
 1

Abstract—This work presents the first published algorithm to

simultaneously optimize both short- and long-path timing
constraints in a Field-Programmable Gate Array (FPGA): the
Routing Cost Valleys (RCV) algorithm. RCV consists of two
components: a new slack allocation algorithm that determines
both a minimum and a maximum delay budget for each circuit
connection, and a new router that strives to meet and, if possible,
surpass these connection delay constraints. RCV improves both
long-path and short-path timing slack significantly versus an
earlier Computer-Aided Design (CAD) system, showing the
importance of an integrated approach that simultaneously
optimizes both types of timing constraints. It is able to meet long-
path and short-path timing on all 157 Peripheral Component
Interconnect (PCI) cores tested, while an earlier algorithm failed
to achieve timing on 75% of the cores. Even in cases where there
are no short-path timing constraints, RCV outperforms a state-
of-the-art FPGA router and improves the maximum clock speed
of circuits by an average of 3.2% (and up to 24.7%).

Index Terms—FPGA, routing, slack allocation, timing

I. INTRODUCTION
ONG-PATH timing optimization is a key feature of many
academic and all commercial FPGA CAD flows. Long-

path timing constraints indicate that the longest path delay
between certain circuit endpoints must be less than some value
in order for a design to meet its performance goals. Examples
of long-path timing constraints include clock frequency
requirements, setup times required at circuit primary inputs
relative to some clock (TSETUP), and maximum permissible
clock-to-output delays at circuit primary outputs (maximum
TCLOCK-TO-OUTPUT). Long-path timing optimization for FPGAs
has been extensively researched, and is crucial to achieving
the best performance in a device. For example, a recent
commercial FPGA CAD system achieves 50% higher circuit
performance with full-effort timing-driven placement and
routing than with algorithms that focus only on wirelength [1],
at a cost of 5x increased run time. If a CAD tool fails to
satisfy all long-path timing constraints, the designer must

Manuscript received March 28, 2007.

The authors are with Altera Corporation, Toronto Technology Center,

Toronto, Canada (e-mails: {rfung, vbetz, wchow}@altera.com).

Copyright (c) 2007 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

generally either re-design the circuit or perform some level of
manual synthesis, placement and/or routing. Both of these
options are very time-consuming and reduce designer
productivity, underscoring the need for the highest quality
automatic optimization possible.

To create a functional design, however, one must satisfy not
only long-path timing constraints, but also all short-path
timing constraints. Short-path timing constraints specify that
the minimum path delay between two circuit endpoints must
be greater than some value. Such constraints occur not only
between registers in a chip to guarantee there are no hold-time
violations within the chip, but also on paths from the circuit
primary inputs to registers (input THOLD requirements), and on
paths from registers to circuit primary outputs (minimum
TCLOCK-TO-OUTPUT requirements), to guarantee correct data
transfers between chips.

Generally, if a design does not meet all long-path timing
constraints, it must be run at a lower frequency. However, if a
design fails to meet its short-path constraints, it will fail to
operate at any frequency. Despite this fact, short-path timing
optimization has received little research attention in academia
and, until recently, little attention in industrial FPGA CAD
tools. This resulted in FPGA designers having to manually fix
short-path violations – a laborious process that is becoming
ever more painful as designs grow, and clocking structures
increase in complexity. As well, since fixing short-path timing
violations involves adding delay to portions of the circuit,
manually fixing short-path violations often creates long-path
violations, resulting in lengthy design iterations.

The FPGA industry has recently recognized that requiring
manual optimization of short-path timing is no longer
acceptable, and recent versions of Altera's Quartus II CAD
system [2] and Xilinx's ISE CAD system [3] both incorporate
optimization algorithms for short-path constraints. This paper
presents a new algorithm, RCV, which is the first published
algorithm for simultaneously satisfying both short-path and
long-path timing constraints in an FPGA, and which has been
incorporated into Altera’s Quartus II CAD system.

The RCV algorithm described in this paper has several
advantages over prior techniques. First, it removes the need
for designers to manually repair short-path violations. Second,
this algorithm meets short-path constraints by inserting extra
routing delay where appropriate. This wastes no logic, in
contrast with the typical manual technique of inserting logic
cells configured as buffers to slow down signals. Third, RCV
simultaneously optimizes to meet both short-path and long-

Slack Allocation and Routing to Improve FPGA
Timing While Repairing Short-Path Violations

Ryan Fung, Vaughn Betz, Member, IEEE, and William Chow

L

 2

path timing constraints, maximizing the chance of achieving a
design implementation that meets all constraints. Fourth, the
algorithm includes a new technique to increase the probability
of closing timing despite inaccuracy in delay estimation
during optimization. Finally, the RCV algorithm outperforms
prior approaches and increases design performance even when
applied to the traditional long-path timing optimization
problem with no short-path constraints.

This paper is organized as follows. Section II outlines
related background and prior work. Section III provides a
precise problem definition and Section IV describes the RCV
algorithm. Section V presents experimental results. Section VI
summarizes our conclusions.

II. BACKGROUND AND PRIOR WORK

A. FPGA Architecture for Short-Path Optimization

Prior to this work, FPGA vendors primarily attacked the
short-path problem by building special hardware features into
their FPGAs instead of employing more general CAD
algorithms. First, FPGAs include dedicated low-skew clock
networks. When a clock is routed on such a network, register
transfers within the clock domain will not have hold-time
(short-path) violations. Second, FPGAs include programmable
delay chains in each IO cell. The designer or the CAD tool
sets these delay chains to slow down incoming and outgoing
signals to meet short-path constraints at the FPGA periphery.

These hardware solutions fall short of the needs of modern
FPGAs and designs. First, today’s complex FPGA designs
often contain more clocks than low-skew networks. This
forces some clocks to use regular routing, which introduces
clock skew and, hence, increases the chance of a short-path
violation. Second, the increasing magnitude of process
variation and the increasing speed of FPGAs are making it
more difficult to design a clock network with sufficiently low
skew that all possible register transfers are free of short-path
timing problems. Third, many modern designs use Phase-
Locked Loops (PLLs) to generate phase- and frequency-
related clocks; those designs typically expect synchronous
transfers between these clock domains. This often leads to
short-path timing problems. Fourth, programmable delay
chains require a large amount of area, so they are typically
only used to slow down signals at the point they intersect the
chip periphery and this limits their utility. For example,
several timing paths may begin at the same input IO, pass
through a common delay chain, and terminate at various
registers throughout the chip. Each of those paths would
“prefer” a different delay chain setting to ensure short-path
timing can be met while still satisfying long-path constraints.
However, since all those paths pass through the same delay
chain, a compromise setting must be used instead. Fig. 1
illustrates the problem. If the goal is to program the delay

chain to achieve IO THOLD ≤ 0 and TSETUP ≤ 3 ns1, no setting of
the delay chain can meet both constraints. To satisfy THOLD ≤ 0
at Register A, the delay chain must be set to at least (3 ns - 2
ns) = 1 ns, but to satisfy TSETUP ≤ 3 ns at Register B, the delay
chain must be set to (3 ns + 3 ns - 6 ns) = 0 ns (turned off).

Fig. 1. Example of programmable delay chain use.

B. ASIC Techniques for Short-Path Optimization

Typically, Application-Specific Integrated Circuit (ASIC)
CAD tools fix short-path timing violations by inserting chains
of buffers on some connections to slow down paths. Shenoy et
al [4] present two algorithms to help address the short-path
buffer insertion problem – a greedy algorithm (with quadratic-
time complexity in connection count) and one based on linear
programming. Both algorithms are used to determine the
minimum delay that should be added to connections to satisfy
short-path timing without creating long-path violations. In
FPGAs, the equivalent technique inserts logic cells configured
as buffers on some connections; this is highly inefficient since
it can consume a significant portion of the device logic.
Consequently, a new approach is needed for FPGA short-path
optimization.

