
Improvements to Technology Mapping for LUT-Based FPGAs

Alan Mishchenko Satrajit Chatterjee Robert Brayton

Department of EECS, University of California, Berkeley
{alanmi, satrajit, brayton}@eecs.berkeley.edu

Abstract

The paper presents several orthogonal improvements to the
state-of-the-art in LUT-based FPGA technology mapping.
The improvements target delay and area of technology
mapping as well as the runtime and memory requirements.
(1) Improved cut enumeration computes all K-feasible cuts,
without pruning, for up to 7 inputs for the largest MCNC
benchmarks. A new technique for on-the-fly cut dropping
reduces, by orders of magnitude, memory needed to
represent cuts for large designs. (2) The notion of cut
factorization is introduced in which one computes a subset
of cuts for a node and generates other cuts from that subset
as needed. Two cut factorization schemes are presented
and a new algorithm is proposed that uses cut factorization
for delay oriented mapping for FPGAs with large LUTs.
(3) Improved area recovery leads to mappings with area
on average 6% smaller than the previous best work, while
preserving delay optimality when starting from the same
optimized netlists. (4) Lossless synthesis accumulates
alternative circuit structures seen during logic
optimization. Extending the mapper to use structural
choices reduces delay on average by 6% and area by 12%,
compared to the previous work, while increasing run-time
1.6 times. Performing five iterations of mapping with
choices reduces delay by 10% and area by 19% while
increasing run-time 8 times. These improvements on top of
state-of-the-art methods for LUT mapping are available in
the package ABC.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Optimization; B.7.1
[Integrated Circuits]: Types and Design Styles—Gate
arrays; J.6 [Computer-Aided Engineering]: Computer-
aided design (CAD).

General Terms
Algorithms

Keywords
FPGA, Technology Mapping, Cut Enumeration, Area
Recovery, Lossless Synthesis

1 Introduction
Field Programmable Gate Arrays (FPGAs) are an

attractive hardware design option, making technology

mapping for FPGAs an important EDA problem. For an
excellent overview of the classical and recent work on
FPGA technology mapping, focusing on area, delay, and
power minimization, the reader is referred to [4].

Recent advanced algorithms for FPGA mapping, such as
[4][14][18], focus on area minimization under delay
constraints. If delay constraints are not given, first the
optimum delay for the given logic structure is found and
then area is minimized without changing delay.

In terms of the algorithms employed, mappers are divided
into structural and functional. Structural mappers consider
the circuit graph as given and find a covering of the graph
with K-input subgraphs corresponding to LUTs. Functional
approaches perform Boolean decomposition of the logic
functions of the nodes into sub-functions of limited support
size realizable by individual LUTs.

Since functional mappers explore a larger solution space,
they tend to be time-consuming, which limits their use to
small designs. Thus, FPGA mapping for large designs is
done using structural mappers, while functional mappers
are used for resynthesis after technology mapping.

In this paper, we consider the recent work on DAOmap
[4] as representative of the best structural technology
mapping for LUT-based FPGAs and refer to it as “the
previous work” and discuss several ways of improving it.
The improvements target improving area and delay of the
resulting LUT networks and reducing the runtime and
memory requires of technology mapping. Specifically, our
contributions fall into three categories:

(1) Improved cut computation
Computation of all K-feasible cuts is typically a run-time

and memory bottleneck of a structural mapper. We propose
several enhancements to the standard cut enumeration
procedure [9][23]. Specifically, we introduce cut filtering
with signatures and show that it leads to a speed-up. This
makes exhaustive cut enumeration for 6 and 7 inputs
practical for many test-cases.

Since the number of K-feasible cuts, for large K, can
exceed 100 per node, storing all the computed cuts in
memory is problematic for large benchmarks. We address
this difficulty by allowing cut enumeration to “drop” those
cuts at the nodes whose fanouts have already been
processed. This allows the mapper to store only a small
fraction of all K-feasible cuts at any time, thereby reducing
memory usage for large benchmarks by an order of
magnitude or more.

(2) Using factor cuts
Enumerating K-feasible cuts for large K becomes

important when FPGA mapping targets macro cells. Such
cells are typically composed of LUTs, MUXes, and
elementary gates, and can implement a subset of functions
of K inputs. Although our improved cut enumeration
efficiently computes all cuts up to 7 inputs, it is not
practical for 8-12 inputs, which a size typical for most
macro cells, simply because there are too many cuts.

Since only a very small fraction of all cuts of large sizes
are used in an FPGA mapping, different heuristics have
been proposed to prune the cuts, for example [9]. The
problem is that delay optimality for large cut sizes is not
guaranteed; in practice their deviation from the optimum
delay for the given logic structure may be substantial. This
is because heuristics often prune cuts that are not optimal
for a node, but may lead to optimal cuts of the fanouts.

To address the enumeration problem we introduce the
notion of cut factorization. Just as the algebraic expression
(ab+ac) can be factored as a(b+c), the set of all cuts of a
node can be factored using two sets of cuts called global
and local. Collectively they are called factor cuts. By
expanding factor cuts w.r.t. local cuts, a larger set of cuts
can be obtained. During the cut computation only factor
cuts are enumerated. Later on during mapping, other cuts
are generated from factor cuts as necessary.

Depending on how global and local cuts are defined,
there can be different factorization schemes. In this paper,
we present two schemes: complete and partial. In complete
factorization, every cut can be obtained by expanding a
factor cut w.r.t. a local cut. However, complete
factorization is expensive since there may be a large
number of global cuts.

Partial factorization is an alternative approach where
there are much fewer global cuts, but there is no guarantee
that all cuts can be generated by expanding factor cuts.
However, in practice, good cuts are obtained with partial
factorization in a fraction of the run-time required for
complete enumeration.

(3) Better, simpler, and faster area recovery
Area optimization after delay-optimum structural

mapping proceeds in several passes over the network. Each
pass assigns cuts with a better area among the ones that do
not violate the required time. Previous work relied on
several sophisticated heuristics for ranking the cuts, trying
to estimate their potential to save area. They concluded that
although the heuristics are not equally useful, to get good
area, a number of them need to be applied.

In this paper, we show that the combination of two
simple techniques is enough to improve on the area results
of the previous work by 6% on average while achieving the
optimum delay. The proposed combination is synergistic
since the first one attempts heuristically to find a global
optimum, whereas, the second ensures that at least a local
optimum is reached.

It should be noted that the first heuristic (known as
effective area [9] or area flow [18]) was used in the

previous work but applied in a reverse topological order,
while we argue below that a forward topological order
works better.

(4) Lossless synthesis
The main drawback of the structural approaches to

technology mapping is their dependence on the initial
circuit structure (called structural bias). If the structure is
bad, neither heuristics nor iterative recovery will improve
the results of mapping.

To obtain a good structure for the network, usually
several technology independent synthesis steps are
performed. An example is script.rugged in SIS followed by
a two-input gate decomposition. Each synthesis step in the
script is heuristic, and the subject graph produced at the
end is not necessarily optimum. Indeed, it is possible that
the initial or an intermediate network is better in some
respects than the final network.

In this paper, we explore the idea of combining these
intermediate networks into a single subject graph with
choices, which is then used to derive the mapped netlist.
Thus, the mapper is not constrained to use any one
network, but can pick the best parts of each. We call this
approach lossless synthesis, since no network seen during
the synthesis process is ever lost. By including the initial
network in the choice network, the heuristic logic synthesis
operations can never make things worse. Also, multiple
scripts can be used to accumulate more choices. We defer
discussion of related work to Section 6.3.

In summary, we note that the above contributions are
largely orthogonal in nature, and tend to reinforce each
other. For example, improved cut enumeration gives extra
speed to the computation of factor cuts and cuts for the
networks with choices. Similarly, the proposed area
recovery heuristics will lead to even smaller area when
factor cuts are used. However, the interaction of factor cuts
and lossless synthesis is less obviously beneficial.
Investigation of this issue is deferred to the future work.

The rest of the paper is organized as follows. Section 2
describes the background. Sections 3-6 give details on the
four contributions of the paper listed above. Section 7
shows experimental results. Section 8 concludes the paper
and outlines future work.

2 Background
A Boolean network is a directed acyclic graph (DAG)

with nodes corresponding to logic gates and directed edges
corresponding to wires connecting the gates. The terms
network, Boolean network, and circuit are used
interchangeably in this paper.

A node has zero or more fanins, i.e. nodes that are
driving this node, and zero or more fanouts, i.e. nodes
driven by this node. The primary inputs (PIs) of the
network are nodes without fanins in the current network.
The primary outputs (POs) are a subset of nodes of the
network. If the network is sequential, the flip-flop
outputs/inputs are treated as additional PIs/POs. In the

following, it is assumed that each node has a unique integer
number called the node ID.

