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Abstract—This work presents the first published algorithm to 

simultaneously optimize both short- and long-path timing 
constraints in a Field-Programmable Gate Array (FPGA): the 
Routing Cost Valleys (RCV) algorithm. RCV consists of two 
components: a new slack allocation algorithm that determines 
both a minimum and a maximum delay budget for each circuit 
connection, and a new router that strives to meet and, if possible, 
surpass these connection delay constraints. RCV improves both 
long-path and short-path timing slack significantly versus an 
earlier Computer-Aided Design (CAD) system, showing the 
importance of an integrated approach that simultaneously 
optimizes both types of timing constraints. It is able to meet long-
path and short-path timing on all 157 Peripheral Component 
Interconnect (PCI) cores tested, while an earlier algorithm failed 
to achieve timing on 75% of the cores. Even in cases where there 
are no short-path timing constraints, RCV outperforms a state-
of-the-art FPGA router and improves the maximum clock speed 
of circuits by an average of 3.2% (and up to 24.7%).  
 

Index Terms—FPGA, routing, slack allocation, timing 
 

I. INTRODUCTION 
ONG-PATH timing optimization is a key feature of many 
academic and all commercial FPGA CAD flows. Long-

path timing constraints indicate that the longest path delay 
between certain circuit endpoints must be less than some value 
in order for a design to meet its performance goals. Examples 
of long-path timing constraints include clock frequency 
requirements, setup times required at circuit primary inputs 
relative to some clock (TSETUP), and maximum permissible 
clock-to-output delays at circuit primary outputs (maximum 
TCLOCK-TO-OUTPUT). Long-path timing optimization for FPGAs 
has been extensively researched, and is crucial to achieving 
the best performance in a device. For example, a recent 
commercial FPGA CAD system achieves 50% higher circuit 
performance with full-effort timing-driven placement and 
routing than with algorithms that focus only on wirelength [1], 
at a cost of 5x increased run time. If a CAD tool fails to 
satisfy all long-path timing constraints, the designer must 
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generally either re-design the circuit or perform some level of 
manual synthesis, placement and/or routing. Both of these 
options are very time-consuming and reduce designer 
productivity, underscoring the need for the highest quality 
automatic optimization possible. 

To create a functional design, however, one must satisfy not 
only long-path timing constraints, but also all short-path 
timing constraints. Short-path timing constraints specify that 
the minimum path delay between two circuit endpoints must 
be greater than some value. Such constraints occur not only 
between registers in a chip to guarantee there are no hold-time 
violations within the chip, but also on paths from the circuit 
primary inputs to registers (input THOLD requirements), and on 
paths from registers to circuit primary outputs (minimum 
TCLOCK-TO-OUTPUT requirements), to guarantee correct data 
transfers between chips.  

Generally, if a design does not meet all long-path timing 
constraints, it must be run at a lower frequency. However, if a 
design fails to meet its short-path constraints, it will fail to 
operate at any frequency. Despite this fact, short-path timing 
optimization has received little research attention in academia 
and, until recently, little attention in industrial FPGA CAD 
tools. This resulted in FPGA designers having to manually fix 
short-path violations – a laborious process that is becoming 
ever more painful as designs grow, and clocking structures 
increase in complexity. As well, since fixing short-path timing 
violations involves adding delay to portions of the circuit, 
manually fixing short-path violations often creates long-path 
violations, resulting in lengthy design iterations.  

The FPGA industry has recently recognized that requiring 
manual optimization of short-path timing is no longer 
acceptable, and recent versions of Altera's Quartus II CAD 
system [2] and Xilinx's ISE CAD system [3] both incorporate 
optimization algorithms for short-path constraints. This paper 
presents a new algorithm, RCV, which is the first published 
algorithm for simultaneously satisfying both short-path and 
long-path timing constraints in an FPGA, and which has been 
incorporated into Altera’s Quartus II CAD system.  

The RCV algorithm described in this paper has several 
advantages over prior techniques. First, it removes the need 
for designers to manually repair short-path violations. Second, 
this algorithm meets short-path constraints by inserting extra 
routing delay where appropriate. This wastes no logic, in 
contrast with the typical manual technique of inserting logic 
cells configured as buffers to slow down signals. Third, RCV 
simultaneously optimizes to meet both short-path and long-
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path timing constraints, maximizing the chance of achieving a 
design implementation that meets all constraints. Fourth, the 
algorithm includes a new technique to increase the probability 
of closing timing despite inaccuracy in delay estimation 
during optimization. Finally, the RCV algorithm outperforms 
prior approaches and increases design performance even when 
applied to the traditional long-path timing optimization 
problem with no short-path constraints. 

This paper is organized as follows. Section II outlines 
related background and prior work. Section III provides a 
precise problem definition and Section IV describes the RCV 
algorithm. Section V presents experimental results. Section VI 
summarizes our conclusions.  

 

II. BACKGROUND AND PRIOR WORK 

A. FPGA Architecture for Short-Path Optimization 

Prior to this work, FPGA vendors primarily attacked the 
short-path problem by building special hardware features into 
their FPGAs instead of employing more general CAD 
algorithms. First, FPGAs include dedicated low-skew clock 
networks. When a clock is routed on such a network, register 
transfers within the clock domain will not have hold-time 
(short-path) violations. Second, FPGAs include programmable 
delay chains in each IO cell. The designer or the CAD tool 
sets these delay chains to slow down incoming and outgoing 
signals to meet short-path constraints at the FPGA periphery. 

These hardware solutions fall short of the needs of modern 
FPGAs and designs. First, today’s complex FPGA designs 
often contain more clocks than low-skew networks. This 
forces some clocks to use regular routing, which introduces 
clock skew and, hence, increases the chance of a short-path 
violation. Second, the increasing magnitude of process 
variation and the increasing speed of FPGAs are making it 
more difficult to design a clock network with sufficiently low 
skew that all possible register transfers are free of short-path 
timing problems. Third, many modern designs use Phase-
Locked Loops (PLLs) to generate phase- and frequency-
related clocks; those designs typically expect synchronous 
transfers between these clock domains. This often leads to 
short-path timing problems. Fourth, programmable delay 
chains require a large amount of area, so they are typically 
only used to slow down signals at the point they intersect the 
chip periphery and this limits their utility. For example, 
several timing paths may begin at the same input IO, pass 
through a common delay chain, and terminate at various 
registers throughout the chip. Each of those paths would 
“prefer” a different delay chain setting to ensure short-path 
timing can be met while still satisfying long-path constraints. 
However, since all those paths pass through the same delay 
chain, a compromise setting must be used instead. Fig. 1 
illustrates the problem. If the goal is to program the delay 

chain to achieve IO THOLD ≤ 0 and TSETUP ≤ 3 ns1, no setting of 
the delay chain can meet both constraints. To satisfy THOLD ≤ 0 
at Register A, the delay chain must be set to at least (3 ns - 2 
ns) = 1 ns, but to satisfy TSETUP ≤ 3 ns at Register B, the delay 
chain must be set to (3 ns + 3 ns - 6 ns) = 0 ns (turned off). 

 
Fig. 1.  Example of programmable delay chain use. 