C. Long-Path Timing Optimization

The RCV algorithm builds on two prior long-path timing
optimization algorithms: slack allocation and negotiated-
congestion routing.

1. Slack Allocation

Timing constraints are specified on circuit paths. The end-
points of paths are typically registers, primary inputs, or
primary outputs – with zero or more levels of combinational
logic between them. In general, a path can be any series of
connections in a circuit. The number of possible paths in a
circuit is exponential in connection count. Explicitly
monitoring all these paths during optimization would be
highly inefficient in both memory and run-time. Long-path
slack allocation is a well-known technique that produces a

1 IO THOLD and TSETUP refer to timing relationships between the data and

clock at the periphery of the FPGA. IO TSETUP specifies the minimum amount
of time the data should arrive at the FPGA before the clock. This datasheet-
style specification is independent of clock frequency. In the example, the
designer is promising the data will arrive ≥ 3 ns before the clock and hence is
asking that the FPGA be configured so IO TSETUP ≤ 3 ns. This can be achieved
by controlling the clock and data path delays within the FPGA. IO THOLD
specifies the minimum time the data should be held at the FPGA after the
clock. The designer is promising to hold the data until the clock and so is
asking that the FPGA be configured to achieve IO THOLD ≤ 0.

Path A Delay: 2 ns
A

BIO

Clock

Programmable Delay Chain

Clock Delay: 3 ns

Logic Cells

Path B Delay: 6 ns

 3

maximum delay budget for each circuit connection. If the
design can be implemented so that each connection has a
delay less than its maximum delay budget, all long-path
constraints will be satisfied.

Various techniques have been discussed for long-path slack
allocation. All these techniques rely on long-path timing
analysis to compute connection slacks, where a connection
slack is the minimum slack of all paths passing through that
connection.

The Zero-Slack Algorithm (ZSA) is developed in [5]. ZSA
starts with a set of connection delays that result in all long-
path slacks being positive. It then iterates between allocating
slack to increase the connection delays and performing timing
analyses to update the connection slacks. In each iteration,
ZSA identifies the path with the smallest positive slack and
distributes the slack to the connections of the respective path
by increasing the connection delays. Eventually, all the
positive path slack is allocated, and every connection has zero
slack. The final set of connection delays can be used as
maximum delay budgets. Runtime is quadratic in the number
of connections.

The Iterative-Minimax-PERT algorithm [6] improves on
ZSA by introducing a faster allocation algorithm. This
algorithm defines weights that control slack distribution –
connections with larger weights are allocated more slack. Path
weights can be computed from the connection weights, where
the weight of a path is the sum of the weights of its
connections. Of the total path slack, slack(c), the portion
allocated to each connection, c, is:

h(c)ths_throug_of_all_pamax_weight
weight(c)slack(c)

cated(c)slack_allo
⋅

= (1)

This technique has linear-time complexity in the number of
connections because each slack-allocation iteration uses (1) to
try to distribute all the remaining slack throughout the design
and, in practice, only a few iterations are needed to converge.

The Limit-Bumping Algorithm [7] proposes the use of
connection lower delay bounds. By ensuring that the
maximum delay budget of each connection is larger than its
lower delay bound, many unrealizable solutions are avoided.
To facilitate this, a weighting scheme is proposed that
encourages removal of delay from connections that are further
from their lower delay bounds. Finally, this algorithm is
capable of handling problems where some slacks are initially
negative.

Techniques for optimally distributing slack using linear
programming techniques and dual min-cost flow have recently
been presented [8][9]. These techniques support weights like
Minimax-PERT, in addition to lower and upper bounds on
budgets, and balanced budget distribution. These more
powerful budgeting frameworks can be more computationally
intensive than Minimax-PERT.

2. FPGA Routing

While there are many FPGA routing techniques, only a
minority of the algorithms developed explicitly analyze and
optimize circuit timing, and all of those algorithms focus

solely on meeting long-path constraints [7][10][11][12][14].
Frankle, in [7], describes a router that attempts to route

connections so each has a delay less than a maximum delay
budget, determined from a long-path slack allocation.
Connections with maximum delay budgets closer to their
lower-bound “achievable” delays are routed first. If some
connections cannot be routed with delay less than their
maximum delay budgets, the corresponding maximum delay
budgets are increased by 20%, and a rip-up and re-try
procedure is invoked.

In [11], Ebeling et al develop the Pathfinder negotiated-
congestion routing algorithm. This general algorithm has
become a very successful routing technique for FPGAs, and
also underlies the Versatile Place-and-Route (VPR) router
[12]. The academic FPGA routers with the lowest wiring
requirements on a set of standard benchmarks [12][13][15] are
based on negotiated congestion. This indicates that the
negotiated congestion framework is excellent for FPGA
routing, where wiring is generally quite limited.

A negotiated congestion router begins by picking a set of
routing resources – wires and block input/output pins – to
implement each connection. The routing resources are initially
selected so each connection is routed in minimum delay, while
accepting “congestion”. Congestion occurs when multiple nets
use the same routing resource – an electrical short, indicating
an illegal routing. After the initial routing of connections, the
router iteratively re-routes nets encountering congestion. The
router inner-loop uses a routing-resource cost to “score” the
use of resources during a directed search from the source to
the sink of a connection, through a graph representing the
routing fabric. A component of that cost is used to gradually
resolve congestion (over several routing iterations) by
encouraging connections to take detours around congested
resources. The delay portion of the router cost tries to
minimize the delays of critical connections, and makes the
router timing-driven. More specifically, from [12], the delay
cost of a partial routing path, r, for a connection c is:

 sink(c))(r,T(c)RITCc)(r,delay_cost TERPPATH-LONG ⋅= (2)
The long-path criticality, CRITLONG-PATH, indicates the desire

that a connection be routed with small delay [12]:

⎟
⎠
⎞

⎜
⎝
⎛

= 0,
MAX

PATH-LONG D
slack(c)

-0.99max(c)RITC (3)

DMAX is the longest path delay in the circuit. Connections
with small long-path slack will tend to get CRITLONG-PATH
values near 1. TTERP(r,sink(c)) is the total estimated routing
path delay, which is a function both of the partial routing path,
r, being considered by the router and the destination (sink(c)):

sink(c))(r,Tα(r)Tsink(c))(r,T ESTIMATEKNOWNTERP ⋅+= (4)
The delay of the partial routing path, TKNOWN(r), can be

computed accurately. However, the delay from r to the
destination, TESTIMATE(r,sink(c)), is not precisely known as the
router evaluates (4); a look-ahead function is used to estimate
how much additional delay will be incurred. Larger values of
α make the search more directed, potentially at the expense of
quality; many FPGA routers use values of α near 1.

 4

The total cost of a partial routing path, r, is:

c)estion(r,total_congcCRIT-[1

c)(r,delay_costc)(r,total_cost

PATH-LONG ⋅

+=

)](
 (5)

This results in critical connections avoiding detours more
than non-critical ones – critical connections penalize delay
and ignore congestion to a greater extent.

D. Long-Path and Short-Path Timing Optimization

In [16], we described an earlier version of the Routing Cost
Valleys (RCV) algorithm. In this paper, we describe the RCV
algorithm in more detail, and present significant algorithm
enhancements, most notably path-level guardbanding (in
Section IV.A.4) and a revised routing delay cost formulation
(in Section IV.B.1). These changes reduce CPU time, improve
timing closure on difficult cases, and reduce the additional
routing wire needed to repair short-path violations by a factor
of 3 to 7 on average (depending on the types of timing
constraints) versus that described in [16]. The experimental
results have been completely re-done with a more recent
version of the Quartus II CAD system, and are more
extensive, incorporating both additional experiments and
results for the more recent Stratix II FPGAs.

