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Abstract 
Ana/ytic placement methods that simultaneously minimize 
wire length and spread cells are receiving renewed attention 
from both academia and industiy In this paper we describe 
the implementation details of a force-directed placer: FDP. 
Specifically, we provide ( I )  a description of eficient force 
computation for spreading cells, (2) an illustration of numer- 
ical instability in these methods and a meam by which these 
instabilities are avoided, (3) spread metrics for measuring 
cell distribution throughout the placement region and (4) a 
complementary technique which aids in directly minimizing 
HPWL. We present results comparing our ana/ytic placer to 
other academic tools for both standard cell and mixed-size 
designs. Compared to Kraftwerk and Capo 8.7, our tool 
produces results with an average improvement of 9% and 
3%, respectively 

INTRODUCTION 
As problem instances have increased in size and complex- 
ity, placement has, more and more, become the bottleneck 
in deep sub-micron designs. Typically, placement seeks to 
minimize wire length subject to the constraints that cells 
must be placed into prescribed locations without overlap. 
There are several approaches to this problem. Timberwolf 
[ I ]  and VPR [Z] use simulated annealing to improve an ex- 
isting placement. Top-down partitioning-based methods [3, 
4, 51 recursively divide the placement region and the circuit 
netlist into smaller pieces using either bi-section or quadri- 
section and a min-cut (or other) objective function. Analytic- 
based placers use quadratic or linear optimization [6,7,8,9, 
IO] to perform cell placement. While analytic placers usu- 
ally minimize an indirect measure of wire length, they can 
do so very efficiently, and are therefore capable of handling 
large problems. 
Several placement methods are often combined to improve 
the performance or quality of the placement. For example, 
GORDIAN [7], GORDIAN-L [9] and BonnPlace [6] combine 
analytic placement and top-down recursive partitioning. In 
such frameworks, the analytic placement provides useful in- 
formation regarding the relative positions of cells, whereas 
the partitioning enforces the requirement that cells must not 
overlap with each other. 
Altematively, an analytic placer can employ forces such that 
fairly non-overlapping placements are obtained without par- 
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Quadratic Optimization 
A circuit is modeled as a hypergraph Gh(&,Eh) with ver- 
tices V, = { V I ,  ~ 2 , ' .  . , v"} representing cells and hyperedges 
Eh = {el, e2,. ' ,e,} corresponding to signal nets. Vertices 
are weighted by cell area while hyperedges are weighted 
according to criticalities or multiplicities. Vertices are ei- 
ther free or fixed. Ckll placements in the x and y directions 
are captured by placement vectors x = (XI , x 2 , . ' .  , x n )  and 
Y = Ivl,Uz,... J") .  ' 
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t i th ing .  In [lo], Eisenmann and Johannes use forces to 
push cells from dense to less-dense regions. In [8, 11 1, fixed, 
or dummy, points are introduced as a means of pulling cells 
from dense to less-dense regions. 
Force-based methods are of great interest for several rea- 
sons. Mixed-size problems-that is, circuits with a com- 
bination of standard cells and macro blocks-are handled 
seamlessly by such techniques. Funhermore, these methods 
provide continuous cell locations and therefore appear very 
amenable to timing- and congestion-driven placement, phys- 
ical re-synthesis, and ECO. Yet, in our experience, develop- 
ing a force-directedplacer based on [ 101 is not trivial-while 
the work of Eisenmann and Johannes offers a good starting 
point, we have discovered the need for numerous additional 
techniques to stabilize the method and to improve the quality 
of results. To our knowledge, none of the recent literature on 
force-directedplacement (c.f. [12, 13, 14, IO]) has addressed 
the stability and quality issues that we broach. 
In this light, the purpose of our paper is two-fold we de- 
scribe a practical implementation of an Eisenmann-based 
placer, and expound upon the strategies that we have devel- 
oped for improving quality and performance. We describe 
a means of efficiently computing spreading forces, metrics 
which allow for stopping placement based on cell distribu- 
tion, a means ofpreventing the destabilization ofplacements 
due to numerical instability, and a direct HPWL-minimizing 
algorithm to improve overall quality. Experimental results 
confirm that our enhancements improve upon Kraftwerk 
(the commercial implementation of [lo]) by 9% on average 
for mixed-size problems, bringing the quality of results to a 
level on-par with other state-of-the-art approaches. 
The rest of the paper is organized as follows. We begin by 
presenting an overview of force-directed placement. Then, 
we discuss the implementation details of our placer and our 
additional methods for enhancing quality. Experimental re- 
sults are then presented, followed by concluding remarks. 