B. ASIC Techniques for Short-Path Optimization 

Typically, Application-Specific Integrated Circuit (ASIC) 
CAD tools fix short-path timing violations by inserting chains 
of buffers on some connections to slow down paths. Shenoy et 
al [4] present two algorithms to help address the short-path 
buffer insertion problem – a greedy algorithm (with quadratic-
time complexity in connection count) and one based on linear 
programming. Both algorithms are used to determine the 
minimum delay that should be added to connections to satisfy 
short-path timing without creating long-path violations. In 
FPGAs, the equivalent technique inserts logic cells configured 
as buffers on some connections; this is highly inefficient since 
it can consume a significant portion of the device logic. 
Consequently, a new approach is needed for FPGA short-path 
optimization. 

C. Long-Path Timing Optimization 

The RCV algorithm builds on two prior long-path timing 
optimization algorithms: slack allocation and negotiated-
congestion routing. 

1. Slack Allocation 

Timing constraints are specified on circuit paths. The end-
points of paths are typically registers, primary inputs, or 
primary outputs – with zero or more levels of combinational 
logic between them. In general, a path can be any series of 
connections in a circuit. The number of possible paths in a 
circuit is exponential in connection count. Explicitly 
monitoring all these paths during optimization would be 
highly inefficient in both memory and run-time. Long-path 
slack allocation is a well-known technique that produces a 

 
1 IO THOLD and TSETUP refer to timing relationships between the data and 

clock at the periphery of the FPGA. IO TSETUP specifies the minimum amount 
of time the data should arrive at the FPGA before the clock. This datasheet-
style specification is independent of clock frequency. In the example, the 
designer is promising the data will arrive ≥ 3 ns before the clock and hence is 
asking that the FPGA be configured so IO TSETUP ≤ 3 ns. This can be achieved 
by controlling the clock and data path delays within the FPGA. IO THOLD 
specifies the minimum time the data should be held at the FPGA after the 
clock. The designer is promising to hold the data until the clock and so is 
asking that the FPGA be configured to achieve IO THOLD ≤ 0. 
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maximum delay budget for each circuit connection. If the 
design can be implemented so that each connection has a 
delay less than its maximum delay budget, all long-path 
constraints will be satisfied. 

Various techniques have been discussed for long-path slack 
allocation. All these techniques rely on long-path timing 
analysis to compute connection slacks, where a connection 
slack is the minimum slack of all paths passing through that 
connection. 

The Zero-Slack Algorithm (ZSA) is developed in [5]. ZSA 
starts with a set of connection delays that result in all long-
path slacks being positive. It then iterates between allocating 
slack to increase the connection delays and performing timing 
analyses to update the connection slacks. In each iteration, 
ZSA identifies the path with the smallest positive slack and 
distributes the slack to the connections of the respective path 
by increasing the connection delays. Eventually, all the 
positive path slack is allocated, and every connection has zero 
slack. The final set of connection delays can be used as 
maximum delay budgets. Runtime is quadratic in the number 
of connections.  

The Iterative-Minimax-PERT algorithm [6] improves on 
ZSA by introducing a faster allocation algorithm. This 
algorithm defines weights that control slack distribution – 
connections with larger weights are allocated more slack. Path 
weights can be computed from the connection weights, where 
the weight of a path is the sum of the weights of its 
connections. Of the total path slack, slack(c), the portion 
allocated to each connection, c, is: 

h(c)ths_throug_of_all_pamax_weight
weight(c)slack(c)

cated(c)slack_allo
⋅

=  (1) 

This technique has linear-time complexity in the number of 
connections because each slack-allocation iteration uses (1) to 
try to distribute all the remaining slack throughout the design 
and, in practice, only a few iterations are needed to converge. 

The Limit-Bumping Algorithm [7] proposes the use of 
connection lower delay bounds. By ensuring that the 
maximum delay budget of each connection is larger than its 
lower delay bound, many unrealizable solutions are avoided. 
To facilitate this, a weighting scheme is proposed that 
encourages removal of delay from connections that are further 
from their lower delay bounds. Finally, this algorithm is 
capable of handling problems where some slacks are initially 
negative. 

Techniques for optimally distributing slack using linear 
programming techniques and dual min-cost flow have recently 
been presented [8][9]. These techniques support weights like 
Minimax-PERT, in addition to lower and upper bounds on 
budgets, and balanced budget distribution. These more 
powerful budgeting frameworks can be more computationally 
intensive than Minimax-PERT. 

2. FPGA Routing 

While there are many FPGA routing techniques, only a 
minority of the algorithms developed explicitly analyze and 
optimize circuit timing, and all of those algorithms focus 

solely on meeting long-path constraints [7][10][11][12][14]. 
Frankle, in [7], describes a router that attempts to route 

connections so each has a delay less than a maximum delay 
budget, determined from a long-path slack allocation. 
Connections with maximum delay budgets closer to their 
lower-bound “achievable” delays are routed first. If some 
connections cannot be routed with delay less than their 
maximum delay budgets, the corresponding maximum delay 
budgets are increased by 20%, and a rip-up and re-try 
procedure is invoked. 

In [11], Ebeling et al develop the Pathfinder negotiated-
congestion routing algorithm. This general algorithm has 
become a very successful routing technique for FPGAs, and 
also underlies the Versatile Place-and-Route (VPR) router 
[12]. The academic FPGA routers with the lowest wiring 
requirements on a set of standard benchmarks [12][13][15] are 
based on negotiated congestion. This indicates that the 
negotiated congestion framework is excellent for FPGA 
routing, where wiring is generally quite limited. 

A negotiated congestion router begins by picking a set of 
routing resources – wires and block input/output pins – to 
implement each connection. The routing resources are initially 
selected so each connection is routed in minimum delay, while 
accepting “congestion”. Congestion occurs when multiple nets 
use the same routing resource – an electrical short, indicating 
an illegal routing. After the initial routing of connections, the 
router iteratively re-routes nets encountering congestion. The 
router inner-loop uses a routing-resource cost to “score” the 
use of resources during a directed search from the source to 
the sink of a connection, through a graph representing the 
routing fabric. A component of that cost is used to gradually 
resolve congestion (over several routing iterations) by 
encouraging connections to take detours around congested 
resources. The delay portion of the router cost tries to 
minimize the delays of critical connections, and makes the 
router timing-driven. More specifically, from [12], the delay 
cost of a partial routing path, r, for a connection c is: 

 sink(c))(r,T(c)RITCc)(r,delay_cost TERPPATH-LONG ⋅=  (2) 
The long-path criticality, CRITLONG-PATH, indicates the desire 

that a connection be routed with small delay [12]: 

⎟
⎠
⎞

⎜
⎝
⎛

= 0,
MAX

PATH-LONG D
slack(c)

-0.99max(c)RITC  (3) 

DMAX is the longest path delay in the circuit. Connections 
with small long-path slack will tend to get CRITLONG-PATH 
values near 1. TTERP(r,sink(c)) is the total estimated routing 
path delay, which is a function both of the partial routing path, 
r, being considered by the router and the destination (sink(c)): 

sink(c))(r,Tα(r)Tsink(c))(r,T ESTIMATEKNOWNTERP ⋅+=  (4) 
The delay of the partial routing path, TKNOWN(r), can be 

computed accurately. However, the delay from r to the 
destination, TESTIMATE(r,sink(c)), is not precisely known as the 
router evaluates (4); a look-ahead function is used to estimate 
how much additional delay will be incurred. Larger values of 
α make the search more directed, potentially at the expense of 
quality; many FPGA routers use values of α near 1. 
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The total cost of a partial routing path, r, is: 

c)estion(r,total_congcCRIT-[1     

c)(r,delay_costc)(r,total_cost

PATH-LONG ⋅

+=

)](
 (5) 

This results in critical connections avoiding detours more 
than non-critical ones – critical connections penalize delay 
and ignore congestion to a greater extent. 