A network is K-bounded if the number of fanins of each
node does not exceed K. A subject graph is a K-bounded
network used for technology mapping. Any combinational
network can be represented as an AND-INV graph (AIG),
composed of two-input ANDs and inverters. Without
limiting the generality, in this paper we assume subject
graphs to be AIGs.

A cut C of node n is a set of nodes of the network, called
leaves, such that each path from a PI to n passes through at
least one leaf. A trivial cut of a node is the cut composed of
the node itself. A cut is K-feasible if the number of nodes
in it does not exceed K. A cut is said to be dominated if it
contains another cut of the same node.

A fanin (fanout) cone of node n is a subset of all nodes of
the network reachable through the fanin (fanout) edges
from the given node. A maximum fanout free cone (MFFC)
of node n is a subset of the fanin cone, such that every path
from a node in the subset to the POs passes through n.
Informally, the MFFC of a node contains all the logic used
only by the node. Thus, when a node is removed or
substituted, the logic in its MFFC can be removed also.

The level of a node is the length of the longest path from
any PI to the node. The node itself is counted in the path
lengths but the PIs are not counted. The network depth is
the largest level of an internal node in the network. The
delay and area of an FPGA mapping is measured by the
depth and number of LUTs in the resulting LUT network.

A typical procedure for structural technology mapping
consists of the following steps:

1. Cut computation.
2. Delay-optimum mapping.
3. Area recovery using heuristics.
4. Recording the resulting LUT network.
For a detailed description on these steps, we refer the

reader to [4] and [18].

3 Improved cut computation
Structural technology mapping into K-input LUTs starts

by computing K-feasible cuts for each internal two-input
node of the subject graph. The number of K-feasible cuts of
a network with n nodes is O(nK) [8].

In this section, we focus on improving the
implementation of the cut computation. The asymptotic
complexity of the cut computation procedures is still
quadratic in the number of cuts but the improvements make
the algorithm faster in practice, applicable to larger circuits,
and scalable to larger values of K.

3.1 Cut enumeration
We begin with a review of the standard procedure for

enumerating, for each node of an AIG, the set of all of its
K-feasible cuts [23][9]. Let A and B be two sets of cuts. For
convenience we define the operation A ◊ B as:

A ◊ B = { u ∪ v | u ∈ A, v ∈ B, |u ∪ v| ≤ k }

Let Φ(n) denote the set of K-feasible cuts of node n. If n
is an AND node, let n1 and n2 denote its fanins. We have,

1 2

{{ }} : PI
()

{{ }} () () : otherwise
n n

n
n n n

∈ 
Φ =  ∪Φ ◊Φ 

.

This formula translates into a simple procedure that
computes all K-feasible cuts in a single pass from the PIs to
the POs in a topological order. Informally, the cut set of an
AND node is computed by merging the two cut sets of its
children and adding the trivial cut (the node itself). This is
done by taking the pair-wise unions of cuts belonging to
the fanins, while keeping only K-feasible cuts.

In this process of merging the cut sets to form the
resulting cut set, it is necessary to detect duplicate cuts and
remove dominated cuts. Removing them before computing
cuts for the next node, reduces the number of cut pairs
considered, without impacting the quality of mapping. In
practice, the total number of cut pairs tried during the
merging greatly exceeds the number of K-feasible cuts
found. This makes checking K-feasibility of the unions of
cut pairs, and testing duplication and dominance of
individual cuts, the performance bottle-neck of the cut
computation.

Figure 1. Illustration of cut computation.

Example. Figure 1 illustrates the bottom-up cut
enumeration procedure for a small circuit. Observe that due
to re-convergence, the cut set of node x contains a
dominated cut {a d b c} (dominated by {a b c}) which may
be removed without affecting the quality of mapping.

3.2 Using signatures
In this paper, we propose to use signatures for testing cut

properties, such as duplication, dominance, and
K-feasibility. Conceptually, it is similar to the use of Bloom
filters for encoding sets [3] and to the use of signatures for
comparing clauses in [11]. The use of signatures only
speeds up the computation; no additional pruning is done.

A signature, sign(C), of cut C is an M-bit integer whose
bit-wise representation contains 1s in the positions
corresponding to the node IDs. The signature is computed
by the bit-wise OR of integers as follows:

x

a c b

d e

f

{{e} {b

{{f} {d e} {d b c}
 {a b e} {a b

{{x} {a f} {a d e} {a d b
c}

{{d} {a
b}}

{{a} {{b} {{c}}

sign(C) = ID() mod2
n C

n M

∈
∑ .

Testing cut properties with signatures is much faster than
testing them by directly comparing leaves. The following
propositions state necessary conditions for duplication,
dominance, and K-feasibility of cuts. If these conditions are
violated, then there is no need to do a detailed check by
comparing leaves. If the conditions hold, then a detailed
check is done to establish the property. (The detailed test
cannot be avoided due to aliasing: two different cuts may
have the same signature.)

Proposition 1: If cuts C1 and C2 are equal, so are their
signatures.

Proposition 2: If cut C1 dominates cut C2, the 1s of
sign(C1) are contained in the 1s of sign(C2).

Proposition 3: If C1 ∪ C2 is a K-feasible cut, |sign(C1) +
sign(C2)| ≤ K. Here |n| denotes the number of ones in the
binary representation of n, and addition is done modulo M.

Our current implementation uses one machine word
(composed of 32 bits on a 32-bit machine) to represent the
signature of a cut i.e. M = 32. As a result, most of the
checks are performed using several bit-wise machine
operations, and only if the signatures fail to disprove a
property, is the actual comparison of leaves performed.

Example. Let M = 8 (for ease of exposition). The cut C1
with nodes having ids 32, 68, and 69 would have sign(C1)
= 00010011. A second cut C2 with nodes having ids 32, 68,
and 70 would have sign(C2) = 01010001. From comparing
the two signatures it is clear that neither C1 dominates C2 or
vice-versa. Thus there is no need to examine the leaves of
C1 and C2 to establish dominance. Let C3 be a third cut with
node ids 36, 64, and 69. Now sign(C3) = 00010011 =
sign(C1). However C3 is not equal to C1. (Thus to establish
properties, a comparison of the cut leaves is necessary.)

3.3 Practical observations
In the literature on technology mapping, all 4-input and

5-input cuts are typically computed exhaustively, whereas
computation of cuts with more inputs is considered time-
consuming because of the large number of these cuts.
Different heuristics have been investigated in the literature
[9] to rank and prune cuts to reduce the run-time. We
experimented with these heuristics and found that they are
effective for area but lead to sub-optimal delay.

In order to preserve delay optimality, we focus on
perfecting the cut computation and computing all cuts
whenever possible. Pruning is done only if the number of
cuts at a node exceeds a predefined limit set to 1000 in our
experiments. When computing K-feasible cuts with
4 ≤ K ≤ 7 for the largest MCNC benchmarks, this limit was
never reached, and hence no pruning was performed,
meaning that the cuts were computed exhaustively. Due to
the use of signatures, the run-time for 4 ≤ K ≤ 7 was also
quite affordable, as evidenced by the experiments.
However, for 8-input cuts, pruning was required for some
benchmarks.

3.4 Reducing memory for cut representation
The number of K-feasible cuts for K > 5 can be large. The

average number of exhaustively computed 7-input cuts in
the largest MCNC benchmarks is around 95 cuts per node.
In large industrial designs, the total number of cuts could
be of the order of tens of millions. Therefore, once the
speed of cut enumeration is improved, memory usage for
the cut representation becomes the next pressing issue.

To address this issue, we modified the cut enumeration
algorithm to free the cuts as soon as they are not needed for
the subsequent enumeration steps. This idea is based on the
observation that the cuts of the nodes, whose fanouts have
already been processed, can be deallocated without
impacting cut enumeration. It should be noted that if
technology mapping is performed in several topological
passes over the subject graph, the cuts are re-computed in
each pass. However, given the speed of the improved cut
computation, this does not seem to be a problem.

Experimental results (presented in Table 2) show that by
enabling cut dropping, as explained above, the memory
usage for the cut representation is reduced by an order of
magnitude for MCNC benchmarks. We see that for larger
benchmarks, the reduction in memory is even more
substantial.