BACKGROUND 



Circuit hypergraphs are typically transformed into graphs in 
which each hyperedge is represented by a set of equally- 
weighted edges. The star model adds a new center vertex 
and represents the original net by edges connecting the cen- 
ter to the previously existing vertices. The clique model con- 
nects all pairs of vertices incident to the original hyperedge 
by equally-weighted edges. Clique models of large hyper- 
edges become prohibitively expensive due to the quadratic 
edge count. Consequently, large edges are either dropped 
completely, or a combination of clique and star models are 
employed in which cliques are used to model small hyper- 
edges and stars are used to model large hyperedges. 
The overall method for minimizing wire length is accom- 
plished by solving the quadratic optimization problem (x- 
direction only) given by 

1 
x 2  

min{xa;,(x; - x j ) * }  = min - x r a x +  e,’. + d, ( I )  
i , j  

where ai, represents the weight of the edge connecting cells 
i and j in the weighted graph representation of the circuit. 
The matrix Qx is the Hessian which encapsulates the hyper- 
edge connectivities. Assuming that some cells are fixed, the 
Hessian is a symmetric, positive-definite matrix.I The vec- 
tor e, is a result of fixed cell-to-free cell connections, and the 
vector dx is a result of fixed cell-to-fixed cell connections. 
The optimization problem is strictly convex and has a unique 
minimizer given by the solution of a single, positive-definite 
system of linear equations, Qxx +e, = 0. In this formula- 
tion, cell overlap is ignored, and the vector x provides only 
relative cell positions (i.e., the resultant placement would be 
infeasible and would have to be legalized). 
Briefly, we note that numerous studies have shown that quad- 
ratic optimization tends to produce placements of inferior 
quality. Better results may be achieved using iterative quadratic 
optimizations (at the expense of potentially significant in- 
creases in run-time) with weighting given by 

where x”-I and xy denote the vectors ofvertex positions at it- 
erations v- 1 and v, respectively. Thus, a quadratic objective 
function is used for efficient optimization, but re-weighting 
is used to approximate linear rather than quadratic distances 
as inGORDIAN-L [9]. 

Cell Spreading 
Eisenmann and Johannes [lo] proposed to directly modify 
the system of equations by including an additional vector of 
forces at each iteration of the placement. The force vector is 
derived from the distribution of cells throughout the place- 
ment region. It perturbs the placement to remove overlap 
by “pushing” cells away from regions of high density and 
“pulling” cells toward regions of low density. That is, at it- 
eration i, the cell positions are determined from the system 

‘In any real circuit, the 110 pads are fi xed and this condition is satisfied. 

of equations given by 
i- I 

Qxxj + e, + a l f i  + a;f; = 0 (3) 
I = I  

where fi represents the spreading forces computed at itera- 
tion i and ai represents the weighting with respect to wire 
length. At each iteration, forces throughout the placement 
region are computed using an analogy similar to charge at- 
traction or repulsion in an electric force field. We note that 
spreading forces are accumulated over iterations to avoid 
placements from “collapsing” back onto themselves. 
At each iteration i of placement, the vector of spreading 
forces f; is calculated using current cell locations and Pois- 
son’s equation given by 

where f ( x , y )  is the force on a cell at location (x ,y) ,  ?(x,y) 
is the vector representation of the point ( X J )  and D(x,y)  is 
the density at point ( x , y ) .  D(x,y)  represents the ratio oftotal 
cell occupancy to allowable capacity at point (x,y);  conse- 
quently, D(x,y)  measures the over-utilization of any point 
within the placement region. In practice, the force computa- 
tion is accomplished using discrete bins, with the continuous 
integration in (4) being replaced with discrete summations. 
We elaborate on this implementation in the following sec- 
tion. 