D. Long-Path and Short-Path Timing Optimization 

In [16], we described an earlier version of the Routing Cost 
Valleys (RCV) algorithm. In this paper, we describe the RCV 
algorithm in more detail, and present significant algorithm 
enhancements, most notably path-level guardbanding (in 
Section IV.A.4) and a revised routing delay cost formulation 
(in Section IV.B.1). These changes reduce CPU time, improve 
timing closure on difficult cases, and reduce the additional 
routing wire needed to repair short-path violations by a factor 
of 3 to 7 on average (depending on the types of timing 
constraints) versus that described in [16]. The experimental 
results have been completely re-done with a more recent 
version of the Quartus II CAD system, and are more 
extensive, incorporating both additional experiments and 
results for the more recent Stratix II FPGAs. 

III. PROBLEM FORMULATION 
We represent a circuit as a directed graph G(V,E) in which 

each vertex, v, represents a block input pin or output pin, and 
each edge, e, represents either a connection, c, from a block 
output pin to a block input pin, or a dependency from an input 
pin to an output pin of a block. Each edge has an associated 
delay. The delays of the edges representing connections from 
block output pins to input pins can be altered by the FPGA 
placement and routing tool, while the delays of the 
dependency edges within blocks are generally fixed. 

Timing constraints are applied to paths in G. A long-path 
timing constraint states that the total delay of a path must be 
less than some value. For example, if the user has a frequency 
requirement of 250 MHz for some clock, clk, the following 
constraint is implied for all paths from register output nodes, 
sreg, to register input nodes, dreg, clocked by clk: 

domain clock clkdreg sreg,     

ns, 4dreg)(clk,T-sreg)(clk,Tdreg)(sreg,T FASTSLOWSLOW
∈∀

≤+
 (6) 

TSLOW(sreg,dreg) is the largest delay of any path from node 
sreg to node dreg, while TFAST(clk,dreg) is the smallest path 
delay from the clk node to register dreg. Therefore, there are 
three paths that affect long-path timing – two clock paths and 
the register-to-register data path. The two clock path delays 
are usually similar because low-skew global networks are 
generally used for clock distribution. Even when the general 
routing fabric is used to construct the clock tree, most CAD 
tools attempt to control the skew on the clock paths, and 
optimization of the register-to-register path delay is sufficient 
to satisfy most long-path timing constraints. Consequently, in 
this work, we adjust only the data-path delay and leave clock-
path delays constant. Re-arranging (6) to reflect this: 

ns 4sreg)(clk,T-dreg)(clk,T        

 dreg)(sreg,  MAX    where

domain, clock clkdreg sreg,        

 dreg),(sreg,MAXdreg)(sreg,T

SLOWFAST

T

TSLOW

+

=

∈∀

≤

 (7) 

A short-path timing constraint states that the delay along a 
path should be no less than a particular value. For example, a 
THOLD ≤ 0 constraint on a circuit’s primary inputs implies: 

G circuitdst_reg src_io,    

 0,dst_reg)eg),(clk(dst_rT-dst_reg)(src_io,T SLOWFAST
∈∀

≥
 (8) 

where TSLOW (clk(dst_reg), dst_reg) is the longest delay 
between the clock source and the destination register. 
Assuming that we optimize only the IO-cell-to-register path 
delay, while the clock-path delay is constant, (8) becomes: 

dst_reg)eg),(clk(dst_rT dst_reg)(src_io, MIN     where

G, circuitdst_reg src_io,        

 dst_reg),(src_io,MINdst_reg)(src_io,T

SLOWT

TFAST

=

∈∀

≥

 (9) 

The simultaneous short-path and long-path optimization 
problem can be summarized as: 

G circuitdst src,    

 dst),(src, MAXdst)(src,Tdst)(src,T dst)(src,MIN TSLOWFASTT

∈∀

≤≤≤  (10) 

MINT(src, dst) is the minimum delay allowed between the 
source and destination based on the designer’s short-path 
timing constraints and the relevant clock-path delays; 
MAXT(src, dst) is the maximum delay allowed between the 
source and destination based on the designer’s long-path 
constraints and the relevant clock-path delays. The goal of this 
work is to implement a design with connection delays that 
lead to the satisfaction of (10). 

 

IV. ALGORITHM DESCRIPTION 
We attack the simultaneous short- and long-path timing 

optimization problem in two phases. First, we use a new slack 
allocation algorithm to convert the path-based timing 
constraints of (10) into connection-based delay-budget 
constraints. Second, we develop a new FPGA routing 
algorithm, which is guided by a combination of these delay 
budgets and connection slacks, to meet the circuit timing 
constraints. 

A. Short-Path and Long-Path Slack Allocation 

The new slack allocation algorithm extends [5], [6], and [7] 
to consider short-path constraints as well as long-path timing. 
It introduces minimum delay budgets in addition to maximum 
delay budgets and respects both lower and upper delay 
bounds. These minimum and maximum budgets can be used 
to guide an optimization algorithm to satisfy all short-path and 
long-path constraints. While implementing all connections to 
satisfy their minimum and maximum budgets is a sufficient 
condition for meeting all timing constraints, it is not a 
necessary one. All short-path and long-path constraints can be 
satisfied with some connections violating their budgets, as 
long as other connections achieve “sufficient margin”. 

For each connection from a block output to a block input, c, 
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minimum and maximum delay budgets, DBUDGET_MIN and 
DBUDGET_MAX, are computed and satisfy the following 
condition: 

(c)D    

   (c)D  (c)D        

   (c)D

RBOUND_UPPE

BUDGET_MAXBUDGET_MIN

RBOUND_LOWE

≤≤

≤

 (11) 

Both lower and upper delay bounds, DBOUND_LOWER and 
DBOUND_UPPER, are useful for modeling limits on achievable 
delays. For example, there may be a lower bound on a 
connection delay because the FPGA floorplan prevents two 
blocks from getting closer than a certain distance. There may 
be an upper bound on a connection delay because the router 
needs to use a dedicated resource to route a connection – in 
this case, the lower and upper bounds will be equal. Both 
delay bounds help create achievable delay budgets and avoid 
“waste” of slack. For example, if the minimum budget 
exceeds the upper bound for a connection, the connection will 
not be able to meet its budget and this can lead to a short-path 
failure. Similarly, long-path failures can occur if maximum 
budgets are less than lower bounds. In terms of “wasting” 
slack, if the maximum budget exceeds the upper bound for a 
connection, the connection will meet its budget; however, the 
long-path slack allocated above the upper bound is “wasted” 
in the sense that the connection can not be implemented with 
that delay. A similar waste of short-path slack occurs when 
minimum budgets are less than lower bounds. It would have 
been better to allocate slack to other connections because the 
larger the separation between minimum and maximum delay 
budgets, the more flexibility an optimization algorithm has to 
satisfy timing. 