It is possible to reduce the run-time of the repeated cut
computation by recording the “cut enumeration trace”,
which is saved during the first pass of cut enumeration and
used in subsequent passes. The idea is based on the
observation that, even when signatures are used, the most
time-consuming part of the cut enumeration is determining
what cut pairs lead to non-duplicated, non-dominated,
K-feasible cuts at each node. The number of such cut pairs
is very small, compared to the total number of cut pairs at
each node. The cut enumeration trace recorded in the first
pass compactly stores information about all such pairs and
the order of merging them to produce all the K-feasible cuts
at each node. The trace serves as an oracle for the
subsequent cut enumeration passes, which can now skip
checking all cut pairs and immediately derive useful cuts.

This option was implemented and tested in our cut
enumeration package but it was not used in the
experimental results because the benchmarks allowed for
storing all the cuts in memory at the same time. We
mention this option here because we expect it to be useful
for industrial mappers working on very large designs.

4 Factor cuts
This section introduces the notion of cut factorization to

address the problem of cut enumeration. In cut
factorization, we identify certain subsets of the set of cuts
of a node - the local cuts and the global cuts, collectively
called factor cuts - and use these to generate the other cuts
when needed. Depending on how local and global cuts are
defined, we get different schemes for factorization. In this
work we consider two schemes: complete and partial. In
complete factorization, all cuts can be derived from factor
cuts, but it is expensive (though less so than complete

enumeration). In partial factorization, not all cuts can be
generated from factor cuts, but it is very fast in practice and
produces good results.

In this section we present the theory of cut factorization,
and consider a sample application to compute delay
optimal FPGA mapping for large LUTs. For most nodes in
a network, examining only factor cuts is enough to achieve
the optimum delay. For the remaining few nodes, a small
number of non-factor cuts have to be considered.

4.1 Preliminaries

Dag and Tree Nodes
Consider an AIG G. A dag node is a node of G that has

two or more outgoing edges. A node of G that is not a dag
node is called a tree node. The set of dag nodes is denoted
by D, and tree nodes by T.

The sub-graph GT of G induced by the tree nodes is a
forest of trees. Each tree T in GT has an outgoing edge to
exactly one DAG node nd in G.

Consider the sub-graph Tnd of G induced by a DAG node
nd in G and the nodes belonging to the trees in GT that feed
into it. Tnd is a (possibly trivial) tree. Tnd is called the factor
tree of a node n in Tnd. Clearly every node in G has a factor
tree. The DAG node nd is called the root of Tnd.

The leaves ni of a factor tree are dag nodes. The factor
tree along with the inputs ni is a leaf-DAG, and is called the
factor leaf-dag. Every node n in G has a unique factor
leaf-dag (via its unique factor tree). The root of a factor
leaf-dag is the root of the corresponding tree.

Figure 2. AIG fragment to illustrate cut factorization.

Example. Consider the AIG shown in Figure 2. Nodes p,
q, b, c, and d are primary inputs. Nodes, such as x and a,
that have double circles are dag nodes. The rest are tree
nodes. The set of nodes in each shaded region forms a
factor tree. The factor tree for node b is trivial. The factor
tree of node x consists of x, y, z, c and d. The factor leaf-
dag of x contains the nodes in factor tree of x along with
nodes a and b.

Local Cuts, Global Cuts and Expansion

In the following sections we will identify some K-feasible
cuts in the network as local cuts, and some others as global

cuts. We refer to them collectively as factor cuts. The
precise definitions of local and global will depend on the
factorization scheme (complete or partial), but the general
idea is to “expand” factor cuts by local cuts to obtain other
K-feasible cuts. In the case of complete factorization, this
expansion will produce all K-feasible cuts.

Let c be a factor cut of node n ∈ G. Let ci be a local cut
of a node i ∈ c. Consider l = (i

i
c∪). l is a cut of n though

not necessarily K-feasible. If l is K-feasible, then l is called
a 1-step expansion of c. Define 1-step(c) as the set of cuts
obtained from c by 1-step expansion, i.e.

1-step(c) = { l | l is a 1-step expansion of c}.
We ensure that c ∈ 1-step(c) by requiring that every node

have the trivial cut as a local cut.
Example. In Figure 2, consider the cut {a, b, z} of x. By

expanding node a with its local cut {p, q} we obtain the cut
{p, q, b, z} of x. Thus {p, q, b, z} ∈ 1-step({a, b, z}).

4.2 Complete Factorization

In complete factorization, we enumerate tree cuts and
reduced cuts (defined below) which are subsets of the set
of all K-feasible cuts. Tree cuts are the local cuts and
reduced cuts are the global cuts. We use the term complete
factor cuts to refer to tree cuts and reduced cuts
collectively. Complete factorization has the property that
any K-feasible cut can be obtained by 1-step expansion.

Tree Cuts (Local Cuts)
Let ΦT(n) denote the set of all tree cuts of node n. First

define the auxiliary function † ()T nΦ as follows:

† :
()

() : otherwiseT
T

n F
n

n
∅ ∈ 

Φ =  Φ 

Now, ΦT(n) is defined recursively as,

† †
1 2

{{ }} : PI
()

{{ }} () () : otherwiseT
T T

n n
n

n n n
∈ 

Φ =  ∪Φ ◊Φ 

ΦT(n) represents the subset of K-feasible cuts of n that
only involve nodes from the factor tree of n.

Example. In Figure 2, ΦT(x) = {{x}, {y, z}, {y, c, d}}.
Reduced Cuts (Global Cuts)

We define ΦR(n), the set of reduced cuts of a node n, as
follows:

1 2

{{ }} : PI
()

{{ }} ((() ()) \ ()) : otherwiseR
R R T

n n
n

n n n n
∈ 

Φ =  ∪ Φ ◊Φ Φ 

The formula for ΦR(n) is very similar to that of Φ(n)
except that non-trivial tree cuts are removed. Since this
removal is done recursively ΦR(n) is significantly smaller
than Φ(n).

Example. In Figure 2, ΦR(x) = {{x}, {a, b, z}}. Note that
{a, b, c, d} is not a reduced cut of x since {c, d} is removed
when computing ΦR(z).

x

a
b

c d

y z

q p

Cut decomposition theorem
With local and global cuts being tree and reduced cuts

respectively, a cut decomposition theorem holds.

Theorem 1. Every K-feasible cut of node n in G is a

1-step expansion of a K-feasible complete factor cut of n,
i.e. if c ∈ Φ(n), then ∃ c’ ∈ ΦR(n) s.t. c ∈ 1-step(c’).

Proof Sketch. Let c be a K-feasible cut of n. If c consists

of nodes only from the factor tree Tn of n, then c is a local
cut of n and c ∈ 1-step({n}) and the theorem is proved.

Suppose c has some nodes {ni}⊂ c belonging to a
different factor tree T whose root is x. Consider the set c’ =
c \ {ni}∪ {x}. Node c’ is also a cut of x since every path
though {ni} passes through x. Furthermore, c’ is K-feasible
since |c’| ≤ |c| by construction. Now c’ ∈ ΦR(n) and c ∈ 1-
step(c’).

If c has nodes from multiple factor trees, a similar
argument holds.

Q.E.D.

4.3 Partial Factorization
Although complete factorization causes a reduction in

the number of cuts that need to be enumerated, further
reduction is possible by sacrificing the ability to generate
all K-feasible cuts by 1-step expansion. This leads to the
notion of partial factorization. Partial factorization is much
faster than complete factorization, and produces a “good”
set of cuts in practice, especially for large K (say K = 9).

In partial factorization, leaf-dag cuts play the role of
local cuts and dag cuts play the role of global cuts. We use
the term partial factor cuts to refer to leaf-dag cuts and dag
cuts collectively.

Leaf-dag Cuts (Local Cuts)

Let ΦL(n) denote the set of K-feasible leaf-dag cuts of

node n. Define the auxiliary function † ()L nΦ as follows:

† {{ }}:
()

() : otherwiseL
L

n n F
n

n
∈ 

Φ =  Φ 

Now, ΦL(n) is defined recursively as,

† †
1 2

{{ }} : PI
()

{{ }} (() ()) : otherwiseL
L L

n n
n

n n n
∈ 

Φ =  ∪ Φ ◊Φ 

ΦT(n) represents the subset of K-feasible cuts of n that
only involve nodes from the factor tree of n.

Conceptually, leaf-dag cuts are similar to tree cuts.

Unlike tree cuts, leaf-dag cuts also include the dag nodes
that feed into the factor tree of a node. This allows more
cuts to be generated by 1-step expansion at the cost of a
slight increase in run-time for local cut enumeration.

Example. In Figure 2, the cuts {a, b, z} and {a, b, c, d}
are examples of leaf-dag cuts of node x. (They are not tree
cuts of x.)