IMPLEMENTATION 

Core Framework 
In developing FDP, various open-source matrix packages were 
investigated. Based on experimental results, we selected the 
Boost uBLAS library [15] for its efficient matrix-vector op- 
erations [16]. We then developed an ILU(0) preconditioned 
BiCGSTAB solver, and the Reverse Cuthill-Mckee heuristic 
[17] to reorder the Hessians. When constructing the Hes- 
sians, we use a clique model for nets smaller than 20 and a 
star model for all larger nets. Using a clique model for nets 
up to this size seems to produce better quality placements 
than when using the sizing advocated by [18]. 

Force Computation 
While spreading forces have been mentioned frequently in 
the literature, the methods by which these forces are com- 
puted have not been explained in detail. We believe that a 
full description of how to compute these forces is beneficial. 
We compute spreading forces using a Bames-Hut quad-tree 
for n-body force calculation [19]. This method was cho- 
sen for its good overall performance and its relatively high- 
quality force calculation. The accuracy of the force calcula- 
tion was found to be especially important in the early stages 
of force-directed placement, and it is for this reason that we 
advocate this approach. Moreover, since the quad-tree al- 
ready tracks cell locations and area, it can be employed in 
other algorithms throughout the placement. 
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In our implementation, a quad-tree with at most 9 levels is 
constructed for the placement region. Given a current place- 
ment, cell area is inserted into all levels of the quad-tree 
based on cell position. Then, for each bin in the bottom level 
of the quad-tree, the multipole forces acting on the bin are 
accumulated using interaction lists and near neighbors. Fi- 
nally, the forces for a given cell are calculated by summing 
the individual forces upon the bins which that cell occupies 
(overlaps) in each level of the tree. 
Large cells may span several quad-tree bins and may receive 
contributions to their forces from each of the bins that they 
occupy. As a result, the largest cells tend to receive the 
largest forces. For placements with a wide distribution of 
cell dimensions the relative magnitudes of forces between 
cells can vary considerably-this can cause the largest cells 
to spread too quickly compared to the smaller cells, harming 
wire length. We have found that dividing the magnitude of 
the forces on each cell by the square root of the number of 
bins that it occupies (at each level in the quad-tree) leads to 
a more even distribution of force magnitudes (as shown in 
Figure I ) ,  and empirically results in better placements. 

Spread Metrics and Stopping Criteria 
It is important to be able to measure the progress of the 
placer in minimizing cell overlap. In the absence of an ade- 
quate spread metric, it is difficult to assess how much better 
(or worse) one placement iteration is than another. More- 
over, it i s  difficult to judge whether or not the spreading 
forces are properly weighted, or to determine when to ter- 
minate the placement and continue with legalization. To 
this end, two spreading metrics were developed and are pre- 
sented here. Each metric assesses the spreading of cells 
in a slightly different manner, and each metric has its own 
strengths and weaknesses. 
The first metric is based on the violation measure D(i, j) in 
the Barnes-Hut quad-tree. The metric is calculated by de- 
scending the tree and adding the factor by which the occu- 
pancy of a geometric region exceeds its allowable capacity 
scaled by the square of the quad-tree level; that is, we com- 

