06 1h 50m 32m 09s 6m 31s x16.9 x4.9

Average 1.010 1.059 x19.9 x7.7
Peko01 1.29 1.28 1.53 1.19 1.20 40s 23s 6s X6.7 x3.8
Peko02 2.03 2.03 2.31 1.14 1.14 1m 21s Im 03s 16s x5.1 x3.9
Peko03 2.59 2.61 2.86 1.10 1.10 1m 27s 59s 14s X 6.2 x4.2
Peko04 3.07 3.01 3.28 1.07 1.09 1m 46s Im 08s 17s X 6.2 x4.0
Peko05 3.32 3.16 3.95 1.19 1.25 2m 04s 1m 32s 22s X5.6 x4.2
Peko06 3.75 3.65 3.86 1.03 1.06 2m 08s Im 36s 23s X5.6 x4.2
Peko07 5.57 5.43 5.70 1.02 1.05 3m 23s 2m 36s 43s x4.7 x3.6
Peko08 6.03 5.81 6.04 1.00 1.04 Sm 17s 3m 46s Im 02s x5.1 x3.7
Peko09 7.13 6.54 6.88 0.96 1.05 4m 13s 4m 06s 57s x4.4 x4.3
Pekol0 9.10 8.34 9.72 1.07 1.17 7m 06s Sm 30s 1m 30s x4.7 x3.7
Pekoll 9.28 8.64 9.30 1.00 1.08 7m 27s Sm 51s Im 18s x5.7 x4.5
Pekol2 9.35 8.51 9.99 1.07 1.17 7m 13s Sm 11s 1m 22s x5.3 x3.8
Pekol3 11.72 10.53 11.68 1.00 1.11 8m 48s 7m 02s Im 53s x4.7 x3.7
Pekol4 18.15 17.85 20.28 1.12 1.14 16m 15s 12m 46s 4m 31s x3.6 x2.8
Pekol5 22.81 18.91 22.98 1.01 1.22 20m 57s 16m 31s Sm 23s x3.9 x3.1
Pekol6 24.19 20.79 26.53 1.10 1.28 26m 58s 17m 27s 6m 33s x4.1 x2.7
Pekol7 26.05 21.72 28.53 1.10 1.31 32m 31s 18m 22s 7m 22s xX4.4 X2.5
Pekol8 26.07 24.19 29.38 1.13 1.21 3Im 16s | 20m 07s 8m 37s x3.6 x2.3

Average 1.072 1.148 x5.0 x3.7

731

2 of Table III that within 31 iterations of global placement (re-
quired for ibm16) the algorithm converges to a solution for all
benchmark circuits. This demonstrates the effectiveness of the
cell shifting and iterative local refinement techniques to accel-
erate the convergence of the conjugate gradient solver so as to
obtain a fast global placement solution. From Table III, for flow
1) it can be seen that on average the cell shifting and refinement
techniques account for 9.9% and 46.1% of the total runtime.
Even though the refinement technique takes up 46.1% of the
total runtime, the average speed-up obtained for flow, 2) as seen
from Table IV is 32.3%. This shows that the Refinement tech-
nique also aids in the convergence of the algorithm and hence,
in its absence, the other steps of the algorithm take up more time
to compensate for it.

D. Comparison Between Placement Tools

The comparison results between Capo, Dragon, and Fast-
Place are generated on a Sun Sparc-2 750-MHz machine. The
results between Gordian-Domino and FastPlace are generated
on a Intel Xeon, 3.06-GHz machine. We run MetaPIl-Capo8.8

for Solaris, which incorporates Capo, orientation optimizer, and
row ironing, in the default mode. Dragon is run in the default
mode, Gordian is run in the best mode and Domino is run in the
default mode.

The half-perimeter wirelength (HPWL) and runtime results
for Capo, Dragon, and FastPlace are given in Table V. For the
IBM benchmarks, on average, FastPlace is 13.4x faster than
Capo with the average wirelength being 1.7% less than Capo.
On average, FastPlace is 102X faster than Dragon with the av-
erage wirelength being 6.9% more. Dragon was also ran in the
fixed-die mode and the average wirelength of FastPlace was ac-
tually 2.3% less than Dragon for this case. For the PEKO bench-
marks, on average, FastPlace is 7.6 x faster than Capo with the
average wirelength being 6.6% more. On average, FastPlace is
71.5x faster than Dragon with the average wirelength being
4.7% less than Dragon.

