IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 2. MARCH 1987

165

A Simple Yet Effective Technique for Global Wiring

RAVI NAIR,

Abstract—A simple algorithm to perform global wiring is described.
Repeated iterations of the algorithm tend to improve the quality of
wiring by rerouting around congested areas. Various parameters can
be set to give preference to short routes or to reduce the time taken by
the algorithm. The algorithm has been tried out for several master-
slice chips containing upto 3500 cells with good results. The technique
is easily extended to standard cell chip design. An implementation for
global wiring of a structured custom chip design style is described along
with results. The technique is adaptable to higher level packaging such
as chips on modules or modules on a board.

I. INTRODUCTION

LOBAL WIRING [1]-[3] is the name given to the

phase of wiring in which wires are allocated to chan-
nels in a chip without specifically assigning tracks within
the channels. The latter assignment is accomplished sub-
sequently by an exact embedding algorithm. Just as the
quality of placement influences the quality of wiring in a
chip, the quality of global wiring influences the ability to
wire successfully at the interconnections in the exact
embedding phase. Clearly, the more information one pro-
vides a global wiring algorithm about various available
routes through the chip, the better the result that an al-
gorithm may be expected to produce. However, in order
to restrict the execution time of the algorithm, one must
be able to glean just the right amount of information from
details of the chip topology so that the algorithm may pro-
vide a reasonable guideline for successful detailed wiring
at the exact embedding phase.

A global wiring phase has been shown to be useful also
for custom chips [4] and for various levels of packaging
[5]. This report will discuss a technique which was de-
veloped in connection with the layout of a master-slice or
gate array chip, and its extension to a structured custom
design.

II. WIRING MODEL FOR A MASTER-SLICE CHIP

Shown in Fig. 1 is an image of a typical IBM master-
slice chip. The rectangular boxes in the center of the chip
represent logic cells or circuits. The rectangles on the pe-
riphery of the chip may include 1/0O cells. Typically, two
planes are available for metallization. The first level of
wiring is partially occupied by the wiring within the cells
themselves. The area left for interconnections on this levei
form long rectangular horizontal channels. The second

Manuscript received January 1, 1985; revised October 3, 1986.

The author is with the IBM Thomas J. Watson Research Center, P.O.
Box 218, Yorktown Heights, NY 10598.

IEEE Log Number 8612426.

MEMBER, IEEE

[T T [T T |]
A 1

) HORIZONTAL
CHANNEL

I m
LT Tl 1

Z CIRCUIT
CELL

Ht

L
VERTICAL

CHANNEL

VERTICAL
TRACK

j /‘HORIZONTAL

[T T T [[]

Fig. 1. A typical master-slice chip.

level is usually completely free for laying down intercon-
nection metal. It is fairly typical, though not necessary,
to divide the two layers so as to have predominantly hor-
izontal wires in the first level and predominantly vertical
wires in the second. This permits one to perform some
variation of a stick-packing algorithm for assigning ver-
tical tracks followed by a channel-routing algorithm for
the horizontal layer. Various effective channel-routing al-
gorithms have been described in the literature.

For the global wiring phase, it is necessary to first par-
tition the chip into a rectangular grid of cells. The dotted
line shows the outline of a cell for global wiring. Each
cell of the global wiring model need not correspond to a
cell in the master-slice. In fact, the partitioning of a typ-
ical IBM master-slice chip currently contains two cells,
one each from either side of a horizontal channel, as
shown in Fig. 2.

For each cell (henceforth a cell will refer to a cell in
the global wiring of the chip), an estimate is made of the
number of wires that may be allowed to pass through each
of its four boundaries. This information is provided in a
channel capacity file. The list of interconnections to be
made between the cells, also called a net list, is provided
as a set of nets, where each net is represented by sets of
points which are to be made electrically common.