III. PROBLEM FORMULATION
We represent a circuit as a directed graph G(V,E) in which

each vertex, v, represents a block input pin or output pin, and
each edge, e, represents either a connection, c, from a block
output pin to a block input pin, or a dependency from an input
pin to an output pin of a block. Each edge has an associated
delay. The delays of the edges representing connections from
block output pins to input pins can be altered by the FPGA
placement and routing tool, while the delays of the
dependency edges within blocks are generally fixed.

Timing constraints are applied to paths in G. A long-path
timing constraint states that the total delay of a path must be
less than some value. For example, if the user has a frequency
requirement of 250 MHz for some clock, clk, the following
constraint is implied for all paths from register output nodes,
sreg, to register input nodes, dreg, clocked by clk:

domain clock clkdreg sreg,

ns, 4dreg)(clk,T-sreg)(clk,Tdreg)(sreg,T FASTSLOWSLOW
∈∀

≤+
 (6)

TSLOW(sreg,dreg) is the largest delay of any path from node
sreg to node dreg, while TFAST(clk,dreg) is the smallest path
delay from the clk node to register dreg. Therefore, there are
three paths that affect long-path timing – two clock paths and
the register-to-register data path. The two clock path delays
are usually similar because low-skew global networks are
generally used for clock distribution. Even when the general
routing fabric is used to construct the clock tree, most CAD
tools attempt to control the skew on the clock paths, and
optimization of the register-to-register path delay is sufficient
to satisfy most long-path timing constraints. Consequently, in
this work, we adjust only the data-path delay and leave clock-
path delays constant. Re-arranging (6) to reflect this:

ns 4sreg)(clk,T-dreg)(clk,T

 dreg)(sreg, MAX where

domain, clock clkdreg sreg,

 dreg),(sreg,MAXdreg)(sreg,T

SLOWFAST

T

TSLOW

+

=

∈∀

≤

 (7)

A short-path timing constraint states that the delay along a
path should be no less than a particular value. For example, a
THOLD ≤ 0 constraint on a circuit’s primary inputs implies:

G circuitdst_reg src_io,

 0,dst_reg)eg),(clk(dst_rT-dst_reg)(src_io,T SLOWFAST
∈∀

≥
 (8)

where TSLOW (clk(dst_reg), dst_reg) is the longest delay
between the clock source and the destination register.
Assuming that we optimize only the IO-cell-to-register path
delay, while the clock-path delay is constant, (8) becomes:

dst_reg)eg),(clk(dst_rT dst_reg)(src_io, MIN where

G, circuitdst_reg src_io,

 dst_reg),(src_io,MINdst_reg)(src_io,T

SLOWT

TFAST

=

∈∀

≥

 (9)

The simultaneous short-path and long-path optimization
problem can be summarized as:

G circuitdst src,

 dst),(src, MAXdst)(src,Tdst)(src,T dst)(src,MIN TSLOWFASTT

∈∀

≤≤≤ (10)

MINT(src, dst) is the minimum delay allowed between the
source and destination based on the designer’s short-path
timing constraints and the relevant clock-path delays;
MAXT(src, dst) is the maximum delay allowed between the
source and destination based on the designer’s long-path
constraints and the relevant clock-path delays. The goal of this
work is to implement a design with connection delays that
lead to the satisfaction of (10).

IV. ALGORITHM DESCRIPTION
We attack the simultaneous short- and long-path timing

optimization problem in two phases. First, we use a new slack
allocation algorithm to convert the path-based timing
constraints of (10) into connection-based delay-budget
constraints. Second, we develop a new FPGA routing
algorithm, which is guided by a combination of these delay
budgets and connection slacks, to meet the circuit timing
constraints.

A. Short-Path and Long-Path Slack Allocation

The new slack allocation algorithm extends [5], [6], and [7]
to consider short-path constraints as well as long-path timing.
It introduces minimum delay budgets in addition to maximum
delay budgets and respects both lower and upper delay
bounds. These minimum and maximum budgets can be used
to guide an optimization algorithm to satisfy all short-path and
long-path constraints. While implementing all connections to
satisfy their minimum and maximum budgets is a sufficient
condition for meeting all timing constraints, it is not a
necessary one. All short-path and long-path constraints can be
satisfied with some connections violating their budgets, as
long as other connections achieve “sufficient margin”.

For each connection from a block output to a block input, c,

 5

minimum and maximum delay budgets, DBUDGET_MIN and
DBUDGET_MAX, are computed and satisfy the following
condition:

(c)D

 (c)D (c)D

 (c)D

RBOUND_UPPE

BUDGET_MAXBUDGET_MIN

RBOUND_LOWE

≤≤

≤

 (11)

Both lower and upper delay bounds, DBOUND_LOWER and
DBOUND_UPPER, are useful for modeling limits on achievable
delays. For example, there may be a lower bound on a
connection delay because the FPGA floorplan prevents two
blocks from getting closer than a certain distance. There may
be an upper bound on a connection delay because the router
needs to use a dedicated resource to route a connection – in
this case, the lower and upper bounds will be equal. Both
delay bounds help create achievable delay budgets and avoid
“waste” of slack. For example, if the minimum budget
exceeds the upper bound for a connection, the connection will
not be able to meet its budget and this can lead to a short-path
failure. Similarly, long-path failures can occur if maximum
budgets are less than lower bounds. In terms of “wasting”
slack, if the maximum budget exceeds the upper bound for a
connection, the connection will meet its budget; however, the
long-path slack allocated above the upper bound is “wasted”
in the sense that the connection can not be implemented with
that delay. A similar waste of short-path slack occurs when
minimum budgets are less than lower bounds. It would have
been better to allocate slack to other connections because the
larger the separation between minimum and maximum delay
budgets, the more flexibility an optimization algorithm has to
satisfy timing.

1. Basic Algorithm

Fig. 2 summarizes the slack allocation algorithm. This
algorithm calls both short-path and long-path Static Timing
Analyses (STA). DBOUND_LOWER{C} represents the set of lower-
bound delays for connections in the circuit, and so on.

Input: Long-path and short-path timing constraints,

DBOUND_LOWER{C}, and DBOUND_UPPER{C}.
Output: DBUDGET_MIN{C} and DBUDGET_MAX{C}.

DTEMP{C} = DBOUND_LOWER{C}

/* perform maximum delay budget iterations */
iterate until stopping condition met {
 perform long-path STA using DTEMP{C}
 allocate positive long-path slacks using Minimax-

PERT and update DTEMP{C}
 DTEMP{C} = min (DTEMP{C}, DBOUND_UPPER{C})
}

DBUDGET_MAX{C} = DTEMP{C}

/* perform minimum delay budget iterations */
iterate until stopping condition met {
 perform short-path STA using DTEMP{C}
 allocate positive short-path slacks using Minimax-

PERT and update DTEMP{C}
 DTEMP{C} = max (DTEMP{C}, DBOUND_LOWER{C})
}

DBUDGET_MIN{C} = DTEMP{C}

Fig. 2. Basic short-path and long-path slack allocation.

The algorithm starts with “temporary delays”, DTEMP, equal
to the lower delay bounds. The maximum delay budget
iterations allocate positive long-path slack according to the
Minimax-PERT algorithm of [6] to increase DTEMP. When the
iterations complete, the maximum delay budgets are set to
DTEMP. Note that the final maximum budgets of all
connections that initially have non-positive slacks will be
equal to DBOUND_LOWER because only positive slack is allocated;
therefore, the algorithm tries to minimize the magnitude of
any unavoidable long-path violations.