Dag Cuts (Global Cuts)

Let ΦD(n) denote the set of K-feasible dag cuts of n. We

define,

1 2

1 2

{{ }} : PI
() () () :

{{ }} (() ()) : otherwise
D D D

D D

n n
n n n n T

n n n

∈ 
 Φ = Φ ◊Φ ∈ 
 ∪ Φ ◊Φ 

.

Example. In Figure 2, for K = 4, {x} and {a, b, c, d} are

the only dag cuts of x.
This definition of dag cuts is motivated by a need to

reduce the number of global cuts seen in complete
factorization. Defining dag cuts in this manner allows us to
capture much of the reconvergence in the network without
having to enumerate the large number of reduced cuts (as
in complete factorization).

Figure 3. Example of a limitation of partial factorization.

However, by computing global cuts this way, some cuts

cannot be generated by 1-step expansion, as shown in
Figure 3. The 4-feasible cut {a, b, c, d} of x cannot be
generated using 1-step expansion of a partial factor cut of
x.

4.4 Delay optimum K-LUT mapping
In this section, we apply factor cuts to technology

mapping for FPGAs with large LUTs. Most of the present-
day FPGA architectures do not provide LUTs of size more
than 6. Instead, they contain macro cells, which can
implement a subset of functions with 8-12 inputs. The
algorithm presented in this section is only used to illustrate
the use of factor cuts. The extension of the proposed
algorithm to macro cells is left for future research.

The conventional algorithm for delay optimal K-LUT
mapping enumerates all K-feasible cuts and chooses the
best set of cuts using dynamic programming on the AIG.
The algorithm proceeds in two passes over the nodes.
The first pass, called the forward pass, is in topological
order from PIs to POs. For each node, all K-feasible cuts
are enumerated (using the K-feasible cuts of its children),
and the cut with earliest arrival time is selected.

The arrival time of a cut c, denoted by arrival(c), is
defined as follows:

arrival(c) = 1 + ()max
n c

narrival
∈

,

x

a

b

c d

y

z

where arrival(n) is the best arrival time for node n (from
among all its K-feasible cuts). This recursion is well
defined, since when the cuts for a node n are being
processed, the nodes in the transitive fan-in of n have
already been processed. Thus, the best arrival time of any
node in a K-feasible cut of n has already been computed.

The second pass of the algorithm is done in reverse
topological order. For each PO the best K-feasible cut is
chosen and a LUT is constructed in the mapped netlist to
implement it. Then, recursively for each node in this best
cut, this procedure is repeated.

The main limitation of the conventional algorithm is that
it explicitly enumerates a large number of all K-feasible
cuts during the forward pass The idea behind using factor
cuts is to avoid this enumeration. Ideally, one would like to
enumerate only factor cuts, which are far fewer than K-
feasible cuts. However, there is no guarantee that the best
K-feasible cut is a factor cut. To avoid all possible 1-step
expansions, which could be as bad as enumerating all K-
feasible cuts, we use Lemma 2 from [7]:

Theorem 2 [7]. In Algorithm 1, if n is an AND node with

inputs n1 and n2, then arrival(n) = p or arrival(n) = p + 1,
where p = max(arrival(n1), arrival(n2)).

Theorem 2 provides a lower bound on the best arrival time.
If a factor cut attains the lower bound, then no 1-step
expansions are necessary. If no factor cut attains the lower
bound, then they are 1-step expanded one by one. During
this process if the lower bound is attained, further
expansion is not needed.

Optimality. If complete factorization is used then this
algorithm produces the optimal delay since 1-step
expansion will produce all K-feasible cuts (by the Cut
Decomposition Theorem). In the case of partial
factorization, there is no guarantee of optimality. However
experiments show that for large K there is no loss of
optimality for the set of benchmarks considered (see
Section 7.4).

Expansion. In complete factorization, 1-step expansion
need not be exhaustive. It suffices to expand the late
arriving inputs of the cut, one node at a time. This is
because the expansions are independent -- two nodes in the
cut do not have to be expanded simultaneously with their
tree cuts, since the tree cuts of two nodes never overlap.

In partial factorization, the leaf-dag cuts of two nodes
may overlap, and so the expansions are not independent.
However, in our experiments, the nodes were expanded
one late-arriving node at a time since that did not degrade
the quality significantly.

It is instructive to see why the conventional algorithm
cannot be easily modified to exploit the lower bound.
Although one need not scan all of Φ(n) to find the best cut
(one can stop as soon as the lower bound is attained), one

still needs to construct Φ(n) completely. This is because a
cut c ∈ Φ(n) that does not lead to the best arrival time for n
may lead to the best cut for some node n' in the transitive
fanout of n.

5 Improved area recovery
Exact area minimization during technology mapping for

DAGs is NP-hard [12] and hence not tractable for large
circuits. Various heuristics for approximate area
minimization during mapping have shown good results
[4][14][18].

In this study, we use a combination of only two
heuristics, which work well in practice. The order of
applying the heuristics is important since they are
complementary. The first heuristic has a global view and
selects logic cones with more shared logic. The second
heuristic provides a missing local view by minimizing the
area exactly at each node.

5.1 Global view heuristic
Area flow [18] (effective area [9]) is a useful extension of

the notion of area. It can be computed in one pass over the
network from the PIs to the POs. Area flow for the PIs is
set to 0. Area flow at a node n is:

AF(n) = [Area(n) + ΣiAF(Leafi(n))] / NumFanouts(n),
where Area(n) is the area of the LUT used to map the
current best cut of node n, Leafi(n) is the i-th leaf of the
best cut at n, and NumFanouts(n) is the number of fanouts
of node n in the currently selected mapping. If a node is not
used in the current mapping, for the purposes of area flow
computation, its fanout count is assumed to be 1.

If nodes are processed from the PIs to the POs,
computing area flow is fast. Area flow gives a global view
of how useful the logic is in the cone for the current
mapping. Area flow estimates sharing between cones
without the need to re-traverse them.

In our mapper, as in the previous work [4][18], area flow
is used as a tie-breaker in the first pass when a delay-
optimum mapping is computed. In the first stage of area
recovery, area flow becomes the primary cost function used
to choose among the cuts, whose arrival times do not
exceed the required times.

5.2 Local view heuristic
The second heuristic providing a local view for area

recovery in our mapper is not used in the previous work.
This heuristic proceeds in topological order and looks at
the exact local area to be gained by updating the best cut at
each node. The exact area of a cut is defined as the sum of
areas of the LUTs in the MFFC of the cut, i.e. the LUTs to
be added to the mapping if the cut is selected as the best
one.

The exact area of a cut is computed using a fast local
DFS traversal of the subject graph starting from the root
node of the cut. The reference counter of a node in the
subject graph is equal to the number of times it is used in
the current mapping, i.e. the number of times it appears as a

leaf of the best cut at some other node, or as a PO. The
exact area computation procedure is called for a cut. It adds
the cut area to the local area being computed, dereferences
the cut leaves, and recursively calls itself for the best cuts
of the leaves whose reference counters are zero. This
procedure recurs as many times as there are LUTs in the
MFFC of the cut, for which it is called. This number is
typically small, which explains why computing the exact
area is reasonably quick. Once the exact area is computed,
a similar recursive referencing is performed to reset the
reference counters to their initial values, before computing
the exact area for other cuts.

MFFCs were used in [8] for duplication-free mapping,
which was alternated with depth relaxation for area
minimization. Our work differs from [8] in that it is not
restricted to duplication-free mapping but employs the
concept of MFFC along with reference counting of nodes
in the AIG for accurate estimation of the impact of cut
selection on area during mapping.

Experimentally, we found that, after computing a delay-
optimum mapping, two passes of area recovery are enough
to produce a good quality mapping. The first pass uses area
flow; the second one uses the exact local area. Iterating
area recovery using both of the heuristics additionally can
save up to 2% of the total area of mapping, which may or
may not justify the extra run-time.

It is interesting to observe that the previous work
recovers area at each node in the reverse topological order.
We argue that the opposite works better for incremental
area recovery since it allows most of the slack to be used
on non-critical paths closer to the PIs where the logic is
typically wider and hence offers more opportunity for area
savings.

6 Lossless synthesis
The idea behind lossless logic synthesis is to “remember”

some or all networks seen during a logic synthesis flow (or
a set of flows) and to select the best parts of each network
during technology mapping. This is useful for two reasons.

First, technology-independent synthesis algorithms are
heuristic, and so there is no guarantee that the final network
is optimum. When only this final network is used, the
mapper may miss a better result that could be obtained
from part of an intermediate network in the flow.