The channel capacity estimate is somewhat conserva-
tive in that a track is said to be available at a certain cell
boundary only if there is no blockage along that track from
the center of the cell on one side of the boundary to the
center of the cell on the other side. A special case occurs
when a pin blocks some track. A separate list (called a
fence list) is provided which lists all such tracks along
with the net to which that pin belongs. This allows the

0278-0070/87/0200-0165%01.00 © 1987 IEEE

166 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6. NO. 2, MARCH 1987

PHY SICAL
CELL

;EEBEEEE
—B B HER
EEEEEBE
EEEEE]%B
eel====l====l==
) EEER HEEH EE

I O A s S I

GLOBAL WIRING
__.CELL BOQUNOARY

. GLOBAL WIRING
CelL

Fig. 2. Partitioning a chip into global wiring cells. (a) Grid with original
boundary costs. (b) Scores after Step 5. (¢) Scores after Step 6. (d) Scores
at the end of forward propagation. (e) The backtrace route.

global wiring routine to provide an unrestricted passage
through that boundary for that net.

III. OUTLINE OF ALGORITHM

The algorithm is based on an earlier approach [6] which
in turn is a variation of the Lee—Moore algorithm [7], [8].
The major problem with the Lee-Moore algorithm is that,
in the absence of knowledge of the areas of potential
congestion, the results are dependent on the order in which
nets are wired and are often unsatisfactory. To get around
the order dependence, the paper [6] proposed a way in
which the demand due to nets at a given cell boundary
could be estimated. The demand was one of the contri-
butions to the cost associated with the traversal of a cell
boundary in the forward pass of the algorithm. Good re-
sults were obtained using this variant of the Lee-Moore
algorithm.

Clearly, the more accurate the estimate of the demand
at the cell boundary, the better one would expect the re-
sults of the global wiring to be. This suggests that the best
results can be obtained if one took, not an estimate of the
demand, but the demand itself. Thus, one could take the
actual wiring produced by some means and reroute the
nets, now knowing the actual remaining supply at the var-
ious cell boundaries. The new solution can be guaranteed
to be no worse than the previous solution if one net is
ripped out and rerouted at a time, the new route being
taken only if the resulting solution is measurably better
than the old.

While no claim can be made on the dependence of the
result to the initial solution, experiments so far have in-
dicated that the results of this algorithm after less than five
iterations are approximately the same irrespective of the
starting point. In fact, the same algorithm is currently used
to provide a starting solution (a rather poor one, of course)
with satisfactory eventual results.

Three aspects of this algorithm distinguish it from other
rerouting techniques {5], [9]. First, every net is ripped up
and rerouted, irrespective of whether it passed through an
overflowed cell boundary or not. This was motivated by
the observation that quite often nets passing through non-
congested areas could be diverted to pass through even

less congested areas to make room for nets in adjacent
congested areas. In addition, this tends to maximize the
weighted average of tracks remaining at cell boundaries,
facilitating the task of the exact embedding routine. Sec-
ond, only one net is ripped out at a time. This ensures that
cyclic problems do not arise while ensuring a monotoni-
cally improving behavior for the algorithm. Third, nets
are rerouted in the same order in every iteration. The
rationale behind this can be understood by observing what
happens in the first two iterations. In the first pass, each
net has absolutely no indication of demands due to the
following nets, but has a knowledge of the approximate
routes for the previous nets. In particular, the first net was
probably wired the worst while the last net was wired the
best under the circumstances. By ripping out the first net
in the beginning of the second pass, an attempt is made
to rectify this situation. (One could think of this approach
to be an analog to the bubble sort algorithm.)

1V. DETAILS OF THE INNER 1.OOP OF THE ALGORITHM

This section will describe the steps in a single iteration
of the algorithm. A variation of the traditional Lee-Moore
algorithm, which allows the assignment of arbitrary costs
to the traversal of a cell in a grid, was described by Akers
[10]. In general, the cost of traversing the cell is depen-
dent on the specific boundaries of the cell that the path
traverses. It is more appropriate to associate costs with
each of the boundaries of a cell. In addition, one may
wish to associate a cost with the cell itself to reflect the
complexity of that cell. The algorithm is illustrated in Fig.
3. A grid with the current costs assigned to the cell bound-
aries is shown in Fig. 3(a).