Next the minimum delay budget iterations begin. Since only
positive short-path slack is allocated, DTEMP for each
connection will never increase. This guarantees that
DBUDGET_MIN will be less than or equal to DBUDGET_MAX. By
keeping DTEMP above DBOUND_LOWER, the algorithm permits
short-path slack to be allocated only to connections that can
achieve lower delays.

Two weighting schemes were tested. The first was a unit
weighting scheme. The second was a weighting scheme,
similar to that used in [7], which favours adding (or removing)
delay to connections that are further from their respective
upper (or lower) delay bounds; those connections can better
accommodate the delay change. Both schemes produced
comparable final results.

The stopping condition in Fig. 2 consists of two parts. First,
there is an absolute limit on the number of iterations. The
absolute limit ensures the algorithm has linear-time
complexity in connection count, which is important for
today’s large designs. We found that the number of
maximum-delay-budget iterations can be limited to 7 and the
number of minimum-delay-budget iterations can be limited to
3 without affecting result quality. Second, the largest DTEMP
change in any connection is measured each iteration. When it
drops below 800 ps, the iterations terminate because very little
progress is being made. Stopping iterations when either of
these two conditions is satisfied reduces the run-time for slack
allocation by nearly 50% versus using the first stopping
condition alone, without affecting result quality [16].
Consequently, slack allocation averages less than 6% of the
placement-and-routing time, even when the CAD tool is
optimizing challenging setup-and-hold constraints (as
described in Section V.A.3), which is the most CPU-intensive
mode.

The techniques of [8] and [9] could be used instead of the
Minimax-PERT algorithm to compute better delay budgets.
However, the insensitivity to the weighting scheme used and
the relatively aggressive stopping criterion imply that this
application is unlikely to require this, and so the more
computationally intensive approaches may not be appropriate.

2. Delay Preprocessing

The basic algorithm does not take short-path timing into
account when it determines DBUDGET_MAX. Since DBUDGET_MIN is
less than DBUDGET_MAX for each connection, the basic algorithm
can fail to find DBUDGET_MIN values large enough to meet all
short-path constraints, even if a solution exists.

 6

Fig. 3 illustrates a situation where the basic algorithm will
fail to find a set of delay budgets that can satisfy the timing
constraints. With the indicated lower-bound delays, the path
delay from IO to Register A must be increased by at least (1.8
ns - 0.7 ns) = 1.1 ns to satisfy the short-path constraint, THOLD
≤ 0. The logic cell and Register A are connected via a constant
delay resource with negligible delay; the upper and lower
delay bounds for this resource will be set to 0, which will
correctly prevent slack from being allocated to this
connection. The connection from the IO to the logic cell, c', is
the only connection to which delay can be added. This
connection has only (1.8 ns + 3 ns - 0.7 ns - 2.1 ns) = 2 ns of
long-path slack because of the TSETUP requirement of 3 ns.
That means 55% of the long-path slack needs to be allocated
to DBUDGET_MAX(c') or the algorithm will later not be able to
create a sufficiently large DBUDGET_MIN(c'). Since there are 8
connections to which the long-path slack can be distributed, it
is unlikely that sufficient slack will be allocated to c'. In fact,
if the algorithm of Fig. 2 is applied to this circuit, the final
worst-case slacks achieved are 668 ps (TSETUP) and -738 ps
(THOLD) – a timing violation.

Fig. 3. Example illustrating failure of the basic algorithm.

To improve the basic algorithm, we add a pre-processing
step that iterates between short- and long-path slack allocation
to modify the initial DTEMP values. The pseudo-code in Fig. 4
replaces the DTEMP{C} = DBOUND_LOWER{C} line in Fig. 2:

/* start of basic algorithm */
DTEMP{C} = DBOUND_LOWER{C}
iterate until stopping condition met {
 perform short-path STA using DTEMP{C}
 allocate negative short-path slack using Minimax-

PERT and update DTEMP{C}
 DTEMP{C} = min (DTEMP{C}, DBOUND_UPPER{C})

 perform long-path STA using DTEMP{C}
 allocate negative long-path slack using Minimax-

PERT and update DTEMP{C}
 DTEMP{C} = max (DTEMP{C}, DBOUND_LOWER{C})
}
/* continue basic algorithm */

Fig. 4. DTEMP pre-processing algorithm.

By iterating between allocating short- and long-path
negative slack, the pre-processor adjusts DTEMP{C} so that
connections that need more delay, for short-path timing, have
more delay before long-path positive slack allocation (in Fig.
2). Notice there is only one iteration loop in Fig. 4; that is,
short-path negative slack may not be fully allocated before

long-path negative slack allocation is performed. It is
unnecessary to fully allocate short-path negative slack before
proceeding because only an adjustment of the delay starting
point represented by DTEMP{C} is needed each iteration, not
perfect convergence. This is especially true since both slack
allocation (Section IV.A.4) and the router try to achieve
margin. In practice, the single loop in Fig. 4 is enough to lead
to good delay budgets for the routing algorithm (Section
IV.B) and saves run-time. The stopping criteria for Fig. 4 is
similar to that in Fig. 2. The stopping condition is satisfied
when either 7 iterations have been performed or the maximum
DTEMP change of all connections is less than 5 ps in some
iteration. The iteration count restriction ensures this pre-
processing algorithm also has linear-time complexity in
connection count. In practice, the pre-processing algorithm
converges quickly and the run-time impact is negligible
compared to the rest of slack allocation. Going back to the
Fig. 3 example, with this DTEMP pre-processing step, the worst
slacks achieved are 817 ps (TSETUP) and 179 ps (THOLD) – both
satisfied.

3. Post-Basic Algorithm Processing

As mentioned previously, at the end of the basic algorithm,
DBUDGET_MIN will be greater than or equal to DBOUND_LOWER.
Enforcing this during short-path slack allocation in the basic
algorithm is advantageous because it ensures that short-path
slack is never “wasted” by allocating it to connections that can
not be implemented with lower delay. However, this
restriction is disadvantageous because ultimately the delay
budgets will be used to guide routing. Since the routing
algorithm can not explore every routing possibility, and,
practically, the routing algorithm will try to meet the delay
budgets with some margin, the router may end up routing all
connections with slightly-greater-than-minimum delay – even
those not in danger of failing short-path timing. To address
this issue, another enhancement performs additional
minimum-delay-budget iterations allocating short-path slack,
after the basic algorithm is complete.

/* end of basic algorithm */

iterate until stopping condition met {
 perform short-path STA using DTEMP{C}
 allocate positive short-path slacks using Minimax-

PERT and update DTEMP{C}
 DTEMP{C} = max (DTEMP{C}, -1.0 ns)
}
DBUDGET_MIN{C} = DTEMP{C}

Fig. 5. Post-basic algorithm short-path slack allocation.

Fig. 5 allows DTEMP to go below DBOUND_LOWER to ensure the
minimum budgets more accurately reflect the absolute
minimum delays necessary to meet short-path timing, so there
is little danger of wasting routing resources. DTEMP is kept
above -1.0 ns to prevent “wasting” short-path slack on
connections that are already guaranteed to be routed in

I

Logic Cell and Register A

Register B

Constant (Negligible) Delay Resources

Connection c’

2.1 ns Data Delay700 ps Data Delay

1.8 ns Clock Delay TSETUP Requirement: 3 ns
THOLD Requirement: 0

Logic Cells

Cloc

 7

minimum delay, while not allocating enough to others.2 The
stopping criteria for Fig. 5 is similar to that of Fig. 2; it is
satisfied when either 3 iterations have been performed or the
maximum DTEMP change of all connections is less than 800 ps
in some iteration. When this technique is applied, the amount
of routing wire used when solving register-to-register internal
THOLD violations (Section V.A.3) is reduced by 21% and the
placement-and-routing time is reduced by 2.6%. Even though
the extra iterations take some time to perform, the easier
routing problem more than compensates.