Second, synthesis operations usually apply a cost
function (e.g. delay) to the network as a whole. Thus, a
flow to optimize delay may significantly increase area.
However, by combining a delay-optimized network with
one optimized for area, it is possible to get the best of both;
on the critical path, the mapper can choose from the delay-
optimized network, off critical from the area-optimized
network, and near critical from both.

Section 6.1 gives an overview of constructing the choice
network efficiently. Section 6.2 extends the cut
computation to handle choices.

6.1 Constructing the choice network
The choice network is constructed from a collection of

networks that are functionally equivalent. The
identification of functionally equivalent nodes has been a
key component in recent advances in equivalence checking
[15][17].

Conceptually the procedure is as follows: each network is
decomposed into an AIG. All the nodes with the same
global function in terms of the PIs are collected in
equivalence classes. The result is a choice-AIG which has
multiple functionally equivalent points grouped together.

The identification of functionally equivalent points could
be done by computing global BDDs but this is not feasible
for large circuits. One can use random simulation to
identify potentially equivalent nodes, and then use a SAT
engine to verify equivalence and construct the equivalence
classes. To this end, we implemented a package called
FRAIG (Functionally Reduced And-Inverter Graphs). This
package exposes APIs comparable to a BDD package but
internally uses simulation and SAT. More details may be
found in the technical report [19].

Example. Figures 4 and 5 illustrate construction of a
network with choices. Networks 1 and 2 in Figure 4 show
the subject graphs obtained from two networks that are
functionally equivalent but structurally different. The nodes
x1 and x2 in the two subject graphs are functionally
equivalent (up to complementation). They are combined in
an equivalence class in the choice network, and an arbitrary
member (x1 in this case) is set as the class representative.
Node p does not lead to a choice because p is structurally
the same in both networks. Note also that there is no choice
corresponding to the output node o since the procedure
detects the maximal commonality of the two networks.

Figure 4. Equivalent networks before choicing.

p

o

p = b c
o = a + p (d + e)

a b c d e

p

o

p = b c
o = a + p d + p e

Network 1 Network 2

a b c d e

x

x

s

q r

A different way of generating choices is by iteratively the
Λ- and ∆-transformations [16]. Given an AIG, the
associativity of the AND operation is used to locally re-
write the graph (the Λ-transformation), i.e. whenever the
structure AND(AND(x1, x2), x3) is seen in the AIG, it is
replaced by the equivalent structures AND(AND(x1, x3), x2)
and AND(x1, AND(x2, x3)). If this process is done until no
new AND nodes are created, it is equivalent to identifying
the maximal multi-input AND-gates in the AIG and adding
all possible tree decompositions of these gates. Similarly,
the distributivity of AND over OR (the ∆-transformation)
provides another source of choices.

Figure 5. The choice network.

Using structural choices leads to a new way of thinking

about logic synthesis: rather than trying to come up with a
good final netlist used as an input to mapping, one can
postpone decisions and simply accumulate choices by
applying arbitrary transformations, which lead to
improvement in some sense. The best combination of these
choices is selected finally during mapping.

6.2 Cut enumeration with choices
The cut-based structural FPGA mapping procedure can

be extended naturally to handle equivalence classes of
nodes. It is remarkable that only the cut enumeration step
needs modification.

Given a node n, let N denote its equivalence class. Let
Φ(N) denote the set of cuts of the equivalence class N.
Then it is obvious that () ()

n N

N n
∈

Φ = Φ∪ . In addition, if a

and b are the two inputs of n belonging to equivalence
classes A and B, respectively, then

() {{ }} { | (), (),| | }n n u v u A v B u v kΦ = ∪ ∪ ∈Φ ∈Φ ∪ ≤ .
This expression for Φ(n) is a slight modification of the

one used in Section 3 to compute the cuts without choices.
The cuts of n are obtained from the cuts of the equivalence
classes of its fanins (instead of the cuts of its fanins). When
each equivalence class has only one node, this computation
is the same as the one presented in Section 3. As before,

cut enumeration is done in one topological pass from the
PIs to the POs.

Example. Consider the computation of the 3-feasible cuts
of the equivalence class {o} in Figure 5. Let X represent
the equivalence class {x1, x2}. Now, Φ(X) = Φ(x1) ∪ Φ(x2)
= {{x1}, {x2}, {q, r}, {p, s}, {q, p, e}, {p, d, r}, {p, d, e},
{b, c, s}}. We have Φ({o}) = Φ(o) = {{o}} ∪ {u ∪ v | u ∈
Φ({a}), v ∈ Φ({x1}), |u ∪ v| ≤ 3}. Since Φ({a}) = Φ(a) =
{a} and Φ({x1}) = Φ(X), we get Φ({o}) = {{o}, {a, x1},
{a, x2}, {a, q, r}, {a, p, s}}. Observe that the set of cuts of
o involves nodes from the two choices, x1 and x2, i.e. o may
be implemented using either of the two structures.

The subsequent steps of the mapping process (computing
delay-optimum mapping and performing area recovery)
remain unchanged, except that now the additional cuts can
be used for mapping at each node.

6.3 Related Work
Technology mapping over a network that encodes

different decompositions originated in the context of
standard cell mapping with the work of Lehman et al. [16].
Chen and Cong adapted this method for FPGAs in their
work on SLDMap [6]; in particular, they identified large
(5- to 8-input) AND gates in the subject graph, and added
choices corresponding to the different decompositions of
the large AND gates into 2-input AND gates. They used
BDDs to find globally equivalent points, which limited the
scalability of their approach.

The present work is an extension to FPGA mapping of
our work on standard cells [5]. It differs from SLDMap [6]
in two ways. First, the use of structural equivalence
checking, instead of BDDs, makes the choice detection
scalable and robust. Second, instead of adding a dense set
of algebraic choices by brute-force, we add a sparse set of
(possibly Boolean) choices obtained from synthesis. The
expectation is that most of the choices added by the
exhaustive algebraic decompositions only increase runtime
without being useful. In contrast the choices added from
synthesis are expected to be better, since they are a result of
optimization. This is supported by our experiments on
standard cells [5] and we expect similar results to hold for
FPGAs.

7 Experimental results
The improvements to FPGA technology mapping are

currently implemented in ABC [1] as command fpga. Cut
enumeration is implemented as command cut.

7.1 Improved cut computation (run-time)

Table 1 shows the results of exhaustive cut computation
for the largest MCNC benchmarks. To derive AIGs used in
this experiment, the benchmarks were structurally hashed
and balanced first using command balance in ABC.

Exhaustive cut enumeration was performed for
computing K-feasible cuts for 4 ≤ K ≤ 8. Column N gives
the number of AND nodes in the AIG for each benchmark.
Columns C/N give the average number of cuts per node.

p

o

a b c d e

x1 x2

r q
r

s

Columns T give the run-time in seconds on an IBM
ThinkPad laptop with 1.6GHz CPU and 1GB of RAM. The
final column L/N lists the percentage of nodes, for which
the number of 8-input cuts exceeded the predefined limit,
(1000/node for these benchmarks). In computing cuts for 4
≤ K ≤ 7, the number of cuts per node never exceeded the
limit and, as a result, the cuts are computed exhaustively.

In summary, although the number of cuts and their
computation time are exponential in the number of cut
inputs (K), with the proposed improvements all the cuts up
to 7 inputs can often be computed in reasonable time due to
efficient cut filtering based on dominance.

7.2 Improved cut computation (memory)

The second experiment, presented in Table 2 memory
requirements for the cut representation, by showing the
reduction in the peak memory with and without cut
dropping. The amount of memory used for a K-feasible cut
in the ABC data structure is (12+4*K) bytes.

Columns labeled Total list memory usage (in megabytes)
for all the non-dominated, K-feasible cuts at all nodes.
Columns labeled Drop list the peak memory usage (in
megabytes) for the cuts at any moment in the process of cut
enumeration, when the nodes are visited in the topological
order and the cuts at a node are dropped as soon as the cuts
at all the fanouts are computed.

In summary, dropping cuts at the internal nodes after
they are computed and used reduces memory requirements
for the mapper by an order of magnitude on the largest
MCNC benchmarks, and by more then two orders of
magnitude on the large industrial benchmarks, such as [13].

7.3 Computation of factor cuts
The computation of factor cuts described in Section 4 is

implemented in ABC [1]. Table 3 shows the number of
complete factor cuts for K = 6 for a set of benchmarks. The
column labeled “dag” shows the percentage of nodes that
are dag nodes. On average about 27% of the nodes are dag
nodes. The number of reduced cuts is about 64% of the
total number of cuts. Enumerating complete factor cuts is
about 2 times faster than enumerating all cuts.