Each cell is given a score which represents the sum of
the costs of all the cell boundaries traversed by the chea-
pest path from the source to that cell. At any given step,
there is a list of cells that will be processed at that step.
For each cell, the directional score is computed for each
of its four directions as the score of the neighbor in that
direction, plus the cost of crossing that cell boundary. If
the minimum of these four directional scores is less than
the score currently assigned to the cell, the score is up-
dated to the minimum value and the four neighboring cells
are put into the list of cells to be processed at the next
step. The list of cells initially contains the neighbors of
the source cell, which is a cell chosen from the set of cells
to be wired together. The score for the source cell is set
to zero. Since only nonnegative numbers are assigned as
costs, the process terminates either when the list is empty
or when all the updated scores at the end of some step are
equal to or higher than the score assigned to one of the
destination or sink cells.

The scores at the end of the fifth step are shown in Fig.
3(b). Cells with underlined scores changed values at that
step. (The empty cells are ones which have never entered
the list. For programming convenience, these cells may
be assigned some arbitrary large score at the beginning.)
The updated scores and the cells changing scores at the
sixth step are shown in Fig. 3(c). Fig. 3(d) shows the

NAIR: SIMPLE TECHNIQUE FOR GLOBAL WIRING

167

1 | | ! |]
T
S e B e a
-
e e I A a
e AR e
e O
B A N

| 1 |

(a) Grid with original boundary costs.

I | | i T 1 |
N P s s e e
N I e i i s B
N I e e e e e e
e e

L
e e R
BTN

4] 4l92

[1 2 3 4 5 6 7

(b) Scores after Step 5.

7 8 1 1 J‘ 14 ! 19 l) Jl 26 8r 3 ! 30
D 0 R A A B e el
6 4 3 7T 5 10 5 15 3 18 4 12 4 16 28
—I+G+l 4]+9 +9 -l—l—J
5 3 ® 6 6 6 12 9 21 9 30 5 35 4 N
D S Tl S O o B
4 S 4 4 8 7 15 9 14 3 32 6 I8 7 3
PR A B i e el et
3 10 3 7 6 10 7 16 9 28 9 31 & &1 3 42
R A B A Il ke e el
2 12 4 11 2 13 % 21 2 23 8 30 7 36 & 48
k!+4+3+l+l 2 1+4'—
1 1 4 1S 3 16 <4 20 5 28 3 28 6 34 3 37
'—'4+4+I+4+J l+l E
o B 4 19 2 8 3 13 6 18 J 3 4 3% 6
I 1
o 1 2 3 4 L] L] 7

(d) Scores at the end of forward propagation.

-+
3 16 9 25 9 34
2 _121—!_11—}-”—!_12—'_ + + —|—]
SR R T o ol O
1 19 4 18 3 16 4 20 5 1 [}
'—4-+—:+ 4+J+l+ —|'-J
0 23 4 1y 18 s 6 3 ¢
| | | i I
o 1 2 3 4 5 6 7

(c) Scores after Step 6.

7 s 7o Jl 14 ! 19 al 303 26 8 33 4 3
B N 2w ity o
6 4 3 7 5 10 5 1S 3 18 ¢ 22 4 26 2 18
D S o T S E A PO
s 3 3 @ 6 € 6 12 9 21 9.30 5 35 4 N
-
4 7 5 4 ¢ 8 7 15 9 24 & 32 6 38 2 3
EEV T O T g R T B
3 103 % 6 10 7 16 9 28 9 3 & 41 I &
EEla: SERERIRISER
2 12 4 a1 2 9 21 2 23 § 7 36 6 48
p— 8 4 1 4 4 -
1 ‘ 4 6 34 3 N
- +++
[} 23 4 19 z 1 jl 23 6 8 1 n 4
[1 2 3 . s 3 ?

(e) The backtrace route.

Fig. 3. Illustration of algorithm with nonuniform ce!l-boundary costs.

situation when the forward process terminates. The back-
trace procedure is as described by Akers; the result is
shown in Fig. 3(e).

When there are more than two points to be intercon-
nected in a net, the source cell, the destination cell with

the least score, and all cells which are in the backtrace
path from this destination become additional source cells
for the next forward propagation iteration.

The main differences between this algorithm and that
described by Akers are the incorporation of costs on the

168 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 2,

boundaries of cells in addition to the cells themselves, and
the inclusion of via costs which affect the algorithm in a
manner described in a later section.