4. Path-level Guardbands

Once the connection-level delay budgets are computed,
they can be used to guide a connection-based optimization
algorithm, such as a negotiated congestion router as described
in Section IV.B. Connection-based algorithms can try to
achieve timing margin by not accepting solutions where
connection delays are close to the delay budgets. For example,
the router can attempt to achieve 1 ns margin above each
connection’s minimum delay budget. This is important
because optimization algorithms often use approximate delay
models to keep run-time reasonable.

A problem with connection-level guardbands is that some
connections may have very tight delay budget windows
(where margin can not be achieved), and other connections
may have very wide delay budget windows. A connection-
based algorithm cannot readily know the additional margin it
should attempt to achieve on connections with wide delay
budget windows to compensate for narrow windows
elsewhere. As well, significantly guardbanding the minimum
delay budgets for all connections with wide delay budget
windows will waste routing resources to achieve timing
margin that may not be required. Guardbanding is a path-
based problem that is better solved during slack allocation. To
achieve this, the appropriate guardbands are applied when
computing short-path and long-path timing slacks for slack
allocation. Both absolute and fraction-of-timing-requirement
guardbands are applied according to the accuracy of the delay
estimates for the FPGA being targeted. In Stratix II, for
example, the short-path guardband consists of 250 ps plus
10% of the timing constraint. By applying these guardbands,
the slack allocation algorithm can determine a set of delay
budgets that achieve the necessary margin on a path-level.
Sections V.A.4 and V.B show that this path-level
guardbanding technique is very effective at helping RCV to
meet difficult constraints.

B. Using Delay Budgets to Guide Routing

With a few exceptions (described in Section IV.C), we
found that effective optimization to meet short-path timing
constraints can be achieved by modifying the routing
algorithm alone, leaving synthesis and placement only aware

2 The RCV algorithm is not very sensitive to the precise value of this
bound because the basic algorithm generally distributes most of the slack with
little “waste” between the connections. We choose -1 ns because it is slightly
less than any routing delay we can achieve.

of long-path constraints. That is, even though earlier phases
make decisions that the router can not reverse, the router can
almost always find a way to add delay to solve short-path
violations. The router benefits from the fact that most other
phases of optimization are complete, so it can model delays
more accurately. Furthermore, short-path optimization in an
FPGA router is effective because modern FPGA routing
fabrics are relatively flexible and routing delay is a large
fraction of total delay.

All elements in the FPGA general-purpose routing fabric
can be used to “slow down” connections; most connections
can be “slowed” dramatically (if routing congestion is not a
problem) by selecting spirals of resources. Representing delay
chains in the routing graph allows them to be selected and
configured to help “slow down” connections as well.

We use a negotiated-congestion router with a modified
delay cost and look-ahead function.

1. Delay Portion of the Routing Cost

The delay budgets produced by the slack allocation
algorithm described in Section IV.A are used to augment the
delay portion of the partial routing path cost. To generate
these budgets, the slack allocation algorithm is run once
before the core routing algorithm begins. The slack allocation,
as discussed previously, requires lower and upper delay
bounds. An initial minimum-delay routing of all connections,
ignoring congestion, provides the lower-bound delays needed.
The upper delay bounds for connections forced to use
dedicated resources are set to the dedicated resource delays.
The upper delay bounds, for other connections, are set to a
large delay (100 ns).

The delay portion of the routing cost is illustrated in Fig. 6.
The cost vs. total estimated routing path delay profile looks
like a valley with a gently sloping bottom and steep sides.
This similarity led to the algorithm’s name – Routing Cost
Valleys (RCV).

Fig. 6. RCV’s delay cost compared to Pathfinder’s delay cost.

The minimum delay cost is achieved when the router
achieves the “target” delay, DTARGET, of a connection:

[]
ns) 0.1(c)D

 ,(c)D (c)D(0.5min

(c)D

BUDGET_MIN

BUDGET_MAXBUDGET_MIN

TARGET

+

+⋅

=

 (12)

Delay
Portion of
Routing

Cost

Routing Delay
DBUDGET MIN DBUDGET MAXDTARGET

Short-Path
Quadratic

Region

Long-Path
Quadratic

Region

Linear
Region

Pathfinder
Routing
Delay Cost

RCV
Routing
Delay Cost

 8

The target delay is highly skewed towards the minimum
delay budget – DTARGET will be at most 0.1 ns above
DBUDGET_MIN. Our earlier approach in [16] was less aggressive,
and only ensured DTARGET would be within 1 ns of
DBUDGET_MIN. This change is possible because the minimum
delay budget already reflects a path-timing guardband
(Section IV.A.4), so minimal additional margin is needed. The
advantage of aiming for a delay close to the minimum budget
is that routing utilization is minimized and long-path timing
margin is maximized. This improves the likelihood of
satisfying the often more challenging long-path timing
problem. Convergence speed is also improved by limiting the
scope of the graph search and the amount of congestion from
excessive wire use.3 Limiting routing resource usage also
avoids unnecessary power consumption. The algorithm still
aims for slightly above the minimum delay budget to improve
the likelihood the minimum delay budget is satisfied. Since
the router does not explore every solution and delay is
quantized in an FPGA, including some margin in DTARGET
(here 100 ps above DBUDGET_MIN) is still desirable.

When the anticipated total delay is within the delay
budgets, only linear costs are seen. The slope of the line to the
right of the target delay is the long-path criticality (between 0
and 1). We determine CRITLONG-PATH(c) from a generalized
version of (3) that handles the variety of timing constraints
available in commercial CAD tools. The magnitude of the
slope of the line to the left of the target delay is the short-path
criticality:

β

(c)D
(c)D-(c)D

(c)CRIT
TARGET

RBOUND_LOWETARGET
PATH-SHORT ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= (13)

CRITSHORT-PATH grows larger as more delay must be added
above the lower-bound connection delay. β (> 0) is used to
control how much extra emphasis the router should place on
connections that need a significant amount of delay added.
Larger values of β increase focus on a smaller number of
connections – those that need large percentage increases in
delay. We found experimentally that a value of 0.5 produces
good results, indicating it is best to consider most connections
that need delay increase to be short-path critical.

For delays outside the delay budgets, a quadratic cost is
added, on top of the linear cost, to heavily penalize such
routing paths. Since costs are used to penalize budget
violations, the budgets will be enforced unless there is
significant congestion; in that case, congestion is resolved
while sacrificing timing quality as little as possible.

The new delay cost (which replaces (2)) of a partial routing
path, r, for connection, c, can be summarized as:

3 The long-path criticality is also restricted to be ≥ 0.1 so that, even for

connections with easy-to-meet long-path targets, the router is still encouraged
by the delay cost to explore and find minimum delay (resource) solutions.

()

()
ps 100

2 sink(c)))(r,T(c)D max(0,

ps 100

2(c))D- sink(c))(r,T max(0,

 sink(c)))(r,T - (c)D max(0,

 (c)]CRIT(c)[CRIT

 sink(c))(r,T(c)CRITc)(r,delay_cost

TERPBUDGET_MIN

BUDGET_MAXTERP

TERPTARGET

PATH-LONGPATH-SHORT

TERPPATH-LONG

−

+

+

⋅+

+⋅=

 (14)

The 100 ps denominators normalize the quadratic costs
relative to the linear costs. 100 ps was selected since it
corresponds roughly with the smallest delay increment that
can be reliably achieved in the FPGA routing fabric.