Before scaling the force After scaling the force 
magnitude magnitude 

Figure 1: Distribution of force magnitudes before and after 
scaling by the square root of the number of quad-tree bins. 
Note that prior to scaling, forces on large cells are signifi- 
cant whereas the forces on small cells are almost negligible 
(barely visible in the diagram). After scaling, forces are more 
uniform, although larger cells still receive justifiably larger 
forces. 

pute: 

( 5 )  
L 1  5 occupancy(i, j) & i,j:occ(i,j)>capli.j) capacity(i, j) 

for bins (i, j) at each level I of the tree. This weighting places 
more emphasis on capacity violations in the top levels of 
the quad-tree. Given that the worst possible value would 
occur when all cell area is focused on the smallest bin at each 
level of the quad-tree, we can normalize this spread metric 
to within the interval [0, I]. 
We employ a second spread metric based on Klee’s measure 
problem [20,21]. The O(nlogn) segment tree technique by 
Bentley [Zl] was implemented to measure the area of the 
union of the modules in the placement region. The Klee’s 
measure is then divided by the total cell area to give a nor- 
malized value in the interval [0,1], representing the percent- 
age overlap remaining in the placement. We have found that 
the average of the two spread metrics offers a reasonable 
impression of the amount of spreading throughout the entire 
placement flow. 
Unlike the approach used by [IO], in which global place- 
ment is stopped once there are ‘<no empty squares within the 
placement area which is larger than four times the average 
area of a cell” [lo], the spread metrics described here can 
be used to stop placement in designs with large amounts of 
white space. Our experiments have shown that the place- 
ment can finish and proceed to legalization with 30%35% 
overlap remaining. This stopping point offers a good trade- 
off between placer performance and spreading of cells. Our 
legalization strategy is usually capable of retaining quality 
with this much overlap. 
As noted in [22], the force-directed approach can require 
many iterations to completely purge overlap from a circuit. 
Consequently, it is computationally more efficient to use an 
intelligent legalization scheme to remove the final overlap. 

Stability 
During the development of FDP, it was discovered that the 
incremental addition of a small amount of spreading forces 
from one iteration to another could result in a large “desta- 
bilization” of the placement. In these cases, initially-spread 
cells could “collapse” into the edge of the placement region. 
This phenomenon is illustrated in Figure 2. 
Initially, it was suspected that the force weights were too 
large, and that they were causing cells to move too much 
in a given iteration. As a result, a “savehestore” mecha- 
nism was implemented to discard a placement if the resulting 
spread metrics indicated a significant increase in the amount 
of overlap (and force weights were lowered). Unfortunately, 
this technique did not eliminate the destabilization. 
It was soon realized, that the Hessians for most problems 
were ill-conditioned, and that no changes to the force weight- 
ing would improve stability. An examination of the matrix 
equations followed. We begin by noting that the previous 



Placement before 
destabilization 

Placement after 
destabilization (one 

iteration later) 

Figure 2: Illustration of destabilization during placement. 
Destabilization is an undesirable side-effect of numerical ill- 
conditioning in the Hessian matrices. 

iteration is given by: 

whereas the current iteration is given by: 

Subtracting (6) from (7) yields 

In physical terms, (8) indicates that the increment in posi- 
tion of modules is a function of the incremental force and 
the springs between the cells. It shows that if Q, is poorly 
conditioned, then scaling Af, linearly would not help since 
the conditioning applies to the Hessian being solved, chiefly 
llQ;lAfxll I = 1lQ;‘Ili IlAfAli. 
To improve conditioning, the placement could be stabilized 
using fixed points as in [ 1 I] and the cumulative forces reset 
to zero. However, a less computationally-intensive approach 
was devised. Instead of changing the cumulative forces, a 
“virtual” fixed point (with no height or width) is placed at 
the position of the movable modules in the netlist. The po- 
sitions of the virtual fixed points are then updated in each 
subsequent iterationdoing so only affects the diagonals of 
the Hessians, while improving conditioning. With the addi- 
tion of these fixed points (connected by potentially weighted 
nets), Equation (8) becomes 

a(.’ - X) + wI(x’ - X) +Afx = 0 (9) 