1. Basic Algorithm 

Fig. 2 summarizes the slack allocation algorithm. This 
algorithm calls both short-path and long-path Static Timing 
Analyses (STA). DBOUND_LOWER{C} represents the set of lower-
bound delays for connections in the circuit, and so on. 

 
Input: Long-path and short-path timing constraints, 

DBOUND_LOWER{C}, and DBOUND_UPPER{C}. 
Output: DBUDGET_MIN{C} and DBUDGET_MAX{C}.  

DTEMP{C} = DBOUND_LOWER{C} 

/* perform maximum delay budget iterations */ 
iterate until stopping condition met { 
  perform long-path STA using DTEMP{C} 
  allocate positive long-path slacks using Minimax-

PERT and update DTEMP{C} 
  DTEMP{C} = min (DTEMP{C}, DBOUND_UPPER{C})  
} 

DBUDGET_MAX{C} = DTEMP{C} 

/* perform minimum delay budget iterations */ 
iterate until stopping condition met { 
  perform short-path STA using DTEMP{C} 
  allocate positive short-path slacks using Minimax-

PERT and update DTEMP{C} 
  DTEMP{C} = max (DTEMP{C}, DBOUND_LOWER{C})  
} 

DBUDGET_MIN{C} = DTEMP{C} 

Fig. 2.  Basic short-path and long-path slack allocation. 

The algorithm starts with “temporary delays”, DTEMP, equal 
to the lower delay bounds. The maximum delay budget 
iterations allocate positive long-path slack according to the 
Minimax-PERT algorithm of [6] to increase DTEMP. When the 
iterations complete, the maximum delay budgets are set to 
DTEMP. Note that the final maximum budgets of all 
connections that initially have non-positive slacks will be 
equal to DBOUND_LOWER because only positive slack is allocated; 
therefore, the algorithm tries to minimize the magnitude of 
any unavoidable long-path violations.  

Next the minimum delay budget iterations begin. Since only 
positive short-path slack is allocated, DTEMP for each 
connection will never increase. This guarantees that 
DBUDGET_MIN will be less than or equal to DBUDGET_MAX. By 
keeping DTEMP above DBOUND_LOWER, the algorithm permits 
short-path slack to be allocated only to connections that can 
achieve lower delays. 

Two weighting schemes were tested. The first was a unit 
weighting scheme. The second was a weighting scheme, 
similar to that used in [7], which favours adding (or removing) 
delay to connections that are further from their respective 
upper (or lower) delay bounds; those connections can better 
accommodate the delay change. Both schemes produced 
comparable final results.  

The stopping condition in Fig. 2 consists of two parts. First, 
there is an absolute limit on the number of iterations. The 
absolute limit ensures the algorithm has linear-time 
complexity in connection count, which is important for 
today’s large designs. We found that the number of 
maximum-delay-budget iterations can be limited to 7 and the 
number of minimum-delay-budget iterations can be limited to 
3 without affecting result quality. Second, the largest DTEMP 
change in any connection is measured each iteration. When it 
drops below 800 ps, the iterations terminate because very little 
progress is being made. Stopping iterations when either of 
these two conditions is satisfied reduces the run-time for slack 
allocation by nearly 50% versus using the first stopping 
condition alone, without affecting result quality [16]. 
Consequently, slack allocation averages less than 6% of the 
placement-and-routing time, even when the CAD tool is 
optimizing challenging setup-and-hold constraints (as 
described in Section V.A.3), which is the most CPU-intensive 
mode. 

The techniques of [8] and [9] could be used instead of the 
Minimax-PERT algorithm to compute better delay budgets. 
However, the insensitivity to the weighting scheme used and 
the relatively aggressive stopping criterion imply that this 
application is unlikely to require this, and so the more 
computationally intensive approaches may not be appropriate. 

2. Delay Preprocessing 

The basic algorithm does not take short-path timing into 
account when it determines DBUDGET_MAX. Since DBUDGET_MIN is 
less than DBUDGET_MAX for each connection, the basic algorithm 
can fail to find DBUDGET_MIN values large enough to meet all 
short-path constraints, even if a solution exists. 
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Fig. 3 illustrates a situation where the basic algorithm will 
fail to find a set of delay budgets that can satisfy the timing 
constraints. With the indicated lower-bound delays, the path 
delay from IO to Register A must be increased by at least (1.8 
ns - 0.7 ns) = 1.1 ns to satisfy the short-path constraint, THOLD 
≤ 0. The logic cell and Register A are connected via a constant 
delay resource with negligible delay; the upper and lower 
delay bounds for this resource will be set to 0, which will 
correctly prevent slack from being allocated to this 
connection. The connection from the IO to the logic cell, c', is 
the only connection to which delay can be added. This 
connection has only (1.8 ns + 3 ns - 0.7 ns - 2.1 ns) = 2 ns of 
long-path slack because of the TSETUP requirement of 3 ns. 
That means 55% of the long-path slack needs to be allocated 
to DBUDGET_MAX(c') or the algorithm will later not be able to 
create a sufficiently large DBUDGET_MIN(c'). Since there are 8 
connections to which the long-path slack can be distributed, it 
is unlikely that sufficient slack will be allocated to c'. In fact, 
if the algorithm of Fig. 2 is applied to this circuit, the final 
worst-case slacks achieved are 668 ps (TSETUP) and -738 ps 
(THOLD) – a timing violation. 

 
Fig. 3.  Example illustrating failure of the basic algorithm. 

To improve the basic algorithm, we add a pre-processing 
step that iterates between short- and long-path slack allocation 
to modify the initial DTEMP values. The pseudo-code in Fig. 4 
replaces the DTEMP{C} = DBOUND_LOWER{C} line in Fig. 2: 

 
/* start of basic algorithm */ 
DTEMP{C} = DBOUND_LOWER{C} 
iterate until stopping condition met { 
  perform short-path STA using DTEMP{C} 
  allocate negative short-path slack using Minimax-

PERT and update DTEMP{C} 
  DTEMP{C} = min (DTEMP{C}, DBOUND_UPPER{C})  
 
  perform long-path STA using DTEMP{C}  
  allocate negative long-path slack using Minimax-

PERT and update DTEMP{C} 
  DTEMP{C} = max (DTEMP{C}, DBOUND_LOWER{C})  
} 
/* continue basic algorithm */ 

Fig. 4.  DTEMP pre-processing algorithm. 

By iterating between allocating short- and long-path 
negative slack, the pre-processor adjusts DTEMP{C} so that 
connections that need more delay, for short-path timing, have 
more delay before long-path positive slack allocation (in Fig. 
2). Notice there is only one iteration loop in Fig. 4; that is, 
short-path negative slack may not be fully allocated before 

long-path negative slack allocation is performed. It is 
unnecessary to fully allocate short-path negative slack before 
proceeding because only an adjustment of the delay starting 
point represented by DTEMP{C} is needed each iteration, not 
perfect convergence. This is especially true since both slack 
allocation (Section IV.A.4) and the router try to achieve 
margin. In practice, the single loop in Fig. 4 is enough to lead 
to good delay budgets for the routing algorithm (Section 
IV.B) and saves run-time. The stopping criteria for Fig. 4 is 
similar to that in Fig. 2. The stopping condition is satisfied 
when either 7 iterations have been performed or the maximum 
DTEMP change of all connections is less than 5 ps in some 
iteration. The iteration count restriction ensures this pre-
processing algorithm also has linear-time complexity in 
connection count. In practice, the pre-processing algorithm 
converges quickly and the run-time impact is negligible 
compared to the rest of slack allocation. Going back to the 
Fig. 3 example, with this DTEMP pre-processing step, the worst 
slacks achieved are 817 ps (TSETUP) and 179 ps (THOLD) – both 
satisfied. 