It should be noted that in the delay cost formulation just
described, the short-path linear and quadratic costs are not
applicable for connections that have lower-bound delays that
are larger than their target delays. In those cases, the minimum
budget is trivially satisfied, and the short-path linear and
quadratic costs are removed to avoid any runtime penalty
during routing exploration and cost computation.

2. Routing Look-ahead Function

This modified router places more stringent accuracy
requirements on the routing look-ahead function. In traditional
negotiated congestion routers, a look-ahead function that
conservatively (and systematically) underestimates delay is
typical – underestimating delay increases runtime but
facilitates the search for the best routing path because the
router is trying to minimize delay [12]. In RCV, however,
there are many potential routing paths which will have similar
delay cost, since we are not searching for the minimal delay
routing path, but rather a routing path with a “target” delay
that may be well above the minimum achievable. Therefore,
for RCV, the look-ahead function should accurately estimate
delays. If the function underestimates delay, the router will
add delay close to the connection source, anticipating quick
routing paths to the sink. Closer to the sink, however, the
router will find it can not meet DTARGET, because it added too
much delay earlier. This will force the router to backtrack to
explore lower delay paths from the source – increasing routing
time. Conversely, if the look-ahead function overestimates
delay, the router will pick a low-delay routing path near the
source in anticipation of a large delay increase closer to the
destination. Close to the destination, the router will realize it
has arrived there using too little delay and will use
considerable routing near the sink to achieve DTARGET. This
increases the likelihood of congestion around the sink, which
may force the router to backtrack to explore higher delay
paths from the source.

We use a look-ahead function that anticipates a minimum
delay routing to the destination (ignoring congestion). Since
the routing fabrics in recent FPGAs are quite regular,
minimum delay routes can be accurately predicted. For long-
path critical connections, as mentioned earlier, this
“optimistic” look-ahead function facilitates the search for the
best routing path. For short-path critical connections, the

 9

function encourages the router to add enough delay to meet
short-path constraints close to the connection source. If
congestion prevents the acquisition of additional resources
close to the source, the router will obtain the additional
resources opportunistically before it reaches the sink, which
minimizes the need for backtracking to find additional
resources.

If there is significant congestion on the fastest routing near
the sink our optimistic look-ahead function will result in
backtracking to find faster routes from the source to the sink
vicinity, increasing CPU time. We have not seen excessive
CPU times due to this phenomenon, but in FPGAs where the
fastest routing can become saturated this effect could be
significant and would motivate research into more
sophisticated look-ahead functions that anticipate where to
best obtain extra delay for short-path critical connections. The
quadratic terms in the RCV delay cost (14) ensure that we will
backtrack extensively before accepting a route that
significantly violates our delay budgets, so the impact of look-
ahead function errors is mostly a run-time penalty, rather than
a result quality degradation.

3. Minimum Delay Budget Relaxation

Some designs which need very extensive short-path timing
repair require the insertion of a large number of routing
resources to obtain enough data-path delay to fix all
violations. If this extra routing demand is large compared to
the number of routing resources in the FPGA, it may not be
possible to repair the violations and successfully route the
design. By using a cost-based delay-budget formulation we
ensure the router will violate some delay budgets to obtain a
legal routing once the cost of congestion is high enough.
However, letting negotiated congestion resolve these
routability problems is slow, as it can require many routing
iterations before the cost of congested resources overpowers
the delay budgets.

We modified the FPGA routing algorithm to detect if it is
converging very slowly by looking at the rate of decrease of
the number of congested resources. If the average rate of
convergence (using a geometric fit) is much slower than that
profiled on typical designs, the router is having trouble. In that
case, the routing algorithm first tries to reduce the minimum
delay budgets of all connections that have been congested for
the last 3 routing iterations and that satisfy the following
criterion:

ns 1(c)D-(c)D RBOUND_LOWEBUDGET_MIN ≥ . (15)
That is, connections which consistently have illegal routes

and are demanding highly circuitous routes have their
minimum budgets relaxed to aid convergence. If the routing
algorithm still appears to be converging slowly, because
highly excessive short-path repair is required, all minimum
budgets are removed. In those extreme cases, there is usually a
systematic problem with the design, and the designer should
re-examine his or her clocking strategy and timing constraints
to reduce or remove the short-path problems.

C. Dedicated Resource Avoidance

Some synthesis and placement decisions can force
connections to be routed via fixed-delay dedicated resources.
Examples of such dedicated resources are the carry chain
circuitry and the dedicated look-up table to register routing
within the Stratix FPGA logic cell [17]. When synthesis or
placement forces the use of such dedicated resources, the
router has no ability to insert delay and, hence, no ability to
fix short-path violations using the respective connections.

We modified the placement algorithm to ensure that all
short-path critical paths have at least one connection to which
delay can be added. This is achieved by identifying
connections that: (a) are a part of paths that could have
irreparable short-path violations; (b) could tolerate additional
delay, without violating a long-path constraint; and (c) might
be forced to use dedicated resources in some placements.
Placements, in which dedicated routing must be used for these
connections, are forbidden.

V. EXPERIMENTAL RESULTS
The experimental results from two sets of designs will be

presented. The first set consists of 200 representative FPGA
designs gathered from Altera customers, with all user
constraints (timing, placement, and routing) removed to avoid
ambiguity in what is being measured. 100 of these designs
have 6,663 to 87,377 logic cells (median of 17,979 logic cells)
and target Altera Stratix devices [17]. The other 100 of these
designs have 3,004 to 90,854 logic cells (median of 16,028
logic cells) and target Altera Stratix II devices [17]. The
second set consists of 157 master-target 66-MHz PCI cores
compiled into a range of Altera devices, packages, and speed
grades [17]. All these cores are timing constrained according
to the PCI specification. Table 1 summarizes the cores tested.
PCI cores are measured because they are representative of
typical FPGA customer designs with challenging IO timing.

TABLE 1

SUMMARY OF PCI CORES TESTED

Device Family
Interface

Width
Number of Logic

Cells
Number of

Cores

Stratix 32-bit 1108 38
Stratix 64-bit 1521 30

Cyclone 32-bit 1150 18
Cyclone 64-bit 1564 10

Stratix GX 64-bit 1521 8
Stratix II 64-bit 1492 17

Cyclone II 32-bit 1103 22
Cyclone II 64-bit 1505 14

All the experiments were run with version 6.0 of Altera’s

Quartus II Software [2] on 3.066 GHz Intel Pentium 4
machines. Without RCV, the Quartus II software only
attempts to meet long-path constraints through most of the
CAD flow; it only addresses short-path constraints by setting
the delay chains in the IO cells appropriately; however, as
described in Section II.A, this technique is not very powerful.

 10

With RCV, both long- and short-path timing are
simultaneously optimized during routing and the remainder of
the CAD flow is unchanged, so placement is only aware of
long-path constraints and IO delay chain setting is still
performed.

No routing failures were observed in any of the
experiments, despite the limited routing available in an FPGA.
This routing success rate is achieved because costs are used to
enforce delay budgets rather than hard limits. RCV applies
“pressure” to find a good routing solution for timing;
however, if a design is facing routing difficulty, increasing
congestion penalization gracefully “pushes” the router to
sacrifice timing quality to achieve a solution.

A. Customer Design Benchmarks

1. Maximum Clock Frequency (FMAX)

This experiment measures the improvement in long-path
results that can be achieved by replacing the traditional delay
cost of a negotiated-congestion routing algorithm with that of
RCV. We make our comparisons using the Quartus II router,
which is based on the Pathfinder negotiated-congestion
routing algorithm [11]. The Quartus II router achieves high-
quality results, and even without the RCV enhancements
outperforms the widely-used VPR router [12] in terms of
long-path circuit timing by 2%.