V. RebpucTIiON oF ExECcuTION TIME OF THE
ALGORITHM

The algorithm as described above has a complexity
(measured in terms of the number of cells labeled) which
grows quadratically as the length of the connection if all
boundaries have identical costs. With distinct costs, the
complexity does not behave predictably. There could be
instances when the number of cells visited is no more than
the number of cells in the backtrace path; there could also
be instances when all the cells in the chip would have to
be visited. Experimental results show that the average
number of cells visited per connection grows as d“, where
d is the distance between the source and destination and
¢ lies between 1 and 2.

Even this complexity is formidable when the average
interconnection length increases. Fortunately, the average
interconnection length is only a slowly growing function
of the number of cells on a chip [11] when the placement
is good and interconnections are largely local. Nonethe-
less, a fair speedup in the run time can be obtained by
limiting the search for a path to a window which just en-
closes the rectangle bounding the points to be connected,
often referred to as the minimum rectangle of the net. As
observed in [12], nets seldom stray outside a window
which exceeds the minimum rectangie by two cell widths.
This limitation to the search could result in a path which
is not the cheapest; however, a simple scheme can be em-
ployed to ensure that the channel usage of a boundary does
not exceed the supply when an alternative acceptable path
exists. This is done by maintaining two priority queues of
cells to be processed. The first is a regular work queue
and contains only those cells within a selected window.
When a cell at a window boundary is processed, those of
its neighbors that fall outside the boundary are placed in
a second queue. Candidates for wavefront expansion are
taken only from the first queue. This queue becomes
empty only if an acceptable route within the window is
not found. In such a case, the window is expanded by one
unit on all sides. Since this makes the cells in the second
queue valid candidates for propagation, the queues are
swapped, allowing the second queue to empty its cells on
to the work queue. The forward propagation is now re-
sumed.

These speedup features were implemented in the algo-
rithm, the results of which are quoted in Section VIII.

VI. Cost COMPUTATION

The effectiveness of the algorithm just described de-
pends a lot on the accuracy of estimates for the cost at the
various boundaries. The incremental cost of traversing a
cell boundary is broken down into two components: 1)
remaining supply measure, and 2) cost of cell traversal.

The currently implemented cost as a function of the re-
maining channel capacity is as follows: If the remaining

MARCH 1987

C=1

C=1 “\

Y

?

C=1

Fig. 4. Tilustration of limit on the number of vias.

number of tracks at a boundary is less than zero, the cost
assigned to that boundary is infinity. (Infinity is imple-
mented as the largest machine representable number.
Other implementations which mark a node as visited/not
visited are also possible.) If the number is greater than 3,
then the cost assigned is 1. For intermediate values, the
cost increases as a power of 8, i.e., 8, 64, 512, 4096 for
remaining capacities of 3, 2, 1, and 0, respectively.

The cost of cell traversal itself plays a different role. If
this cost is a constant, then the cumulative effect of such
a cost would favor paths which are of minimal length. By
setting this cost to a high value, the shortest path is found;
by setting this cost to zero, the cheapest path within the
window is found. Further, one could take into account
factors such as the physical dimensions of the cell, or the
complexity of wiring the cell by having different cost pen-
alties for different cells and for different directions. This
happens to be the case when the number of vias in a cell
must be limited.

The fact that one can do a global wiring without ex-
ceeding the supply at any boundary does not guarantee the
existence of a detailed embedding at all cells. Fig. 4 shows
the simple case of a cell which has only one track avail-
able in each direction. The capacity of each channel is 1.
However, if a net is globally wired passing through the
west and south boundaries, it requires a via to be placed
at the intersection of the two tracks. Since the supply at
the north and east boundaries remains undiminished, a
global path may be taken by some future net occupying
these boundaries. During the exact embedding phase, no
via can be placed and an overflow will result.

Often, technology rules also prohibit the placement of
vias in adjacent intersections. As a result of these restric-
tions, one finds that there is a certain physical limit on the
number of vias that can be placed in a cell [13]. The al-
gorithm as implemented currently assigns a cost of infin-
ity to a cell in which the number of vias placed exceeds
the number of maximum vias (computed from the channel
capacities). The cost decreases as a factor of 4 as the num-
ber of available via positions increases.