3. Post-Basic Algorithm Processing 

As mentioned previously, at the end of the basic algorithm, 
DBUDGET_MIN will be greater than or equal to DBOUND_LOWER. 
Enforcing this during short-path slack allocation in the basic 
algorithm is advantageous because it ensures that short-path 
slack is never “wasted” by allocating it to connections that can 
not be implemented with lower delay. However, this 
restriction is disadvantageous because ultimately the delay 
budgets will be used to guide routing. Since the routing 
algorithm can not explore every routing possibility, and, 
practically, the routing algorithm will try to meet the delay 
budgets with some margin, the router may end up routing all 
connections with slightly-greater-than-minimum delay – even 
those not in danger of failing short-path timing. To address 
this issue, another enhancement performs additional 
minimum-delay-budget iterations allocating short-path slack, 
after the basic algorithm is complete. 

 
/* end of basic algorithm */ 
 
iterate until stopping condition met { 
  perform short-path STA using DTEMP{C} 
  allocate positive short-path slacks using Minimax-

PERT and update DTEMP{C} 
  DTEMP{C} = max (DTEMP{C}, -1.0 ns)  
} 
DBUDGET_MIN{C} = DTEMP{C} 

Fig. 5.  Post-basic algorithm short-path slack allocation. 

Fig. 5 allows DTEMP to go below DBOUND_LOWER to ensure the 
minimum budgets more accurately reflect the absolute 
minimum delays necessary to meet short-path timing, so there 
is little danger of wasting routing resources. DTEMP is kept 
above -1.0 ns to prevent “wasting” short-path slack on 
connections that are already guaranteed to be routed in 
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minimum delay, while not allocating enough to others.2 The 
stopping criteria for Fig. 5 is similar to that of Fig. 2; it is 
satisfied when either 3 iterations have been performed or the 
maximum DTEMP change of all connections is less than 800 ps 
in some iteration. When this technique is applied, the amount 
of routing wire used when solving register-to-register internal 
THOLD violations (Section V.A.3) is reduced by 21% and the 
placement-and-routing time is reduced by 2.6%. Even though 
the extra iterations take some time to perform, the easier 
routing problem more than compensates. 

4. Path-level Guardbands 

Once the connection-level delay budgets are computed, 
they can be used to guide a connection-based optimization 
algorithm, such as a negotiated congestion router as described 
in Section IV.B. Connection-based algorithms can try to 
achieve timing margin by not accepting solutions where 
connection delays are close to the delay budgets. For example, 
the router can attempt to achieve 1 ns margin above each 
connection’s minimum delay budget. This is important 
because optimization algorithms often use approximate delay 
models to keep run-time reasonable. 

A problem with connection-level guardbands is that some 
connections may have very tight delay budget windows 
(where margin can not be achieved), and other connections 
may have very wide delay budget windows. A connection-
based algorithm cannot readily know the additional margin it 
should attempt to achieve on connections with wide delay 
budget windows to compensate for narrow windows 
elsewhere. As well, significantly guardbanding the minimum 
delay budgets for all connections with wide delay budget 
windows will waste routing resources to achieve timing 
margin that may not be required. Guardbanding is a path-
based problem that is better solved during slack allocation. To 
achieve this, the appropriate guardbands are applied when 
computing short-path and long-path timing slacks for slack 
allocation. Both absolute and fraction-of-timing-requirement 
guardbands are applied according to the accuracy of the delay 
estimates for the FPGA being targeted. In Stratix II, for 
example, the short-path guardband consists of 250 ps plus 
10% of the timing constraint. By applying these guardbands, 
the slack allocation algorithm can determine a set of delay 
budgets that achieve the necessary margin on a path-level. 
Sections V.A.4 and V.B show that this path-level 
guardbanding technique is very effective at helping RCV to 
meet difficult constraints. 

B. Using Delay Budgets to Guide Routing 

With a few exceptions (described in Section IV.C), we 
found that effective optimization to meet short-path timing 
constraints can be achieved by modifying the routing 
algorithm alone, leaving synthesis and placement only aware 
 

2 The RCV algorithm is not very sensitive to the precise value of this 
bound because the basic algorithm generally distributes most of the slack with 
little “waste” between the connections. We choose -1 ns because it is slightly 
less than any routing delay we can achieve.  

of long-path constraints. That is, even though earlier phases 
make decisions that the router can not reverse, the router can 
almost always find a way to add delay to solve short-path 
violations. The router benefits from the fact that most other 
phases of optimization are complete, so it can model delays 
more accurately. Furthermore, short-path optimization in an 
FPGA router is effective because modern FPGA routing 
fabrics are relatively flexible and routing delay is a large 
fraction of total delay.  

All elements in the FPGA general-purpose routing fabric 
can be used to “slow down” connections; most connections 
can be “slowed” dramatically (if routing congestion is not a 
problem) by selecting spirals of resources. Representing delay 
chains in the routing graph allows them to be selected and 
configured to help “slow down” connections as well.  

We use a negotiated-congestion router with a modified 
delay cost and look-ahead function. 

1. Delay Portion of the Routing Cost 

The delay budgets produced by the slack allocation 
algorithm described in Section IV.A are used to augment the 
delay portion of the partial routing path cost. To generate 
these budgets, the slack allocation algorithm is run once 
before the core routing algorithm begins. The slack allocation, 
as discussed previously, requires lower and upper delay 
bounds. An initial minimum-delay routing of all connections, 
ignoring congestion, provides the lower-bound delays needed. 
The upper delay bounds for connections forced to use 
dedicated resources are set to the dedicated resource delays. 
The upper delay bounds, for other connections, are set to a 
large delay (100 ns).  

The delay portion of the routing cost is illustrated in Fig. 6. 
The cost vs. total estimated routing path delay profile looks 
like a valley with a gently sloping bottom and steep sides. 
This similarity led to the algorithm’s name – Routing Cost 
Valleys (RCV). 

 
Fig. 6.  RCV’s delay cost compared to Pathfinder’s delay cost. 

The minimum delay cost is achieved when the router 
achieves the “target” delay, DTARGET, of a connection: 
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The target delay is highly skewed towards the minimum 
delay budget – DTARGET will be at most 0.1 ns above 
DBUDGET_MIN. Our earlier approach in [16] was less aggressive, 
and only ensured DTARGET would be within 1 ns of 
DBUDGET_MIN. This change is possible because the minimum 
delay budget already reflects a path-timing guardband 
(Section IV.A.4), so minimal additional margin is needed. The 
advantage of aiming for a delay close to the minimum budget 
is that routing utilization is minimized and long-path timing 
margin is maximized. This improves the likelihood of 
satisfying the often more challenging long-path timing 
problem. Convergence speed is also improved by limiting the 
scope of the graph search and the amount of congestion from 
excessive wire use.3 Limiting routing resource usage also 
avoids unnecessary power consumption. The algorithm still 
aims for slightly above the minimum delay budget to improve 
the likelihood the minimum delay budget is satisfied. Since 
the router does not explore every solution and delay is 
quantized in an FPGA, including some margin in DTARGET 
(here 100 ps above DBUDGET_MIN) is still desirable.  