For this experiment, the Quartus II Software was instructed
to optimize only clock frequency, FMAX. In circuits with
multiple clocks, we measure the geometric average of the
achieved frequency of all the clocks. Fig. 7 shows that RCV
consistently improves FMAX for both Stratix and Stratix II
devices.4 On average, RCV improves FMAX by 3.2% at a cost
of 43.4% extra router time. The increase in the total
placement-and-routing runtime is only 5.3%, including the
time needed to compute delay budgets. RCV increases wire
use by 0.7%; however, since no routing failures were
observed, it is clear that the router is leveraging only the wire
available to achieve better timing.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

0 200 400 600 800

FMAX without RCV

FM
A

X
 R

at
io

 (w
ith

 R
C

V
 /

w
ith

ou
t R

C
V)

Stratix Stratix II

Fig. 7. FMAX improvement with RCV.

The RCV delay cost is the key to these excellent results.

4 Comparable improvements are seen with the Stratix III architecture.

Traditional negotiated congestion assigns a fixed criticality, or
cost, per unit of delay, for each connection. The result is that
non-critical connections often pay so little attention to delay
that they become critical and slow the circuit. In RCV,
however, once the delay of a connection goes beyond
DBUDGET_MAX, the router knows that this connection could now
limit the speed of the circuit, and aggressively tries to avoid
further delay increases. At the same time, RCV is more
sophisticated than routers that simply try to route each
connection in less delay than its maximum delay budget (such
as [7]). In designs that are pushing the limits of FPGA speeds
(for example, the design spec is “as fast as possible”), it is
almost inevitable that some connections can not be routed
within their delay budgets. Often, RCV is able to cover the
violation of a connection delay budget by achieving delays
less than DBUDGET_MAX on other connections. This is achieved
using the long-path criticality term in (14), which encourages
delay reduction beyond that required by DBUDGET_MAX, in
proportion to the importance of a connection to the circuit
timing.

2. IO TSETUP and THOLD

This experiment measures the effectiveness of the RCV
algorithm on designs with artificial, but “typical of common
usage”, timing constraints. The Quartus II Software was
instructed to optimize considering three types of long-path
constraints simultaneously: (i) clock frequency (FMAX), (ii) a
TSETUP constraint of 5.75 ns (affects all primary input-to-
register transfers), and (iii) a maximum TCLOCK-TO-OUTPUT (TCO)
constraint of 10 ns (affects all register to primary output
transfers). One type of short-path timing constraint was also
set: a THOLD constraint of 0 (affects all primary input to
register transfers).

TABLE 2

EFFECT OF RCV ON 200 DESIGNS WITH FMAX
AND SHORT-PATH/LONG-PATH IO TIMING CONSTRAINTS

 Stratix Stratix II

 Without
RCV

With
RCV

Without
RCV

With
RCV

Geometric Average
FMAX

(MHz)

127.7 131.9 197.3 202.4

Arithmetic Average
Worst TSETUP Slack

(ns)

0.125 0.346 1.027 1.089

Arithmetic Average
Worst TCO Slack

(ns)

-2.356 -2.262 -0.158 -0.113

Arithmetic Average
Worst THOLD Slack

(ns)

-1.446 0.138 -0.633 0.636

Geometric Average
Place-and-Route Time

(minutes)

21.1 23.1 18.3 19.6

Table 2 presents the results. RCV improves performance on

all four types of timing constraints, at the cost of 8.5% higher
placement-and-routing time and 2.8% additional wire.

 11

3. Register-to-Register Internal THOLD

This experiment measures how well the RCV algorithm
solves THOLD violations internal to an FPGA on the set of 200
designs. For this experiment, the Quartus II Software
optimized: (i) clock frequency (FMAX) and (ii) internal THOLD
timing (between registers).

Of the 200 customer designs, 48 had internal THOLD
violations without RCV. All these designs had complex
clocking, such as gated clocks. With RCV, 17 of the designs
had internal THOLD violations. RCV managed to achieve a
3.0% FMAX improvement despite also focusing on short-path
timing, but there was a place-and-route time increase of 12.7%
and a 3.5% increase in wire. The wire increase was highly
design dependent. For designs that did not have internal THOLD
violations without RCV, there was a 1.1% wire increase as the
router tried to improve the short-path margin of those designs.
For designs that did have internal THOLD violations without
RCV, there was a 9.2% wire increase as the router attempted
to repair violations. Again, since there were no routing
failures, the router used “available wire” to improve timing.

TABLE 3

INTERNAL THOLD VIOLATION REPAIR WITH RCV
(MAGNITUDE OF WORST THOLD VIOLATION)

Without
RCV
(ns)

With
RCV
(ns)

Failure
Reason *

Without
RCV
(ns)

With
RCV
(ns)

Failure
Reason *

27.96 29.18 RL 3.27 No Violation
18.56 18.58 DR 3.24 No Violation
12.61 12.82 RL 3.14 No Violation
11.62 11.51 RL 3.13 No Violation
10.45 9.86 DR 3.06 No Violation
10.24 9.58 RL 2.99 No Violation
9.67 9.47 RL 2.78 No Violation
7.92 7.64 RL 2.71 No Violation
6.31 6.22 RL 2.40 No Violation
6.10 6.08 RL 2.38 No Violation
5.79 5.41 RL 2.34 No Violation
5.15 5.20 DR 2.12 No Violation
4.54 4.48 RL 1.91 No Violation
4.51 4.81 RL 1.91 No Violation
4.39 No Violation 1.85 No Violation
4.29 No Violation 1.78 No Violation
4.21 No Violation 1.61 No Violation
4.11 No Violation 1.57 No Violation
4.08 No Violation 1.49 No Violation
4.06 2.85 DR 1.34 1.35 DR
4.03 No Violation 1.25 No Violation
3.91 No Violation 0.99 No Violation
3.73 No Violation 0.34 0.20 DR
3.29 No Violation 0.21 No Violation

* RL: Routing Limited, DR: Dedicated Routing Connection

Table 3 summarizes the internal THOLD results. Most of the

small and moderate violations are repaired by RCV – mainly
severe violations remain. All the violations that remain are not
repaired either because the router runs out of wire (routing-
limited) or the hold violations occur on a dedicated routing
path. In the routing-limited cases, since all the designs do
route, the router either gracefully reduces short-path
optimization effort to achieve a legal routing, or it completely
gives up on short-path optimization on certain connections if

the wiring demands are unrealistically large (Section IV.B.3).
In the dedicated routing cases, synthesis or placement
decisions are made so that short-path critical connections are
forced to use dedicated routing and the router has no option to
improve the timing of those paths. The techniques described
in Section IV.C can address these cases, but as of yet, they
have not been extended to address the rarer logic and routing
topologies in some of these designs.

4. Meeting Aggressive Timing Constraints

This experiment measures the ability of a placement-and-
routing algorithm to consistently meet aggressive long-path
timing constraints. For this experiment, the Quartus II
Software is run multiple times for each design. In the first run,
it is instructed to optimize clock frequency, FMAX, and the
performance of each clock in every design is measured. In
subsequent runs, constraints are applied to all the clocks of
every design. For each clock, the constraint applied is a
fraction of the operating frequency measured from the first
run. The number of clock domains which pass timing are
measured for each fraction. This whole process is repeated
without RCV, with RCV without path-level guardbanding,
and with RCV with path-level guardbanding.