An acceptable path is one which has total length less
than the assigned value for infinity. If no acceptable path
is found, the cost at each boundary is divided by 3 (tem-
porarily) and the forward propagation repeated. This is
necessitated by the use of fixed width integer representa-
tion for the costs. It could be avoided at the cost of pro-
gram speed by using a floating-point representation.

NAIR: SIMPLE TECHNIQUE FOR GLOBAL WIRING

TABLE I
SUMMARY AND COMPARISON OF RESULTS ON FIVE IBM MASTER-SLICE
CHIPS
QOld algorithm New algorithm

Part! Ckts. | Nets Steiner| Final | Over- [New | 3081 |iter| Final
length | length | flows | zeros | secs.

Over-| New | 3081
length | flows | zeros | secs.

L | 253 | 312 | 1838 | 2030 | 42 9 18 3| 2010 | 33 7 30

| | 1084|1292 | 9608 [11861 | 135 | 272 | 98 11832 | 115 | 256 | 170

3
4 |11874¢ 105 | 254 | 248

R | 2057 | 1726 {23824 {26118 { 1144 | 336 | 547 | 2 {25786 804 | 337 | 572
3 125938 790 | 291 | 1007
M | 2896 | 3041 | 34463 | 38865 | 37 | 664 {1230 3 | 37015 44 | 472 | 678
4 [37610| 10 | 438 | 974
5137727 | 4 408 | 1264

+S | 3460 | 310524433 | 25041 © 0 192 | 1124728 ©
2 |24706| O

135
313

[eNe)

VII. ALGORITHM MODIFICATION TO ACCOUNT FOR VIA
CosTs

As a result of the introduction of a via cost into the
calculation of the global route, a unique score can no
longer be associated with a cell during forward propaga-
tion. A score is associated with the horizontal and the ver-
tical directions in each cell. A backtrace pointer must also
be associated with each of the directions. The direction
of the backtrace path through a cell can be determined by
referring to the pointer stored for the direction from which
the backtrace originated.

VIII. EXPERIMENTAL RESULTS FOR MASTER-SLICE
CHIPS

The program was run on five IBM master-slice chips.
The results are shown in Table I. The old algorithm sta-
tistics for each chip corresponds to the results of running
the chip through EDS routines (EDS is the standard En-
gineering Design System of IBM). The other statistics
correspond to runs using the algorithm of this paper. Each
line indicates the results obtained after the specified num-
ber of iterations starting from an unwired configuration.

It can be seen that the number of overflows is better
than that obtained by the old program. The consistent im-
provement in quality with further iterations can also be
noticed. Further, except for one case, the lengths of paths
produced are also shorter than before. This is somewhat
surprising considering that detouring (and, hence, in-
creasing the length of paths) is one of the ways to reduce
congestion.

In general, when chips are hard to wire, it is a good
idea to start initially with channel supply in excess of the
actually available channel capacities. This, accompanied
by a small window, ensures that the first pass produces
short wires. An excess capacity of 2 was found to be large
enough to enable this. Too large a capacity tends to pro-
duce unreasonable initial routes. (In fact, a very large
supply was used to determine how well the algorithm does
in estimating the Steiner length. Assuming that the orig-

169
TABLE 11
PROGRAM PARAMETERS USED TO OBTAIN THE RESULTS OF TABLE 1
Part | Iteration | Window | Distance Excess 3081
Frame penalty capacity secs
L 1 2 100 2 7.3
2 4 100 1 9.9
3 100 100 0 13.2
1 1 1 100 2 35
2 3 100 1 52
3 5 100 0 83
4 4 100 0 78
R 1 2 100 2 126
2 4 100 0 446
3 4 50 0 435
M 1 2 100 2 196
2 2 100 1 239
3 2 100 0 243
4 4 100 0 296
5 4 30 0 290
S 1 2 100 [¢} 135
2 4 50 0 178

inal estimate of Steiner lengths for the nets is accurate,
the above algorithm produced routes which were on an
average less than 1 percent longer. The final routes with
proper capacity varied from 1 to 22 percent over the Stein-
er lengths.) Also, it appears to be a good idea to keep
opening the window in later iterations so as to allow the
wires to detour to avoid congestion. This must be bal-
anced, however, by the fact that opening the window
could cause the run times to be prohibitively high. Sum-
marized in Table II are the various parameters used for
the above runs. It should be emphasized that these were
the only parameters tried out for the experiments. The
above figures do not represent the result of numerous at-
tempts with various parameters. In fact, it is quite possi-
ble that a different set of parameters could produce better
results or reduce run times.