When the anticipated total delay is within the delay 
budgets, only linear costs are seen. The slope of the line to the 
right of the target delay is the long-path criticality (between 0 
and 1). We determine CRITLONG-PATH(c) from a generalized 
version of (3) that handles the variety of timing constraints 
available in commercial CAD tools. The magnitude of the 
slope of the line to the left of the target delay is the short-path 
criticality: 

β

(c)D
(c)D-(c)D

(c)CRIT
TARGET

RBOUND_LOWETARGET
PATH-SHORT ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  (13) 

CRITSHORT-PATH grows larger as more delay must be added 
above the lower-bound connection delay. β (> 0) is used to 
control how much extra emphasis the router should place on 
connections that need a significant amount of delay added. 
Larger values of β increase focus on a smaller number of 
connections – those that need large percentage increases in 
delay. We found experimentally that a value of 0.5 produces 
good results, indicating it is best to consider most connections 
that need delay increase to be short-path critical.  

For delays outside the delay budgets, a quadratic cost is 
added, on top of the linear cost, to heavily penalize such 
routing paths. Since costs are used to penalize budget 
violations, the budgets will be enforced unless there is 
significant congestion; in that case, congestion is resolved 
while sacrificing timing quality as little as possible.  

The new delay cost (which replaces (2)) of a partial routing 
path, r, for connection, c, can be summarized as: 

 
3 The long-path criticality is also restricted to be ≥ 0.1 so that, even for 

connections with easy-to-meet long-path targets, the router is still encouraged 
by the delay cost to explore and find minimum delay (resource) solutions. 
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The 100 ps denominators normalize the quadratic costs 
relative to the linear costs. 100 ps was selected since it 
corresponds roughly with the smallest delay increment that 
can be reliably achieved in the FPGA routing fabric. 

It should be noted that in the delay cost formulation just 
described, the short-path linear and quadratic costs are not 
applicable for connections that have lower-bound delays that 
are larger than their target delays. In those cases, the minimum 
budget is trivially satisfied, and the short-path linear and 
quadratic costs are removed to avoid any runtime penalty 
during routing exploration and cost computation. 

2. Routing Look-ahead Function 

This modified router places more stringent accuracy 
requirements on the routing look-ahead function. In traditional 
negotiated congestion routers, a look-ahead function that 
conservatively (and systematically) underestimates delay is 
typical – underestimating delay increases runtime but 
facilitates the search for the best routing path because the 
router is trying to minimize delay [12]. In RCV, however, 
there are many potential routing paths which will have similar 
delay cost, since we are not searching for the minimal delay 
routing path, but rather a routing path with a “target” delay 
that may be well above the minimum achievable. Therefore, 
for RCV, the look-ahead function should accurately estimate 
delays. If the function underestimates delay, the router will 
add delay close to the connection source, anticipating quick 
routing paths to the sink. Closer to the sink, however, the 
router will find it can not meet DTARGET, because it added too 
much delay earlier. This will force the router to backtrack to 
explore lower delay paths from the source – increasing routing 
time. Conversely, if the look-ahead function overestimates 
delay, the router will pick a low-delay routing path near the 
source in anticipation of a large delay increase closer to the 
destination. Close to the destination, the router will realize it 
has arrived there using too little delay and will use 
considerable routing near the sink to achieve DTARGET. This 
increases the likelihood of congestion around the sink, which 
may force the router to backtrack to explore higher delay 
paths from the source. 

We use a look-ahead function that anticipates a minimum 
delay routing to the destination (ignoring congestion). Since 
the routing fabrics in recent FPGAs are quite regular, 
minimum delay routes can be accurately predicted. For long-
path critical connections, as mentioned earlier, this 
“optimistic” look-ahead function facilitates the search for the 
best routing path. For short-path critical connections, the 
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function encourages the router to add enough delay to meet 
short-path constraints close to the connection source. If 
congestion prevents the acquisition of additional resources 
close to the source, the router will obtain the additional 
resources opportunistically before it reaches the sink, which 
minimizes the need for backtracking to find additional 
resources.  

If there is significant congestion on the fastest routing near 
the sink our optimistic look-ahead function will result in 
backtracking to find faster routes from the source to the sink 
vicinity, increasing CPU time. We have not seen excessive 
CPU times due to this phenomenon,  but in FPGAs where the 
fastest routing can become saturated this effect could be 
significant and would motivate research into more 
sophisticated look-ahead functions that anticipate where to 
best obtain extra delay for short-path critical connections. The 
quadratic terms in the RCV delay cost (14) ensure that we will 
backtrack extensively before accepting a route that 
significantly violates our delay budgets, so the impact of look-
ahead function errors is mostly a run-time penalty, rather than 
a result quality degradation. 

3. Minimum Delay Budget Relaxation 

Some designs which need very extensive short-path timing 
repair require the insertion of a large number of routing 
resources to obtain enough data-path delay to fix all 
violations. If this extra routing demand is large compared to 
the number of routing resources in the FPGA, it may not be 
possible to repair the violations and successfully route the 
design. By using a cost-based delay-budget formulation we 
ensure the router will violate some delay budgets to obtain a 
legal routing once the cost of congestion is high enough. 
However, letting negotiated congestion resolve these 
routability problems is slow, as it can require many routing 
iterations before the cost of congested resources overpowers 
the delay budgets. 

We modified the FPGA routing algorithm to detect if it is 
converging very slowly by looking at the rate of decrease of 
the number of congested resources. If the average rate of 
convergence (using a geometric fit) is much slower than that 
profiled on typical designs, the router is having trouble. In that 
case, the routing algorithm first tries to reduce the minimum 
delay budgets of all connections that have been congested for 
the last 3 routing iterations and that satisfy the following 
criterion: 

ns 1(c)D-(c)D RBOUND_LOWEBUDGET_MIN ≥ . (15) 
That is, connections which consistently have illegal routes 

and are demanding highly circuitous routes have their 
minimum budgets relaxed to aid convergence. If the routing 
algorithm still appears to be converging slowly, because 
highly excessive short-path repair is required, all minimum 
budgets are removed. In those extreme cases, there is usually a 
systematic problem with the design, and the designer should 
re-examine his or her clocking strategy and timing constraints 
to reduce or remove the short-path problems. 

C. Dedicated Resource Avoidance 

Some synthesis and placement decisions can force 
connections to be routed via fixed-delay dedicated resources. 
Examples of such dedicated resources are the carry chain 
circuitry and the dedicated look-up table to register routing 
within the Stratix FPGA logic cell [17]. When synthesis or 
placement forces the use of such dedicated resources, the 
router has no ability to insert delay and, hence, no ability to 
fix short-path violations using the respective connections.  

We modified the placement algorithm to ensure that all 
short-path critical paths have at least one connection to which 
delay can be added. This is achieved by identifying 
connections that: (a) are a part of paths that could have 
irreparable short-path violations; (b) could tolerate additional 
delay, without violating a long-path constraint; and (c) might 
be forced to use dedicated resources in some placements. 
Placements, in which dedicated routing must be used for these 
connections, are forbidden. 
 