Table VI gives the half-perimeter wirelength and runtime re-
sults for Gordian-Domino and FastPlace. Also included are re-
sults when FastPlace was run for global placement and Domino
was run for detailed placement. For the IBM benchmarks, on

732 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 5, MAY 2005

Runtime (s)

500 —

200 —

100 —

50 —

20

| |

of pins (K)

50 100 200

Fig. 8. Runtime of FastPlace versus number of pins in logarithmic scale.

average, FastPlace is 19.9x faster than Gordian-Domino with
the average wirelength being just 1.0% more. For the PEKO
benchmarks, on average, FastPlace is 5.0x faster than Gor-
dian-Domino with the average wirelength being 7.2% more.

We believe that FastPlace generates a very good global place-
ment solution. Our detailed placement technique on the other
hand is a fast, greedy legalizer that needs further improvement.
To illustrate the quality of the global placement solution gener-
ated by FastPlace, we run the Domino detailed placer on Fast-
Place global placements. The results are summarized as follows.

First, compared to FastPlace, the FastPlace-Domino flow
achieves an average reduction of 5.9% and 14.8% (column 6
of Table VI) in the final half-perimeter wirelength for the IBM
and PEKO suites respectively.

Second, excluding Peko03, FastPlace-Domino gener-
ates better results than Gordian-Domino for every other
benchmark of the IBM and PEKO suites. On average, the
FastPlace-Domino wirelength is 4.7% and 6.4% less than
Gordian-Domino for the IBM and PEKO suites, respectively.
The corresponding speed-up obtained is 2.7x and 1.4X, re-
spectively.

Third, Domino takes less runtime on FastPlace global place-
ments as compared to Gordian global placements. It achieves an
average speed-up of 1.3x and 1.1 x on FastPlace placements as
compared to Gordian placements for the IBM and PEKO suites,
respectively.

E. Scalability Analysis of the Algorithms

The total number of pins in a circuit is a good measure of the
circuit size. To determine the scalability factor of FastPlace, we
plot the runtime of the algorithm vs the total number of pins,
in logarithmic scale for all 18 benchmarks of the IBM suite in
Fig. 8 The data points can be closely approximated by a straight
line with slope 1.38. Hence, the runtime of FastPlace is roughly
O(n'-3%), where n is the circuit size given by the number of
pins. Based on the above procedure, the runtime of the other
placement algorithms are approximately:Capo—O(n!-1%),
Dragon—O(n'-3*), and Gordian-Domino—O(n!-*%). Capo
happens to be the fastest among the other three placers. Also,

500 1000

the scalability factor of Capo is better than that of FastPlace.
For the circuits tested, FastPlace is faster than Capo. Using the
scalability data for FastPlace and Capo we determine that the
runtime of FastPlace will be equal to that of Capo when the
circuit size is approximately 17 billion pins.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose FastPlace, an efficient and scalable
flat placement algorithm for large-scale standard cell circuits.
FastPlace is based on the analytical placement approach and
utilizes the quadratic wirelength objective. The current imple-
mentation handles the wirelength minimization problem. It pro-
duces comparable placement solutions to state-of-the-art aca-
demic placers, but in a significantly lesser runtime. Such an ul-
trafast placement tool is very much needed for the timing con-
vergence of the layout phase of IC design.

The runtime of FastPlace can be further reduced by:
1) employing a hierarchical framework (e.g., [19]) to reduce
the problem size. The reduced problem can then be solved by
FastPlace. We show empirically that the time complexity of
FastPlace is roughly O(n'-3®). Hence, if the circuit size is
reduced by half, the runtime of FastPlace can be reduced by
a factor of 2.6. 2) Otherwise, it can be reduced by using the
algebraic multigrid method [32] to solve the system of linear
equations (5).

The FastPlace algorithm can also be extended to consider
other placement objectives like mixed-mode placement, timing
driven placement, routability driven placement, variable white-
space allocation, etc. Future extensions to the algorithm would
be in dealing with the above objectives.