Table 4 shows the number of all cuts, complete factor
and partial factor cuts for K = 9 for the same set of
benchmarks. In some cases, not all cuts could be computed
since there were too many. The columns labeled “Over”
indicate the fraction of nodes at which the maximum limit
of 2000 cuts was exceeded. When enumerating all cuts, the
limit was exceeded in about 16% of the nodes on average.
However, the reduced cut enumeration exceeded the limit
in only 6.5% of the nodes. (The tree cut enumeration never
exceeded the limit.) The number of complete factor cut cuts
is about 68% and the enumeration runs about 34% faster.

The columns under “PF” show the number of partial
factor. It is seen from the table that the number of partial
factor cuts is a small fraction of the total number of cuts
(15%) and the time for enumerating these cuts is less than

10% of the time required to enumerate all cuts. During
enumeration only a small fraction of nodes (less than 0.5%)
exceeded the limit of 2000 when computing dag cuts and
hence those data are not shown in Table 4.

We note here that the multiplier (C6288) is a particularly
interesting benchmark. In comparison with other
benchmarks, it has many — about 60% — dag nodes. This
negates the advantage of computing partial factor cuts as
the factor trees are small. Hence the factor cut enumeration
takes unusually long.

In summary, enumeration of factor cuts is feasible even
for large cut sizes. Even for small K, enumerating complete
factor cuts is significantly faster than enumerating all cuts.

7.4 Delay-optimal mapping with factor cuts
A prototype FPGA mapper using factor cuts was

implemented in ABC [1]. Table 5 shows the delay and run-
times of the various modes of this mapper for K = 9. The
first set of columns (under the heading “Lim = 2000”)
show that complete factorization (CF) produces better
results than enumerating all cuts and is faster. These
columns directly correspond to the “All” and “CF” cut data
shown in Table 4. Note that the sub-optimality of
enumerating all cuts is due to the fact that not all cuts could
be computed for the nodes — there was an overflow of
16%. Also by comparing the cut computation run-times in
Table 4 with the overall mapping run-times in Table 5 we
can see that the mapping run-time is dominated by cut
computation. Expansion takes a small fraction of the total
run-time and on average about 25% of the nodes needed to
be expanded.

The second set of columns (under the heading “Lim =
1000”) show the effect of reducing the limit on the
maximum number of cuts stored at a node. Although the
cut computation is more than twice as fast, the delay is
15% worse when enumerating all cuts. Complete
factorization continues to produce better delays and has
shorter run-times. The final set of columns (under the
heading “PF”) shows the delay and run-time obtained with
partial factorization. Although 1-step expansion from
partial factor cuts may not generate all K-feasible cuts, the
cuts that it does generate are competitive with those
enumerated by the conventional procedure under the limit.
Furthermore, partial factorization is about 6X faster than
conventional enumeration.

We also experimented with partial factorization for
different values of K. For K = 6 we found that partial
factorization produces about 5% worse results than
enumerating all cuts thought it runs about 3X faster. For K
= 12, we found that trying to enumerate all cuts leads to
poor results since more than 40% of the nodes exceed the
cut limit. Partial factorization works better, producing 50%
smaller delay on average than exhaustive enumeration.

In summary, for large K (say 9 or 12) complete
enumeration is not possible, and only a subset of cuts of a
node can be stored and propagated in practice. Factor cuts

provide a better alternative in this scenario, since “better”
cuts are generated and stored. Our experiments show that
the use of factor cuts leads to better mapped results than
reducing the limit on the total number of cuts stored at a
node in conventional enumeration.

7.5 Improved area recovery

Sections DAOmap and ABC-baseline of Table 6 compare
FPGA mapping results for 5-input LUTs using DAOmap
[4] and our mapper with improved area recovery
implemented in ABC [1]. DAOmap was run on a 4 CPU
3.00GHz computer with 510Mb RAM under Linux. ABC
was run on a 1.6GHz laptop with 1Gb RAM under
Windows. All benchmarks were pre-optimized using
script.algebraic in SIS followed by decomposition into
two-input gates using command dmig in RASP [10]. To
ensure identical starting logic structures, the same pre-
optimized circuits originally used in [4] were used in this
experiment. All the resulting netlists have been verified by
a SAT-based equivalence checker [22].

Columns 2 and 5 give the number of logic levels of LUT
networks after technology mapping. The values in these
columns are equal in all but one case (benchmark frisc).
This observation supports the claim that both mappers
perform delay-optimum mapping for the given logic
structure. The one difference may be explained by minor
variations in the manipulation of the subject graph, such as
AIG balancing performed by ABC.

Columns 3 and 6 show the number of LUTs after
technology mapping. The difference between the results
produced by the two mappers reflects the fact that different
area recovery heuristics are used and, possibly, that ABC-
baseline performs area recovery in a topological order,
whereas DAOmap uses a reverse topological order.

Columns 4 and 7 report the run-times in seconds. These
include the time for reading a BLIF file, constructing the
subject graph and performing technology mapping with
area recovery. The differences in run-times are due to the
differences in the basic data structures, improved cut
enumeration, and scalability of the area recovery heuristics.

In summary, Table 6 demonstrates that the mapper in
ABC designed using the improved cut enumeration and the
proposed heuristics for area recovery performs well on the
selected benchmarks.

7.6 Lossless synthesis

Section ABC-choices of Table 6 gives mapping results
for the same benchmarks when lossless synthesis is used.
The alternative logic structures used for this were
generated in ABC by applying script choice listed in the
resource file abc.rc found in the ABC distribution. This
script uses the original network and two snapshots of this
network derived by applying two logic synthesis scripts in
ABC, resyn and resyn2. Both scripts are based on iterative
application of AIG rewriting [20]. The three resulting
networks are combined into a single choice network where
functionally equivalent nodes are detected, as shown in

Section 6. The mapping run-time listed in section ABC-
choices in Table 6 includes the runtime of logic synthesis,
choicing, and FPGA mapping with choices.

Section ABC-choices 5x shows the results of repeated
application of mapping with choices. For this, the netlist
mapped into LUTs by the first mapping with choices was
re-decomposed into an AIG by factoring the logic
functions of the LUTs, and subjecting the result to the same
lossless synthesis flow followed, as before, by mapping
with choices. This process was iterated five times, which
gradually transformed logic structure to one better for
FPGA mapping into 5-input LUTs. The last column shows
the run-time, in seconds, taken by the complete flow,
including reading BLIF files, 5 iterations of logic synthesis,
and five iterations of FPGA mapping with choices.

The quality of FPGA technology mapping (both delay
and area) are substantially improved after several iterations
of choicing and mapping with choices. Each iteration
generates structural variations on the currently selected best
mapping and allows the mapper to combine the resulting
choices even better by mixing and matching different logic
structures. Iterating the process tends to gradually “evolve”
structures that are good for the selected LUT size
independent of the structure of the original network.

We also compared our lossless synthesis with the
technique in [6], which used associative choices for multi-
input AND-gates. The improvements due to these choices
(5% in delay, 4% in area) are less than those due to the
proposed lossless synthesis (6% in delay, 12% in area),
compared to DAOmap, used as a baseline in Table 6. On
the other hand, exhaustively adding associative
decompositions greatly increases the total number of
choices, leading to many more cuts. This slows down the
mapper more than relatively few choices added by the
proposed lossless synthesis.

Regarding the theoretical time complexity of iterative
mapping with choices, the complexity is bounded by the
exponential time needed to detect choices. However, in
practice, due to fast equivalence checking, the runtime is
reasonable, as can be seen from the experimental results.
The theoretical time complexity of choicing can also be
made linear if choices are recorded during logic synthesis
instead of being detected later.

In summary, the above experiments demonstrate that
lossless synthesis can substantially reduce delay and area of
the mapped netlists, both as a stand-alone mapping
procedure and as a post-processing step applied to an
already computed FPGA mapping.

8 Conclusions
In this paper, we have taken the state-of-the-art

techniques for LUT-based technology mapping, added
three new improvements, and implemented all in a new
FPGA mapper available in ABC [1]. The three
improvements are: (1) reduction in run-time and memory
requirements for cut enumeration; (2) improved area
recovery through combined use of global-view and local-

view heuristics; and (3) improved delay and area through
the use of multiple circuit structures to mitigate structural
bias during technology mapping.