V. EXPERIMENTAL RESULTS 
The experimental results from two sets of designs will be 

presented. The first set consists of 200 representative FPGA 
designs gathered from Altera customers, with all user 
constraints (timing, placement, and routing) removed to avoid 
ambiguity in what is being measured. 100 of these designs 
have 6,663 to 87,377 logic cells (median of 17,979 logic cells) 
and target Altera Stratix devices [17]. The other 100 of these 
designs have 3,004 to 90,854 logic cells (median of 16,028 
logic cells) and target Altera Stratix II devices [17]. The 
second set consists of 157 master-target 66-MHz PCI cores 
compiled into a range of Altera devices, packages, and speed 
grades [17]. All these cores are timing constrained according 
to the PCI specification. Table 1 summarizes the cores tested. 
PCI cores are measured because they are representative of 
typical FPGA customer designs with challenging IO timing. 

 
TABLE 1 

SUMMARY OF PCI CORES TESTED 

Device Family 
Interface 

Width 
Number of Logic 

Cells 
Number of 

Cores 

Stratix 32-bit 1108 38 
Stratix 64-bit 1521 30 

Cyclone 32-bit 1150 18 
Cyclone 64-bit 1564 10 

Stratix GX 64-bit 1521 8 
Stratix II 64-bit 1492 17 

Cyclone II 32-bit 1103 22 
Cyclone II 64-bit 1505 14 

 
All the experiments were run with version 6.0 of Altera’s 

Quartus II Software [2] on 3.066 GHz Intel Pentium 4 
machines. Without RCV, the Quartus II software only 
attempts to meet long-path constraints through most of the 
CAD flow; it only addresses short-path constraints by setting 
the delay chains in the IO cells appropriately; however, as 
described in Section II.A, this technique is not very powerful. 
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With RCV, both long- and short-path timing are 
simultaneously optimized during routing and the remainder of 
the CAD flow is unchanged, so placement is only aware of 
long-path constraints and IO delay chain setting is still 
performed. 

No routing failures were observed in any of the 
experiments, despite the limited routing available in an FPGA. 
This routing success rate is achieved because costs are used to 
enforce delay budgets rather than hard limits. RCV applies 
“pressure” to find a good routing solution for timing; 
however, if a design is facing routing difficulty, increasing 
congestion penalization gracefully “pushes” the router to 
sacrifice timing quality to achieve a solution. 

A. Customer Design Benchmarks 

1. Maximum Clock Frequency (FMAX) 

This experiment measures the improvement in long-path 
results that can be achieved by replacing the traditional delay 
cost of a negotiated-congestion routing algorithm with that of 
RCV. We make our comparisons using the Quartus II router, 
which is based on the Pathfinder negotiated-congestion 
routing algorithm [11]. The Quartus II router achieves high-
quality results, and even without the RCV enhancements 
outperforms the widely-used VPR router [12] in terms of 
long-path circuit timing by 2%. 

For this experiment, the Quartus II Software was instructed 
to optimize only clock frequency, FMAX. In circuits with 
multiple clocks, we measure the geometric average of the 
achieved frequency of all the clocks. Fig. 7 shows that RCV 
consistently improves FMAX for both Stratix and Stratix II 
devices.4 On average, RCV improves FMAX by 3.2% at a cost 
of 43.4% extra router time. The increase in the total 
placement-and-routing runtime is only 5.3%, including the 
time needed to compute delay budgets. RCV increases wire 
use by 0.7%; however, since no routing failures were 
observed, it is clear that the router is leveraging only the wire 
available to achieve better timing. 
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Fig. 7.  FMAX improvement with RCV. 

The RCV delay cost is the key to these excellent results. 
 

4 Comparable improvements are seen with the Stratix III architecture. 

Traditional negotiated congestion assigns a fixed criticality, or 
cost, per unit of delay, for each connection. The result is that 
non-critical connections often pay so little attention to delay 
that they become critical and slow the circuit. In RCV, 
however, once the delay of a connection goes beyond 
DBUDGET_MAX, the router knows that this connection could now 
limit the speed of the circuit, and aggressively tries to avoid 
further delay increases. At the same time, RCV is more 
sophisticated than routers that simply try to route each 
connection in less delay than its maximum delay budget (such 
as [7]). In designs that are pushing the limits of FPGA speeds 
(for example, the design spec is “as fast as possible”), it is 
almost inevitable that some connections can not be routed 
within their delay budgets. Often, RCV is able to cover the 
violation of a connection delay budget by achieving delays 
less than DBUDGET_MAX on other connections. This is achieved 
using the long-path criticality term in (14), which encourages 
delay reduction beyond that required by DBUDGET_MAX, in 
proportion to the importance of a connection to the circuit 
timing. 

2. IO TSETUP and THOLD 

This experiment measures the effectiveness of the RCV 
algorithm on designs with artificial, but “typical of common 
usage”, timing constraints. The Quartus II Software was 
instructed to optimize considering three types of long-path 
constraints simultaneously: (i) clock frequency (FMAX), (ii) a 
TSETUP constraint of 5.75 ns (affects all primary input-to-
register transfers), and (iii) a maximum TCLOCK-TO-OUTPUT (TCO) 
constraint of 10 ns (affects all register to primary output 
transfers). One type of short-path timing constraint was also 
set: a THOLD constraint of 0 (affects all primary input to 
register transfers). 

 
TABLE 2 

EFFECT OF RCV ON 200 DESIGNS WITH FMAX 
AND SHORT-PATH/LONG-PATH IO TIMING CONSTRAINTS 

 Stratix Stratix II 

 Without 
RCV 

With 
RCV 

Without 
RCV 

With 
RCV 

Geometric Average 
FMAX  

(MHz) 

127.7 131.9 197.3 202.4 

Arithmetic Average 
Worst TSETUP Slack 

(ns) 

0.125 0.346 1.027 1.089 

Arithmetic Average 
Worst TCO Slack  

(ns) 

-2.356 -2.262 -0.158 -0.113 

Arithmetic Average 
Worst THOLD Slack 

(ns) 

-1.446 0.138 -0.633 0.636 

Geometric Average 
Place-and-Route Time 

(minutes) 

21.1 23.1 18.3 19.6 

 
Table 2 presents the results. RCV improves performance on 

all four types of timing constraints, at the cost of 8.5% higher 
placement-and-routing time and 2.8% additional wire. 
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3. Register-to-Register Internal THOLD 

This experiment measures how well the RCV algorithm 
solves THOLD violations internal to an FPGA on the set of 200 
designs. For this experiment, the Quartus II Software 
optimized: (i) clock frequency (FMAX) and (ii) internal THOLD 
timing (between registers). 

Of the 200 customer designs, 48 had internal THOLD 
violations without RCV. All these designs had complex 
clocking, such as gated clocks. With RCV, 17 of the designs 
had internal THOLD violations. RCV managed to achieve a 
3.0% FMAX improvement despite also focusing on short-path 
timing, but there was a place-and-route time increase of 12.7% 
and a 3.5% increase in wire. The wire increase was highly 
design dependent. For designs that did not have internal THOLD 
violations without RCV, there was a 1.1% wire increase as the 
router tried to improve the short-path margin of those designs. 
For designs that did have internal THOLD violations without 
RCV, there was a 9.2% wire increase as the router attempted 
to repair violations. Again, since there were no routing 
failures, the router used “available wire” to improve timing. 