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

0.875 0.900 0.925 0.950 0.975 1.000

FMAX Constraint (Fraction of Maximum Achievable)

R
at

io
 o

f C
lo

ck
s

M
ee

tin
g

Ti
m

in
g

(R
CV

 /
W

ith
ou

t R
C

V)

Without Path-Level
Guardbanding

With Path-Level
Guardbanding

Fig. 8. Meeting aggressive timing constraints with RCV.

The results are shown in Fig. 8. It is important to note that
since RCV improves FMAX by 3.2%, the “with RCV” cases
actually have more aggressive frequency targets to meet.5
Nevertheless, even without path-level guardbanding, RCV is
able to meet timing more consistently (about 1.2%
improvement). The delay budgets help guide the connection-
level router to make tradeoffs which do not compromise path-

5 Both “with RCV” cases have comparable frequency targets to meet.

 12

level timing performance; this helps the router meet path-level
timing constraints more consistently. With path-level
guardbanding, there is, on average, a 5.1% improvement in
the number of clocks which meet timing, and there is a trend
towards more improvement with more aggressive constraints.
This trend makes sense since delay modeling inaccuracies are
more likely to make highly timing marginal clocks fail timing
and path-level guardbanding helps the router avoid this by
strategically achieving more margin where it is beneficial. The
results clearly show that RCV not only increases the
maximum speed at which circuits can operate, but also
improves the consistency with which the router closes timing
under difficult constraints.

B. PCI Cores

PCI cores represent a highly challenging combined short-
and long-path timing optimization problem, due to the many
tight timing requirements on IO-to-register transfers in the
PCI specification (IO TSETUP and THOLD constraints). Fig. 9
shows that without RCV, the Quartus II software meets the
short-path (THOLD) constraints on only 40 of the 157 PCI cores
tested, and meets the long-path (TSETUP) constraints on 79 of
the 157 cores. Fig. 10 shows the comparable results with RCV
enabled. All of the 157 PCI cores meet their short-path
(THOLD) and long-path (TSETUP) constraints – a vast
improvement.

0

10

20

30

40

50

60

70

80

90

100

< -0.50 -0.50 to 0.00 0.00 to 0.25 0.25 to 0.50 0.50 to 0.75 >= 0.75

Worst Slack (ns)

N
um

be
r

of
 P

CI
 C

or
es

TSETUP THOLD

Fig. 9. PCI IO timing without RCV.

Another result of interest is illustrated in Fig. 11. It shows
the performance of RCV on these PCI cores without the path-
level guardbanding technique described in Section IV.A.4.
For these results, only connection-level delay budget margin
is used to guide the router, as described in [16]. Even though
that approach aims for balanced long-path and short-path
margin on a connection-basis, with up to 1 ns of short-path
margin per connection, 62% of the designs have less than 500
ps of short-path margin and 39% of the designs have less than
500 ps of long-path margin. With path-level guardbanding,
these percentages are 6% and 20%, respectively. This
illustrates the effectiveness of path-level guardbanding on the
combined short- and long-path timing optimization problem.

0

10

20

30

40

50

60

70

80

90

100

< -0.50 -0.50 to 0.00 0.00 to 0.25 0.25 to 0.50 0.50 to 0.75 >= 0.75

Worst Slack (ns)

Nu
m

be
r o

f P
C

I C
or

es

TSETUP THOLD

Fig. 10. PCI IO timing with RCV.

0

10

20

30

40

50

60

70

80

90

100

< -0.50 -0.50 to 0.00 0.00 to 0.25 0.25 to 0.50 0.50 to 0.75 >= 0.75

Worst Slack (ns)

N
um

be
r

of
 P

C
I C

or
es

TSETUP THOLD

Fig. 11. PCI IO timing with RCV, without path-level guardbanding.

VI. CONCLUSION
This paper introduced RCV, the first published algorithm to

simultaneously optimize considering short- and long-path
timing constraints in FPGAs. RCV comprises a new slack
allocation algorithm and a new routing formulation. The slack
allocation algorithm is the first to incorporate upper delay
bounds and compute minimum delay budgets. This algorithm
also employs guardbands to account for delay estimation
errors during routing. The router uses a new delay cost
formulation, using the delay budgets from slack allocation, to
enable satisfaction of both short- and long-path timing
constraints, without requiring any additional FPGA logic.

Experimental results show that RCV outperforms earlier
approaches used to satisfy short- and long-path timing
constraints. Using only FPGA IO delay chains to try to solve
short-path violations resulted in timing failures in 75% of 157
PCI cores tested, while RCV met the constraints on all of the
cores. On a set of 200 benchmark circuits, with short- and
long-path timing constraints, RCV improved the short-path
THOLD and the long-path TSETUP timing, on average, by 1.43 ns
and 0.14 ns, respectively. On a set of 200 benchmark circuits,
RCV achieved 3.2% higher circuit speed than a traditional

 13

negotiated congestion router, indicating that RCV outperforms
this highly successful algorithm, even on the well-studied
long-path-only timing problem. Finally, the runtime impact of
RCV is moderate, as it increased the total place-and-route time
by only 5% to 10% when satisfying typical timing constraints.

REFERENCES
[1] J. Anderson, S. Nag, K. Chaudhary, S. Kalman, C. Madabhushi and P.

Cheng, “Run-Time Conscious Automatic Timing-Driven FPGA Layout
Synthesis”, Int’l Conf. on Field-Programmable Logic and Applications,
2004, pp. 168-178.

[2] "Quartus II Software", www.altera.com.
[3] "ISE Logic Design Tools", www.xilinx.com.
[4] N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli, “Minimum

Padding to Satisfy Short Path Constraints”, ICCAD, 1993, pp. 156-161.
[5] P. S. Hauge, R. Nair, and E. J. Yoffa, “Circuit Placement for Predictable

Performance”, ICCAD, 1987, pp. 88-91.
[6] H. Youssef and E. Shragowitz, “Timing Constraints for Correct

Performance”, ICCAD, 1990, pp. 24-27.
[7] J. Frankle, “Iterative and Adaptive Slack Allocation for Performance-

driven Layout and FPGA Routing”, DAC, 1992, pp. 536-542.
[8] E. Bozorgzadeh, S. Ghiasi, A. Takahashi, and M. Sarrafzadeh, "Optimal

Integer Delay Budget Assignment on Directed Acyclic Graphs”, IEEE
Trans. on CAD, August 2004, pp. 1184-1199.

[9] S. Ghiasi, E. Bozorgzadeh, P. Huang, R. Jafari, M. Sarrafzadeh, "A
Unified Theory of Timing Budget Management", IEEE Trans. on CAD,
November 2006, pp. 2364-2375.

[10] Y. S. Lee and A. Wu, “A Performance and Routability-Driven Router
for FPGAs Considering Path Delays”, DAC, 1995, pp. 557-561.

[11] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns, “Placement and
Routing Tools for the Triptych FPGA”, IEEE Trans. on VLSI, Dec.
1995, pp. 473-482.

[12] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs, Kluwer Academic Publishers, 1999.

[13] K. So, “Solving Hard Instances of FPGA Routing with a Congestion-
Optimal Restrained-Norm Path Search Space”, ISPD, 2007, pp. 151-158.

[14] S. Lee and M. Wong, “Timing-Driven Routing for FPGAs Based on
Lagrangian Relaxation”, IEEE Trans. on CAD, April 2003, pp. 506-511.

[15] “The FPGA Place and Route Challenge”,
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html.

[16] R. Fung, V. Betz, and W. Chow, “Simultaneous Short-Path and Long-
Path Timing Optimization for FPGAs”, ICCAD, 2004, pp. 838-845.

[17] Device Family Data Sheets, www.altera.com.

 14