These improvements are confirmed by experimental
results using the new mapper. The improved area recovery
procedure leads, on average, to a substantial improvement
in run-time and a 6% smaller area, compared to DAOmap,
while preserving the optimum delay when starting from the
same logic structure. Using multiple logic structures via
lossless synthesis leads to a 6% improvement in delay
along with a 12% reduction in area while the run-time is
slightly increased, compared to DAOmap. When lossless
synthesis and FPGA mapping are iterated 5 times, delay
and area improve 10% and 20%, respectively, at the cost of
increasing runtime 8 times (which includes the extra logic
synthesis time).

We also introduced the notion of cut factorization to
enable delay-oriented mapping for large LUT sizes. Cut
factorization can be seen as an alternative to storing a
limited number of cuts at a node in conventional
enumeration, and the experimental results show that using
factor cut-based mapping leads to better delays and shorter
run-times than conventional enumeration.

Future Work: Confirmation of the full usefulness of
factor cuts remains for future experiments. Our next goal is
to apply factor cut computation for technology mapping
into macro cells, or configurable logic blocks in FPGAs
with 8 or more inputs. Macro cells differ from LUTs in that
they can implement a subset of all functions of the given
number of inputs. Another possibility is to use factor cuts
in standard cell mapping and in logic synthesis by re-
writing [20]. The cut size correlates with the capability of a
mapper (or a re-writing algorithm) to overcome structural
bias. The larger the cut, the larger is the scope of Boolean
matching (or Boolean transform), and the smaller the
structural bias.

Also, a major work for the future will be to extend the
improvements to FPGA mapping for the case of integrated
sequential optimization, which includes logic restructuring,
mapping, and retiming, as presented in [21].

Acknowledgment
This research was supported in part by NSF contract,

CCR-0312676, by the MARCO Focus Center for Circuit
System Solution under contract 2003-CT-888, and by the
California Micro program with our industrial sponsors,
Altera, Intel, Magma, and Synplicity.

The authors are grateful to Jason Cong and Deming Chen
for providing the set of pre-optimized benchmarks from
[4], which allowed for a comparison with DAOmap in
Table 6.

References
[1] Berkeley Logic Synthesis and Verification Group, ABC: A System

for Sequential Synthesis and Verification.
http://www.eecs.berkeley.edu/~alanmi/abc/

[2] V. Bertacco and M. Damiani, "Disjunctive decomposition of logic
functions," Proc. ICCAD ‘97, pp. 78-82.

[3] B. Bloom. “Space/time tradeoffs in hash coding with allowable
errors,” Comm. of the ACM 13:7 (1970), pp. 422-426.

[4] D. Chen and J. Cong. “DAOmap: A depth-optimal area optimization
mapping algorithm for FPGA designs,” Proc. ICCAD ’04, pp. 752-
757.

[5] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
"Reducing structural bias in technology mapping", Proc. ICCAD '05,
pp. 519-526. http://www.eecs.berkeley.edu/~alanmi/
publications/2005/iccad05_map.pdf

[6] G. Chen and J. Cong, “Simultaneous logic decomposition with
technology mapping in FPGA designs,” Proc. FPGA `01, pp 48-55.

[7] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA
designs”, IEEE Trans. CAD, Vol.13(1), Jan. 1994, pp. 1-12.

[8] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Trans. VLSI, Vol 2(2), Jun. 1994, pp
137-148.

[9] J. Cong, C. Wu and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” Proc. FPGA `99, pp.
29-36.

[10] J. Cong et al, RASP: FPGA/CPLD Technology Mapping and
Synthesis Package.
http://ballade.cs.ucla.edu/software_release/rasp/htdocs/

[11] N. Eén, A. Biere “Effective preprocessing in SAT through variable
and clause elimination,” Proc. SAT’05.

[12] A. Farrahi and M. Sarrafzadeh, “Complexity of lookup-table
minimization problem for FPGA technology mapping,” IEEE Trans.
CAD, vol. 13 (11), 1994, pp. 1319-1332.

[13] IWLS 2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html
[14] C.-C. Kao, Y.-T. Lai, “An efficient algorithm for finding minimum-

area FPGA technology mapping". ACM TODAES, vol. 10(1), Jan.
2005, pp. 168-186.

[15] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust
boolean reasoning for equivalence checking and functional property
verification," IEEE Trans. CAD, Vol. 21(12), 2002, pp. 1377-1394.

[16] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. CAD, vol.
16(8), 1997, pp. 813-833.

[17] F. Lu, L. Wang, K. Cheng, J. Moondanos and Z. Hanna, “A signal
correlation guided ATPG solver and its applications for solving
difficult industrial cases," Proc. DAC `03, pp. 668-673.

[18] V. Manohararajah, S. D. Brown, Z. G. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping,” Proc.
IWLS ’04, pp. 14-21.

[19] A. Mishchenko, S. Chatterjee, R. Jiang, and R. Brayton, "FRAIGs: A
unifying representation for logic synthesis and verification," ERL
Technical Report, EECS Dept., UC Berkeley, March 2005.

[20] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis", Proc. DAC
'06. http://www.eecs.berkeley.edu/~alanmi/publications/
2006/dac06_rwr.pdf

[21] A. Mishchenko, S. Chatterjee, R. Brayton, and P. Pan, "Integrating
logic synthesis, technology mapping, and retiming", ERL Technical
Report, UC Berkeley, April 2006. http://www.eecs.berkeley.edu/
~alanmi/publications/2006/tech06_int.pdf

[22] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Eén,
“Improvements to combinational equivalence checking”, Submitted
to IWLS ’06. ttp://www.eecs.berkeley.edu/~alanmi/publications/
2006/iwls06_cec.pdf

[23] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs,” Proc. FPGA ’98, pp. 35-42.

Table 1. Performance of improved K-feasible cut computation (see Section 7.1).

 K = 4 K = 5 K = 6 K = 7 K = 8

Name N C/N T, s C/N T, s C/N T, s C/N T, s C/N T, s L/N, %
alu4 2642 6.7 0.00 12.3 0.01 23.1 0.04 45.5 0.18 94.7 1.02 0.00
apex2 2940 7.2 0.01 14.2 0.02 29.2 0.07 62.6 0.32 139.7 1.90 0.00
apex4 2017 8.5 0.00 19.5 0.03 47.0 0.10 116.3 0.62 293.5 4.49 0.10
bigkey 3080 6.6 0.01 12.1 0.02 24.2 0.05 50.1 0.20 99.7 0.84 0.00
clma 11869 8.1 0.04 18.2 0.11 44.4 0.51 114.9 3.01 306.3 20.99 1.64
des 3020 8.0 0.01 17.0 0.03 38.7 0.12 92.0 0.69 218.0 4.80 4.37
diffeq 2566 6.5 0.01 12.3 0.01 26.6 0.07 65.0 0.50 155.9 2.80 3.66
dsip 2521 6.2 0.01 10.7 0.01 20.7 0.03 42.0 0.10 86.7 0.44 0.00
elliptic 5502 6.4 0.01 10.6 0.03 18.5 0.07 36.9 0.33 83.4 2.12 0.20
ex1010 7652 9.2 0.02 23.3 0.11 61.8 0.61 165.8 4.01 438.2 30.43 1.99
ex5p 1719 9.4 0.01 24.1 0.02 66.2 0.17 188.2 1.30 514.8 10.50 14.14
frisc 5905 7.1 0.01 14.4 0.04 32.3 0.16 79.8 0.88 209.0 6.30 1.24
misex3 2441 7.7 0.01 15.7 0.02 33.3 0.08 73.7 0.38 170.7 2.48 0.00
pdc 7527 9.4 0.03 24.8 0.12 67.4 0.68 183.7 4.41 489.4 31.71 4.40
s298 2514 7.9 0.00 17.5 0.02 44.0 0.13 121.9 0.94 346.5 7.10 7.56
s38417 12867 6.6 0.03 13.5 0.10 32.0 0.46 83.1 3.24 225.9 23.72 3.38
s38584.1 11074 6.1 0.03 11.4 0.06 22.4 0.20 46.7 0.98 101.5 5.81 0.86
seq 2761 7.5 0.00 15.2 0.02 31.7 0.08 68.6 0.37 153.3 2.25 0.04
spla 6556 9.6 0.03 25.8 0.11 73.9 0.69 215.5 4.98 561.4 31.14 13.83
tseng 1920 6.5 0.01 11.8 0.01 23.5 0.04 50.6 0.21 112.7 1.32 1.35
Average 4954.65 7.56 0.01 16.22 0.05 38.05 0.22 95.15 1.38 240.07 9.61 2.94

Table 2. Peak memory requirements, in megabytes, for the cuts with and without dropping (see Section 7.2).