ACKNOWLEDGMENT

The authors would like to thank F. Johannes of the Technical
University of Munich for access to the Plato/Domino package
and B. Obermeier for answering their queries regarding the
same. They would like to thank, J. Cong, J. Shinnerl, and M.
Xie of the University of California, Los Angeles, for providing
the PEKO benchmarks with pads. They would also like to
thank X. Yang and S. Adya, currently with Synplicity, Inc., for

VISWANATHAN AND CHU: FASTPLACE: EFFICIENT ANALYTICAL PLACEMENT

discussions regarding the IBM benchmarks and the placement
tools Dragon and Capo, respectively.

[1

—

[2

—

(3]
(4]

[5

—

(6]

[7

—

[8

[t}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

R. Varadarajan, “Convergence of placement technology in physical syn-
thesis: Is placement really a point tool?,” in Proc. Int. Symp. Phys. De-
sign, 2003, p. 7.

P. Villarrubia, “Important placement considerations for modern VLSI
chips,” in Proc. Int. Symp. Phys. Design, 2003, p. 6.

The International Technology Roadmap for Semiconductors, 2000.
C.-C. Chang, J. Cong, and M. Xie, “Optimality and scalability study
of existing placement algorithms,” in Proc. Asian South Pacific Design
Automation Conf., 2003, pp. 621-627.

J. Cong, M. Romesis, and M. Xie, “Optimality, scalability, stability study
of partitioning, and placement algorithms,” in Proc. Int. Symp. Phys.
Design, 2003, pp. 88-94.

A. B. Kahng and Q. Wang, “Implementation and extensibility of an an-
alytical placer,” in Proc. Int. Symp. Phys. Design, 2004, pp. 18-25.

H. Eisenmann and F. Johannes, “Generic global placement and floor-
planning,” in Proc. ACM/IEEE Design Automation Conf., 1998, pp.
269-274.

H. Etawil, S. Arebi, and A. Vannelli, “Attractor-repeller approach for
global placement,” in Proc. IEEE/ACM Int. Conf. Computer-Aided De-
sign, 1999, pp. 20-24.

B. Hu and M. Marek-Sadowska, “FAR: Fixed-points addition and re-
laxation based placement,” in Proc. Int. Symp. Phys. Design, 2002, pp.
161-166.

J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich, “GORDIAN: VLSI
placement by quadratic programming and slicing optimization,” IEEE
Trans. Computer-Aided Design Integr. Circuits Syst., vol. 10, no. 3, pp.
356-365, Mar. 1991.

G. Sigl, K. Doll, and F. Johannes, “Analytical placement: A linear or a
quadratic objective function,” in Proc. ACM/IEEE Design Automation
Conf., 1991, pp. 427-431.

S.-W. Hur, T. Cao, K. Rajagopal, Y. Parasuram, A. Chowdhary, V.
Tiourin, and B. Halpin, “Force directed mongrel with physical net
constraints,” in Proc. ACM/IEEE Design Automation Conf., 2003, pp.
214-219.

J. Vygen, “Algorithms for large-scale flat placement,” in Proc.
ACM/IEEE Design Automation Conf., 1997, pp. 746-751.

C. Sechen and A. L. Sangiovanni-Vincentelli, “TimberWolf 3.2: A
new standard cell placement and global routing package,” in Proc.
ACM/IEEE Design Automation Conf., 1986, pp. 432-439.

M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: Standard-cell
placement tool for large industry circuits,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, 2000, pp. 260-263.

A.E. Caldwell, A. B. Kahng, and I. L. Markov, ““Can recursive bisection
produce routable placements,” in Proc. ACM/IEEE Design Automation
Conf., 2000, pp. 477-482.

T. Chan, J. Cong, T. Kong, and J. Shinnerl, “Multilevel optimization for
large-scale circuit placement,” in Proc. IEEE/ACM Int. Conf. Computer-
Aided Design, 2000, pp. 171-176.

M. C. Yildiz and P. H. Madden, “Global objectives for standard cell
placement,” in Proc. 11th Great Lakes Symp. VLSI, 2001, pp. 68-72.
B. Hu and M. Marek-Sadowska, “Fine granularity clustering for large
scale placement problems,” in Proc. Int. Symp. Phys. Design, 2003, pp.
67-74.

C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for im-
proving network partitions,” in Proc. ACM/IEEE Design Automation
Conf., 1982, pp. 175-181.

S.-W. Hur and J. Lillis, “Mongrel: Hybrid techniques for standard cell
placement,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design,
2000, pp. 165-170.