(Qx+wI)(Ax)+AfX=O (10) 
Ax = -(Qx + wI)-‘Afx. (11) 

which yields 

Since the diagonals will be larger, (1 1) has the effect of also 
being faster for a conjugate gradient method to solve. More- 
over, if one matrix dominates the other (w1 >> Qx), the sys- 
tem becomes, in effect: 

Ax z= (wI-’)Afx % w-IAf,. (12) 
Equation (12) reveals that, if a sufficient number of virtual 
fixed cells were to be added at the locations of the current 
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movable cells, then the step that will be taken will be in 
the direction of the incremental force, and that only some 
fraction (controlled by w) of that distance will be traveled. 
Physically, a weighted step in the direction of the force can 
be interpreted as addingfriction to the placement. 
Experiments conducted with “friction” have indicated that 
only a small percentage of the rows in the Hessian-usually, 
only around 5% of the least diagonally-dominant rows- 
need to have virtual fixed cells attached in order to improve 
conditioning and stability. After friction is applied and the 
previous iteration’s cell positions are restored, subsequent 
placement iterations usually do not destabilize and the qual- 
ity of results remains unaffected. 

IMPROVING QUALITY 
We note that standard Eisenmann-based placement does a 
good job of spreading cells across the placement area. In 
practice, however, we found that a number of modifications 
and additions were necessary to achieve results on-par with 
what may be considered state-of-the-art. 

BoxPlace Improvement 
Foremost among the methods that we have implemented to 
improve quality is the inclusion of a technique called “Box- 
Place” [23]. BoxPlace moves each cell to the median loca- 
tion of its connected nets, thereby reducing HPWL directly? 
The pseudocode for the BoxPlace routine is shown in Fig- 
ure 3.’ In BoxPlace, the range of (x ,y)  values which mini- 
mize HPWL for the nets connected to cell i is calculated as 
follows. First, the x andy minimums and maximums of the 
bounding boxes for all nets (excluding the points contributed 
by cell i) are inserted into two vectors--one for each direc- 
tion. The vectors are then sorted by increasing value. The 
median (Ln/2J) and median plus oneth (Ln/2J + 1) locations 
yield the “box” (or range) of positions into which cell i can 
be moved to improve HPWL. By using a grid-based shuc- 
tule, cells can be tracked to ensure that they are inserted into 
a relatively non-overlapping area within their target box. 
In our embodiment, calls to BoxPlace are performed after 
every 3% improvement (reduction) in cell overlap. Since 
BoxPlace can reinfroduce overlap, we re-evaluate the spread- 
ing after each pass of BoxPlace-if too much overlap was 
introduced, we restore the previous cell locations and stop. 
We also use BoxPlace to compute “minimizing forces”. These 
forces are simply vectors which point to the locations to 
which cells should move to reduce HPWL. These forces are 
scaled appropriately, and then combined linearly (in a ratio 
of 40%/60%) with the spreading forces. This vector addi- 
tion reorients the angles of the spreading forces to point in 
a direction that favors spreading, but additionally minimizes 
wire length as shown in Figure 4. 

’The BaxPlace concept can also be extended to move cells based on 
timing constraints, although this modification is not discussed here. 
’Our implementation caches bounding box information lo improve 
performance. The details of this caching code have been omitted far 
bcwiv. 
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I Procedure: BOXPLACE 
2 Input: A netlist, N 
I 
4 
5 
6 
1 
8 

9 
I O  
I 1  

12 
13 

begin 
E + all eligible, movable cells in N ;  
far each pass E 0, I,. . . ,MRX.PASSGS do 

loslPosn t position of all cells; 
Randomly permute E 
for each ni E E do 

Find the range (‘box’) of (xa) values 

Move n; to a relatively non-overlapping 
that minimizes HPWL for n;; 

area somewhere within the ‘box’: 
od 

14 
I5 

if too much overlap was reintroduced then 
Restore the cell positions from IosIPosn: 