 
TABLE 3 

INTERNAL THOLD VIOLATION REPAIR WITH RCV 
(MAGNITUDE OF WORST THOLD VIOLATION) 

Without 
RCV 
(ns) 

With 
RCV 
(ns) 

Failure 
Reason * 

Without 
RCV 
(ns) 

With 
RCV 
(ns) 

Failure 
Reason * 

27.96 29.18 RL 3.27 No Violation 
18.56 18.58 DR 3.24 No Violation 
12.61 12.82 RL 3.14 No Violation 
11.62 11.51 RL 3.13 No Violation 
10.45 9.86 DR 3.06 No Violation 
10.24 9.58 RL 2.99 No Violation 
9.67 9.47 RL 2.78 No Violation 
7.92 7.64 RL 2.71 No Violation 
6.31 6.22 RL 2.40 No Violation 
6.10 6.08 RL 2.38 No Violation 
5.79 5.41 RL 2.34 No Violation 
5.15 5.20 DR 2.12 No Violation 
4.54 4.48 RL 1.91 No Violation 
4.51 4.81 RL 1.91 No Violation 
4.39 No Violation 1.85 No Violation 
4.29 No Violation 1.78 No Violation 
4.21 No Violation 1.61 No Violation 
4.11 No Violation 1.57 No Violation 
4.08 No Violation 1.49 No Violation 
4.06 2.85 DR 1.34 1.35 DR 
4.03 No Violation 1.25 No Violation 
3.91 No Violation 0.99 No Violation 
3.73 No Violation 0.34 0.20 DR 
3.29 No Violation 0.21 No Violation 

* RL: Routing Limited, DR: Dedicated Routing Connection 
 
Table 3 summarizes the internal THOLD results. Most of the 

small and moderate violations are repaired by RCV – mainly 
severe violations remain. All the violations that remain are not 
repaired either because the router runs out of wire (routing-
limited) or the hold violations occur on a dedicated routing 
path. In the routing-limited cases, since all the designs do 
route, the router either gracefully reduces short-path 
optimization effort to achieve a legal routing, or it completely 
gives up on short-path optimization on certain connections if 

the wiring demands are unrealistically large (Section IV.B.3). 
In the dedicated routing cases, synthesis or placement 
decisions are made so that short-path critical connections are 
forced to use dedicated routing and the router has no option to 
improve the timing of those paths. The techniques described 
in Section IV.C can address these cases, but as of yet, they 
have not been extended to address the rarer logic and routing 
topologies in some of these designs. 

4. Meeting Aggressive Timing Constraints 

This experiment measures the ability of a placement-and-
routing algorithm to consistently meet aggressive long-path 
timing constraints. For this experiment, the Quartus II 
Software is run multiple times for each design. In the first run, 
it is instructed to optimize clock frequency, FMAX, and the 
performance of each clock in every design is measured. In 
subsequent runs, constraints are applied to all the clocks of 
every design. For each clock, the constraint applied is a 
fraction of the operating frequency measured from the first 
run. The number of clock domains which pass timing are 
measured for each fraction. This whole process is repeated 
without RCV, with RCV without path-level guardbanding, 
and with RCV with path-level guardbanding. 
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Fig. 8.  Meeting aggressive timing constraints with RCV. 

The results are shown in Fig. 8. It is important to note that 
since RCV improves FMAX by 3.2%, the “with RCV” cases 
actually have more aggressive frequency targets to meet.5 
Nevertheless, even without path-level guardbanding, RCV is 
able to meet timing more consistently (about 1.2% 
improvement). The delay budgets help guide the connection-
level router to make tradeoffs which do not compromise path-

 
5 Both “with RCV” cases have comparable frequency targets to meet. 
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level timing performance; this helps the router meet path-level 
timing constraints more consistently. With path-level 
guardbanding, there is, on average, a 5.1% improvement in 
the number of clocks which meet timing, and there is a trend 
towards more improvement with more aggressive constraints. 
This trend makes sense since delay modeling inaccuracies are 
more likely to make highly timing marginal clocks fail timing 
and path-level guardbanding helps the router avoid this by 
strategically achieving more margin where it is beneficial. The 
results clearly show that RCV not only increases the 
maximum speed at which circuits can operate, but also 
improves the consistency with which the router closes timing 
under difficult constraints. 

B. PCI Cores 

PCI cores represent a highly challenging combined short- 
and long-path timing optimization problem, due to the many 
tight timing requirements on IO-to-register transfers in the 
PCI specification (IO TSETUP and THOLD constraints). Fig. 9 
shows that without RCV, the Quartus II software meets the 
short-path (THOLD) constraints on only 40 of the 157 PCI cores 
tested, and meets the long-path (TSETUP) constraints on 79 of 
the 157 cores. Fig. 10 shows the comparable results with RCV 
enabled. All of the 157 PCI cores meet their short-path 
(THOLD) and long-path (TSETUP) constraints – a vast 
improvement.  
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Fig. 9.  PCI IO timing without RCV. 

Another result of interest is illustrated in Fig. 11. It shows 
the performance of RCV on these PCI cores without the path-
level guardbanding technique described in Section IV.A.4. 
For these results, only connection-level delay budget margin 
is used to guide the router, as described in [16]. Even though 
that approach aims for balanced long-path and short-path 
margin on a connection-basis, with up to 1 ns of short-path 
margin per connection, 62% of the designs have less than 500 
ps of short-path margin and 39% of the designs have less than 
500 ps of long-path margin. With path-level guardbanding, 
these percentages are 6% and 20%, respectively. This 
illustrates the effectiveness of path-level guardbanding on the 
combined short- and long-path timing optimization problem. 
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Fig. 10.  PCI IO timing with RCV. 
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Fig. 11.  PCI IO timing with RCV, without path-level guardbanding. 
 

VI. CONCLUSION 
This paper introduced RCV, the first published algorithm to 

simultaneously optimize considering short- and long-path 
timing constraints in FPGAs. RCV comprises a new slack 
allocation algorithm and a new routing formulation. The slack 
allocation algorithm is the first to incorporate upper delay 
bounds and compute minimum delay budgets. This algorithm 
also employs guardbands to account for delay estimation 
errors during routing. The router uses a new delay cost 
formulation, using the delay budgets from slack allocation, to 
enable satisfaction of both short- and long-path timing 
constraints, without requiring any additional FPGA logic.  

Experimental results show that RCV outperforms earlier 
approaches used to satisfy short- and long-path timing 
constraints. Using only FPGA IO delay chains to try to solve 
short-path violations resulted in timing failures in 75% of 157 
PCI cores tested, while RCV met the constraints on all of the 
cores. On a set of 200 benchmark circuits, with short- and 
long-path timing constraints, RCV improved the short-path 
THOLD and the long-path TSETUP timing, on average, by 1.43 ns 
and 0.14 ns, respectively. On a set of 200 benchmark circuits, 
RCV achieved 3.2% higher circuit speed than a traditional 
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negotiated congestion router, indicating that RCV outperforms 
this highly successful algorithm, even on the well-studied 
long-path-only timing problem. Finally, the runtime impact of 
RCV is moderate, as it increased the total place-and-route time 
by only 5% to 10% when satisfying typical timing constraints. 
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