 K = 4 K = 5 K = 6 K = 7 K = 8
Name Total Drop Total Drop Total Drop Total Drop Total Drop

clma 2.56 0.10 6.60 0.22 18.09 0.54 52.03 1.47 152.55 4.07
ex1010 1.87 0.37 5.45 0.97 16.25 2.27 48.40 4.68 140.70 8.38
pdc 1.90 0.27 5.69 0.75 17.42 2.00 52.75 4.98 154.56 11.83
s38417 2.28 0.15 5.28 0.37 14.12 1.10 40.80 3.55 121.98 10.25
s38584.1 1.80 0.11 3.86 0.20 8.52 0.40 19.72 0.86 47.15 1.94
spla 1.68 0.21 5.15 0.59 16.63 1.65 53.88 4.34 154.44 10.04
Ratio 1.00 0.11 1.00 0.10 1.00 0.08 1.00 0.07 1.00 0.06

Table 3. Comparison of conventional enumeration (All) and complete factorization (CF) for K = 6. The run-
times for this table (and Tables 4 and 5) are on a 3GHz Intel Pentium 4 with 1GB of RAM. See Section 7.3.

Nodes Number of cuts Run-time (sec) Name

Total %Dag Total Reduced Tree All Factor
C1355 541 50.09 47245 25811 657 0.16 0.06
C1908 435 38.85 16546 10153 558 0.04 0.01
C2670 920 17.50 27734 14828 1583 0.07 0.02
C3540 1081 22.94 46392 29356 2064 0.10 0.05
C5315 1827 22.22 67118 35852 2677 0.13 0.07
C6288 2369 60.11 279197 209807 2818 0.82 0.53
C7552 2248 29.40 129161 78543 3251 0.28 0.16
b14 6296 23.60 397951 226401 11300 0.69 0.32
b15 8869 22.01 416804 265870 18102 0.65 0.35
clma 24387 11.20 739582 658314 27419 0.52 0.51
pj1 17675 19.11 781566 465554 32725 1.20 0.61
pj2 4055 14.38 110103 84839 5889 0.13 0.10
pj3 11178 22.45 523448 373960 22659 0.77 0.50
s15850 4127 25.66 108433 75509 6066 0.18 0.11
s35932 13711 35.89 341330 223743 16106 0.52 0.30
s38417 10820 25.00 294832 164264 16895 0.47 0.23
Ratio 27.53 1.00 0.64 0.04 1.00 0.55

Table 4. Comparison of conventional enumeration (All), complete factorization, and partial factorization (PF)
for K = 9. The number of all 9-feasible cuts is an underestimate. See Section 7.3 for details.

Number of cuts Run-time (sec)

All CF PF Name
Total Over Reduced Over Tree Dag Leaf-dag

All CF PF

C1355 433995 19.96 398226 16.82 657 103255 1457 10.77 9.86 1.25
C1908 247474 9.20 136755 2.30 562 53094 2582 4.06 1.94 0.51
C2670 363647 10.54 227604 2.61 3086 8412 11239 7.77 4.04 0.11
C3540 723405 18.69 531281 6.29 2818 29858 23391 16.37 12.3 0.27
C5315 822569 6.95 402009 0.71 2827 53299 12290 17.72 6.06 0.32
C6288 3232621 43.56 3220602 43.14 2818 2273878 6072 126.38 139.99 70.34
C7552 1632538 20.60 1100358 4.89 5214 186769 14341 38.64 24.93 1.52
b14 8937035 54.57 5734487 7.91 15607 507448 96713 182.01 144.51 2.78
b15 7498534 16.24 4484041 3.33 27812 995259 150682 148.60 74.91 11.86
clma 8870652 0.85 7688879 0.67 27419 364384 955803 60.29 50.3 4.13
pj1 12695024 18.91 7806133 3.55 63466 775824 443649 196.31 130.31 11.57
pj2 1633480 6.98 1315608 2.98 5944 48941 45664 24.29 20.13 0.16
pj3 8644521 18.00 5900954 5.47 69542 861144 291336 142.95 106.91 12.07
s15850 1323074 6.47 966661 3.46 8542 40838 52282 23.91 18.54 0.29
s35932 1623042 0.00 928175 0.00 16106 60029 54860 10.42 3.95 0.13
s38417 3678001 5.15 1587491 0.63 25547 69623 113578 61.24 19.1 0.69
Ratio 1.00 (16.04) 0.68 (6.55) 0.00 0.12 0.03 1.00 0.66 0.08

Table 5. Comparison of conventional mapping (All) and complete factorization (CF) with limits of 1000 and
2000, and partial factorization with a limit of 2000 cuts per node. K = 9. See Section 7.3.

Lim = 2000 Lim = 1000 PF with Lim = 2000

Delay Run-time (sec) Delay Run-time (sec) Name
All CF All CF All CF All CF

Delay Run-time(sec)

C1355 4 3 10.82 9.93 5 3 3.02 3.46 3 5.21
C1908 4 4 4.1 1.96 5 5 1.49 0.94 4 0.59
C2670 4 4 7.82 4.1 4 4 3.21 2.33 4 1.93
C3540 6 6 16.46 12.43 7 6 4.98 5.35 6 0.95
C5315 5 5 17.82 6.15 5 5 8.06 3.92 5 0.94
C6288 12 12 126.71 140.41 20 15 35.59 33.99 11 72.07
C7552 5 4 38.82 25.18 5 5 14.9 11.17 4 2.00
b14 10 10 183 147.17 12 10 43.86 63.21 10 6.99
b15 12 10 149.45 76.38 13 11 46.67 39.5 13 20.85
clma 9 9 61.13 51.38 9 9 40.28 36.76 10 8.36
pj1 8 8 197.64 132.27 8 8 61.83 62.99 9 22.30
pj2 4 4 24.48 20.39 5 4 9.16 8.81 4 0.27
pj3 6 6 143.89 108.18 8 7 48.76 49.99 7 24.37
s15850 8 7 24.06 18.86 9 8 10.54 8.33 7 2.12
s35932 2 2 10.59 4.15 2 2 7.46 4.14 2 0.21
s38417 5 4 61.64 19.73 6 5 24.97 12.79 4 2.90
Ratio 1.00 0.94 1.00 0.67 1.15 1.09 0.40 0.32 0.97 0.15

Table 6. Comparing FPGA mapper with improvements with DAOmap [4] (see Section 7.5).

DAOmap ABC-baseline ABC-choices ABC-choices 5x Name
Delay LUTs T, s Delay LUTs T, s Delay LUTs T, s Delay LUTs T, s

alu4 6 1065 0.5 6 984 0.16 6 971 1.36 6 889 6.58
apex2 7 1352 0.6 7 1216 0.19 7 1170 1.52 6 1046 7.27
apex4 6 931 0.7 6 899 0.18 6 890 1.11 6 852 5.76
bigkey 3 1245 0.6 3 805 0.18 3 805 1.05 3 695 7.00
clma 13 5425 5.9 13 4483 0.82 11 3695 10.54 11 2788 32.83
des 5 965 0.8 5 957 0.24 5 997 1.92 5 914 10.74
diffeq 10 817 0.6 10 830 0.17 9 785 1.37 9 761 5.48
dsip 3 686 0.5 3 694 0.17 3 694 0.93 3 693 5.64
elliptic 12 1965 2.0 12 2026 0.31 12 2085 1.81 12 2048 13.20
ex1010 7 3564 4.0 7 3151 0.59 7 2973 3.80 7 2749 21.42
ex5p 6 778 1.0 6 752 0.26 5 671 1.60 5 515 6.92
frisc 16 1999 1.9 15 2016 0.39 14 1971 2.21 13 1937 15.07
misex3 6 980 0.8 6 952 0.19 6 923 1.30 5 814 6.26
pdc 7 3222 4.6 7 2935 0.65 7 2592 5.28 7 2310 29.49
s298 13 1258 2.4 13 828 0.21 10 771 1.90 9 716 7.05
s38417 9 3815 3.8 9 4198 0.73 8 3144 7.58 7 3035 24.87
s38584 7 2987 27.0 7 3084 0.58 7 2754 6.66 6 2641 24.02
seq 6 1188 0.8 6 1099 0.22 5 1035 1.67 5 819 8.04
spla 7 2734 4.0 7 2518 0.60 7 2244 4.78 7 1922 23.17
tseng 10 706 0.6 10 759 0.17 9 725 0.86 8 725 4.23
Ratio 1.00 1.00 1.00 1.00 0.94 0.22 0.94 0.88 1.60 0.90 0.81 7.94