IX. WIRING MODEL FOR A STRUCTURED CustoM CHIP
DESIGN STYLE

Fig. 5 shows a design style where a chip is partitioned
into regions which abut each other. Each region contains
circuits belonging to some macro, interconnections among
those circuits, interconnections from these circuits to other
macros, and interconnections between other macros that
pass through this region. The task of global wiring is to
determine the routes of wires interconnecting the various
regions, such that the boundary capacities of each of the
regions are not exceeded, while keeping interconnection
lengths as small as possible. In the system described in
[14], these routes are used to place perimeter pins around
each region, so that the placement of components and in-
terconnections within each macro in a region can be
treated as smaller self-contained problems.

An undirected graph is used to model the problem. A
region containing a macro is represented by a node. An
edge connects one node to another if the corresponding
regions have some common boundary. (We restrict our-
selves to regions which are convex. However, the model

170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 2. MARCH 1987

[

e
V

__

Fig. 6. Graph model for the floorplan in Fig. 5 (from [14]).

could be extended easily to nonconvex regions which may
imply more than one edge between the same pair of
nodes.) Associated with each edge are two quantities, the
supply and the length. The supply indicates the number
of perimeter pin positions available along the common
boundary between two adjacent regions. The length of an
edge is an approximation to the length of a wire segment
which crosses the boundary represented by the edge. In
the absence of knowledge about the placement of com-
ponents within a region, it is convenient to set the length
of an edge to the center-to-center distance between ma-
cros placed within the corresponding adjacent regions.
Fig. 6 shows the graph for the example of Fig. 5.

The general graph global wiring is performed in an
identical manner to the grid global wiring for master-slice
chips. In fact, it is similar to the shortest path labeling
algorithm mentioned in [15]. One of the nodes to be con-
nected is chosen as a source. It is labeled with a value 0
and is inserted in a list of nodes to be processed. All other
nodes have their labels set to infinity. Among the nodes
in the list, the one having the smallest label is picked. For
each edge connected to this node in turn, the label value
is added to the cost of crossing the edge. The node at the
other end of the edge has its label set to this value and is
inserted into the list if the resulting value is smaller than

the one it already has. The back pointer is also set appro-
priately. This process is continued until the smallest label
value in the list is at least equal to the value at some sink.
By tracing from the sink back to the source, the least cost
path between the nodes is found. As before, the process
is continued with the source, sink, and all nodes in the
least cost path as new source nodes.

The implementation of this algorithm, called GLB, has
several interesting aspects. First, the cost of traversing an
edge is computed in a procedure external to the program
and is controlled by the user. Parameters passed to this
procedure include the length of the edge, the original sup-
ply at the edge, the remaining supply at the edge, etc.
Often, besides the capacity at the boundaries of the re-
gions and the length of the interconnections, it may be
necessary to have other restrictions. For example, it may
be necessary from a performance point of view to mini-
mize the length of a small subset of nets rather than min-
imize the total length of all nets. Or, it may be necessary
to route certain classes of nets, e.g., busses, identically.
Further, the choice between cost functions may depend
on the stage of design. Two cost functions are used in a
current design process. The first function has a cost that
is exponential with the fractional supply available at the
edge; the second function has a cost that is exponential
with the supply itself. In the early stages of design, when
the gross validity of a floor plan is to be evaluated, use of
the first cost function helps in determining wiring bottle-
necks in the floor plan. Alternative floor plans can be
quickly evaluated to determine the best one in terms of
wireability and wire length. In the final stages of design,
it is more appropriate to use the second function which
helps in maximizing the absolute number of pin positions
remaining at cell boundaries. By allowing the user to con-
trol the cost function, the program can be used in a greater
variety of situations.