W. Naylor et al., “Non-Linear Optimization System and Method for
Wire Length and Delay Optimization for an Automatic Electric Circuit
Placer,” U.S. Patent 6301693, Oct. 2001.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

733

F. Mo, A. Tabbara, and R. Brayton, “A force-directed macro-cell
placer,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, 2000,
pp. 177-180.

K. M. Hall, “An r-dimensional quadratic placement algorithm,” Manage.
Sci., vol. 17, pp. 219-229, 1970.

D. S. Kershaw, “The incomplete Cholesky-conjugate gradient method
for the iterative solution of systems of linear equations,” J. Comp. Phys.,
vol. 26, pp. 43-65, 1978.

R. Barrett et al., Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd ed. Philadelphia, PA: SIAM, 1994.
ISPD02 IBM-MS Mixed-Size Placement Benchmarks, S.
N. Adya and I. L. Markov. [Online]. Available: http://vl-
sicad.eecs.umich.edu/BK/ISPD02bench/

, “Consistent placement of macro-blocks using floorplanning and
standard-cell placement,” in Proc. Int. Symp. Phys. Design, 2002, pp.
12-17.

PEKO Placement Benchmark Suite, J. Cong, C.-C. Chang, and M. Xie.
[Online]. Available: http://ballade.cs.ucla.edu/pubbench/

ISPD04 IBM Standard Cell Benchmarks with Pads, N. Viswanathan
and C. C.-N. Chu. [Online]. Available: http://www.public.ias-
tate.edu/nataraj/ISPD04_Bench.html

K. Doll, F. M. Johannes, and K. J. Antreich, “Iterative placement im-
provement by network flow methods,” IEEE Trans. Computer-Aided De-
sign Integr. Circuits Syst., vol. 13, no. 10, pp. 1189-1200, Oct. 1994.
H. Chen, C.-K. Cheng, N.-C. Chou, A. Kahng, J. MacDonald, P. Suaris,
B. Yao, and Z. Zhu, “An algebraic multigrid solver for analytical place-
ment with layout based clustering,” in Proc. ACM/IEEE Design Automa-
tion Conf., 2003, pp. 794-799.

Natarajan Viswanathan (M’04) received the
B.E. degree in electronics and communication
engineering from Karnataka Regional Engineering
College, Surathkal, India, in 2001 and the M.S.
degree in computer engineering in 2003 from
Towa State University, Ames, where he is currently
working toward the Ph.D. degree in computer
engineering.

His research interests are in very large scale in-
tegration physical design, specifically in algorithms
and methodologies for placement.

Chris Chong-Nuen Chu (M’99) received the B.S.
degree in computer science from the University of
Hong Kong, Hong Kong, in 1993 and the M.S. and
Ph.D. degrees in computer science from the Univer-
sity of Texas, Austin, in 1994 and 1999, respectively.

He is currently an Assistant Professor in the
Electrical and Computer Engineering Department,
Towa State University, Ames. His research interests
include design and analysis of algorithms, com-
puter-aided design of very large scale integration
physical design, and performance-driven intercon-

nect optimization.

Dr. Chu has served on the technical program committees of several major
conferences including the International Symposium on Physical Design (ISPD),
the International Symposium on Circuits and Systems, the Design, Automation,
and Test in Europe Conference, and the Asia South Pacific Design Automation
Conference. He has also served as an organizer for the ACM ISGDA Ph.D.
Forum. He received the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS Best Paper Award in 1999 for his work
On performance-driven interconnect optimization, the ISPD Best Paper Award
in 2004 for his work on efficient placement algorithm, the Bert Kay Best Disser-
tation Award in 1998-1999 from the Department of Computer Sciences, Uni-
versity of Texas.

	toc
	FastPlace: Efficient Analytical Placement Using Cell Shifting, I
	Natarajan Viswanathan, Member, IEEE, and Chris Chong-Nuen Chu, M
	I. I NTRODUCTION
	II. O VERVIEW OF THE A LGORITHM

	Fig.€1. FASTPLACE algorithm.
	III. G LOBAL O PTIMIZATION
	IV. H YBRID N ET M ODEL

	Fig.€2. Net models.
	A. Clique, Star, and Hybrid Net Models
	B. Equivalence of the Hybrid Net Model to the Clique and Star Ne
	Lemma 1: For any net in the star model, the star node under forc
	Proof: Consider a k -pin net. Let x_{s} be the x -coordina