The second novel aspect of the GLB is in the control of
iteration parameters. In addition to the number of itera-
tions, and the choice of cost function, the user may spec-
ify a capacity factor for each iteration of the algorithm.
The capacity factor is multiplied by the available capacity
before the cost is computed for an edge. A capacity factor
greater than one, used in the early iterations, results in
short wires, but a lot of overflows. A capacity factor less
than one, used in the final iterations, attempts to maxi-
mize the remaining capacity at the edges. A larger number
of remaining pin positions at a boundary helps in provid-
ing a larger degree of freedom to the pin assignment phase
which follows the global wiring.

Fig. 7 demonstrates the use of GLB for a real floor-
planning problem. An automatic floorplanning tool [16]
generated the floorplan shown in Fig. 7(a). GLB was used
for determining the wireability of the resulting layout. The
results indicated that the floorplan would result in an un-
acceptable number of overflows when wired. The distri-
bution of the overflows was studied to determine a series
of interactive moves (see [16]) on the floorplan. The re-
sulting floorplan, shown in Fig. 7(b), was analyzed using

NAIR: SIMPLE TECHNIQUE FOR GLOBAL WIRING

[
I
w [

(a)

e |

22

3
-

3
FIHRREG
|
i

(b)

Fig. 7. Two sample floorplans for same chip (from [16]). (a) Original
floorplan. (b) Floorplan after interactive modifications.

TABLE II1
SUMMARY OF RESULTS FOR THE FLOORPLANS OF FIG. 7
Floorplan (a) | Floorpian (b)

Area (square units) 82.3 83.6
Worst remaining capacity at an edge -16 2
Number of overflowed edges 48 o}
Total number of overfiows 491 0
Total net iength (units) 7315 547.8
Total net length (edges) 2883 1950
Run time (1BM 3090 secs.) 9,28 5.45

Number of macros 22

Number of graph edges 82

Number of nets 887

GLB. No overflows resulted. The routes of wires deter-
mined by GLB could now be easily translated to perimeter
pin positions for the macros. Table III summarizes the
results. The increase in area for the floorplan of Fig. 7(b)
is insignificant, yet there is clearly a tremendous improve-
ment in the wiring characteristics in comparison to the
floorplan in Fig. 7(a).

Normally, three iterations are performed for a macro
before performing the final perimeter pin assignment. The
first iteration assumes the capacities at the edges to be
larger than what they actually are. This leads to short
wires but often a lot of overflows. The second iteration
uses the results of the first iteration but brings the capac-
ities down to their actual values. The last iteration
crunches the capacities down to below their original val-
ues so that the remaining capacity at the worst edge is
maximized. Variations of this scenario, or sometimes
more iterations, may be needed in special cases.

171

X. CoNCLUDING REMARKS

A simple iterative maze-running technique which rips
up and reroutes every net in every iteration has been
shown to be very effective in reducing the number of
overflows in the global wiring of master-slice chips.
Global wiring has been performed on chips having upto
3500 gates in reasonable time using mainframe CPU’s.
For chips that are considerably larger, it appears to be
reasonable to use the technique hierarchically with a few
hundred blocks in each level of the hierarchy.

The adaptation of the algorithm to a structured custom
chip design environment has also been described. The data
structures required to model the general problem make the
algorithm somewhat slower than in the master-slice case.
However, examples in this environment tend to have far
fewer blocks (typically less than 100), making the run time
of the algorithm acceptable. The simplicity of the algo-
rithm and the ability to easily model technology-depen-
dent constraints within the algorithm make it powerful and
more useful than rigorous mathematical approaches tak-
ing less computation time.

The adaptability of the algorithm makes it a strong can-
didate for the solution of wiring problems in other levels
of the packaging hierarchy, e.g., chips on modules or
modules on boards. Since the grid of available wire tracks
is typically large, a hierarchical global wiring would be
appropriate here. For example, a grid of 1500 X 1500
wiring tracks could be subdivided into a higher level of
50 x 50 squares, each square containing a grid of 30 X
30 tracks.

ACKNOWLEDGMENT

Discussions with S. J. Hong, M. Burstein, D. Mehta,
and E. Schanzenbach, and the encouragement provided
by J. Darringer and L. Berman are greatly appreciated.
Thanks are also due to P. Hauge, J. Hutt, G. Sorkin, L.
Woo, and E. Yoffa for their help, feedback, and com-
ments.

REFERENCES

[1] K. A. Chen, M. Feuer, K. H. Khokhani, N. Nan, and S. Schmidt,
*“The chip layout problem: An automatic wiring procedure,’’ in Proc.
14th Design Automat. Conf. (New Orleans, LA), 1977, pp. 298-302.

[2] H. Shiraishi and F. Hirose, “‘Efficient placement and routing tech-
niques for master-slice LSL,”’ in Proc. 17th Design Automat. Conf.
(San Diego, CA), 1980, pp. 458-464.

[3] J. Soukup and J. C. Royle, ‘‘On hierarchical routing,”” J. Digital
Systems, vol. V, no. 3, pp. 265-289, 1981.

[4] Z. Syed, A. El Gamal, and M. A. Breuer, ‘‘On routing for custom
integrated circuits,”” in Proc. 19th Design Automat. Conf. (Las Ve-
gas, NV), 1982, pp. 887-893.

[5] R. Linsker, ‘‘An iterative-improvement penalty-function driven wire
routing system,’” IBM J. Res. Develop., vol. 28, no. 5, pp. 613-624,
1984.

[6] R. Nair, S. J. Hong, S. Liles, and R. Villani, ‘‘Global wiring on a
wire-routing machine,”’ in Proc. 19th Design Automat. Conf. (Las
Vegas, NV), 1982, pp. 224-231.

[7]1 C. Y. Lee, ‘‘An algorithm for path connections and its applications,”’
IRE Trans. Electron. Comput., vol. EC-10, pp. 346-365, 1961.

[8] E. F. Moore, ‘‘Shortest path through a maze,’’ in Annals of the Com-
putation Laboratory. Cambridge, MA: Harvard Univ. Press, 1959,
pp. 285-292.

[9] W. A. Dees and R. J. Smith, ‘‘Performance of interconnection rip-

172

[10]

(i

{12]

[13]

[14]

[15]

[16]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6, NO. 2, MARCH 1987

up and reroute strategies,’’ in Proc. [8th Design Automat. Conf.
(Nashville, TN), 1981, pp. 382-390.

S. Akers, ‘‘Routing,’’ in Design Automation of Digital Systems: The-
ory and Techniques, vol. 1, M. A. Breuer, Ed. Englewood Cliffs,
NIJ: Prentice-Hall, 1972, pp. 283-333.

W. E. Donath, **Wire length distributions for placements of computer
logic,”” IBM J. Res. Develop., vol. 25, no. 3, pp. 152-155, 1981.
D. Wallace and L. Hemachandra, ‘‘Some properties of a probabilistic
model for global wiring,”” in Proc. [8th Design Automat. Conf.
(Nashville, TN), 1981, pp. 660-667.

D. T. Lee, S. J. Hong, and C. K. Wong, ‘‘Number of vias: A control
parameter for global wiring of high density chips,”” IBM J. Res. De-
velop., vol. 25, no. 4, pp. 261-271, 1981.

P. S. Hauge and E. J. Yoffa, ‘*Vanguard: A chip physical design
system,”’ in Proc. 23rd Design Automat. Conf. (Las Vegas, NV),
1986, pp. 440-446.

E. W. Dijkstra, ‘‘A note on two problems in connection with graphs,”’
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

L. S. Woo, C. K. Wong, and D. T. Tang, ‘“‘PIONEER: A macro-

based floor-planning design system,”” VLSI Design, vol. VII, no. 8,
pp. 32-43, 1986.

Ravi Nair (M’82) received the B.Tech. degree in
electronics and electrical communications engi-
neering from the Indian Institute of Technology,
Kharagpur, India, in 1974. He received the M.S.
and Ph.D. degrees in computer science from the
University of Illinois, Urbana, in 1976 and 1978,
respectively.

Since 1978, he has been with IBM at the T. J.
Watson Research Center in Yorktown Heights,
NY. He has worked on computer synthesis of
VLSI layout, parallel machines for physical de-

sign, fault-tolerant systems, and testing. He is interested in algorithms and
systems for the design of digital integrated circuits.