	Theorem 1: For a k -pin net, if the weight of the two-pin nets
	Proof: For the clique model, the total force on a pin i by all

	V. C ELL S HIFTING
	A. Calculation of Bin Utilization

	Fig.€3. Regular bin structure.
	B. Shifting of Cells

	Fig.€4. (a) Regular bin structure. (b) Unequal bin structure and
	Fig.€5. Maximum bin utilization versus iteration number for circ
	Fig.€6. Wirelength versus iteration number for circuit ibm01.
	Fig.€7. Pseudopin and pseudonet addition.
	C. Addition of Spreading Forces

	TABLE I P LACEMENT B ENCHMARK S TATISTICS
	VI. I TERATIVE L OCAL R EFINEMENT
	A. Bin Structure

	TABLE II C LIQUE N ET M ODEL V ERSUS H YBRID N ET M ODEL
	B. Description of the Technique

	TABLE III G LOBAL P LACEMENT I TERATIONS AND B REAK -U P OF T OT
	VII. D ETAILED P LACEMENT

	TABLE IV C OMPRISION B ETWEEN THE F LOWS W ITH AND W ITHOUT I TE
	VIII. E XPERIMENTAL R ESULTS
	A. Benchmarks and Other Placers

	TABLE V C OMPARSION OF P LACEMENT R ESULTS W ITH C APO 8.8 AND D
	B. Comparison Between Net Models
	C. Runtime Analysis of the Algorithm

	TABLE VI C OMPARSION OF P LACEMENT R ESULTS W ITH G ORDIAN -D OM
	D. Comparison Between Placement Tools

	Fig.€8. Runtime of FastPlace versus number of pins in logarithmi
	E. Scalability Analysis of the Algorithms
	IX. C ONCLUSION AND F UTURE W ORK
	R. Varadarajan, Convergence of placement technology in physical
	P. Villarrubia, Important placement considerations for modern VL

	The International Technology Roadmap for Semiconductors, 2000.
	C.-C. Chang, J. Cong, and M. Xie, Optimality and scalability stu
	J. Cong, M. Romesis, and M. Xie, Optimality, scalability, stabil
	A. B. Kahng and Q. Wang, Implementation and extensibility of an
	H. Eisenmann and F. Johannes, Generic global placement and floor
	H. Etawil, S. Arebi, and A. Vannelli, Attractor-repeller approac
	B. Hu and M. Marek-Sadowska, FAR: Fixed-points addition and rela
	J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich, GORDIAN: VL
	G. Sigl, K. Doll, and F. Johannes, Analytical placement: A linea
	S.-W. Hur, T. Cao, K. Rajagopal, Y. Parasuram, A. Chowdhary, V.
	J. Vygen, Algorithms for large-scale flat placement, in Proc. AC
	C. Sechen and A. L. Sangiovanni-Vincentelli, TimberWolf 3.2: A n
	M. Wang, X. Yang, and M. Sarrafzadeh, Dragon2000: Standard-cell
	A. E. Caldwell, A. B. Kahng, and I. L. Markov, Can recursive bis
	T. Chan, J. Cong, T. Kong, and J. Shinnerl, Multilevel optimizat
	M. C. Yildiz and P. H. Madden, Global objectives for standard ce
	B. Hu and M. Marek-Sadowska, Fine granularity clustering for lar
	C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for
	S.-W. Hur and J. Lillis, Mongrel: Hybrid techniques for standard
	W. Naylor et al., Non-Linear Optimization System and Method for
	F. Mo, A. Tabbara, and R. Brayton, A force-directed macro-cell p
	K. M. Hall, An r-dimensional quadratic placement algorithm, Mana
	D. S. Kershaw, The incomplete Cholesky-conjugate gradient method
	R. Barrett et al., Templates for the Solution of Linear Systems:
	ISPD02 IBM-MS Mixed-Size Placement Benchmarks, S. N. Adya and I.
	PEKO Placement Benchmark Suite, J. Cong, C.-C. Chang, and M. Xie
	ISPD04 IBM Standard Cell Benchmarks with Pads, N. Viswanathan an
	K. Doll, F. M. Johannes, and K. J. Antreich, Iterative placement
	H. Chen, C.-K. Cheng, N.-C. Chou, A. Kahng, J. MacDonald, P. Sua