16 break; 
17 fi 
18 od 
19 end 

Figure 3: Pseudocode for the BoxPlace algorithm 

We have found that BoxPlace, when called individually and 
when added (vectorally) to the spreading forces, undoes much 
ofthe damage to HPWL caused by the spreading forces alone. 
BoxPlace helps our placer to achieve a more linearized place- 
ment without degrading performance as much as a GORDIAN- 
L-type of linearization. We have found that BoxPlace forces 
are especially important in improving the quality of our place- 
ment above and beyond that of Kraf twerk. 
In addition, BoxPlace aids cell spreading in a subtle fashion. 
One of the problems with achieving a high-quality place- 
ment lies in the fact that forces do not allow cells to “flip” 
sides. That is, once a cell is located to the right of another 
cell, the spreading forces will not allow the two to cross 
paths, even if doing so would improve HPWL. This prob- 
lem can be pa&cularly troublesome given that relative cell 
ordering is often established early on in placement after the 
initial quadratic problem is solved. This is when there exists 
the greatest amount of “uncertainty” in the placement and 
spreading forces are most likely to do the greatest amount 
of damage to HPWL. BoxPlace, on the other hand, performs 
this “flipping” and situates cells in more favorable positions 
to reduce wire length. 

Figure 4: Illustration of the addition of spreading and Box- 
Place forces, and the resultant vector. 

Dynamic Force Weighting 
The weights applied to the spreading forces impact the speed 
at which a circuit spreads, and can affect the quality of the 
overall wire length [IO, 221. We have found that weight- 
ing forces via a constant, as advocated by [IO],  leads to 
poor placements. In our implementation, the force weight 
is adapted dynamicallj in each iteration to achieve both fast 
spreading and good quality. 
In FDP, the force vectors for each iteration are normalized 
with respect to the largest force vector. Then, the force 
weighting schedule weights the elements off, and f y  by a 
scalar value k. The value of k in each iteration is adjusted 
based on the following experimental observations. 

Initially, the force weight k should be as small as pos- 
sible. While good spreading can still be achieved if 
large force weights were used in the first I O  to 50 iter- 
ations of placement, wire length may be significantly 
worsened. 
Once the relative ordering of cells has been well estab- 
lished, and the circuit begins to spread consistently, k 
can be increased in each iteration to encourage faster 
spreading. k should be reduced if the spread metrics 
detect too much reduction in the amount of overlap 
(and vice-versa for too little improvement in the spread- 
ing). Near the end ofplacement, force weights must be 
quite large to overcome the quadratic “springs”. 

In other words, force weights are adapted continuously us- 
ing, in effect, a three-step state machine in which the spread 
metrics are used to help in dynamically weighting forces- 
if there is too much spreading, force weights are lowered, 
and if there is ton little, force weights are raised. The spread 
metrics can also help to determine if the placement is “oscil- 
lating” (no longer spreading), in which case our placer can 
stop and proceed to legalization. 
It should be further noted that, to achieve consistent force 
weights across a variety of circuits, the placement region 
(and all cells) are scaled by the average cell height and width. 
We have found that, in general, this scaling does a good job 
of normalizing the force weighting such that different sizes 
of placement regions are affected in roughly the same way 
by the same force weight. 

Clustering 
Spreading forces can harm wire length in some cases by 
pushing the largest cells to the edges of the placement re- 
gion too quickly. This is due to the fact that large cells tend 
to possess considerable overlap in the early stages of place- 
ment, and may receive large “pushing” forces early on. The 
more that cells are similarly-sized, however, the less of a 
negative impact that spreading forces impart on overall wire 
length. 
We use Hybrid First Choice clustering [24] to cluster netlists 
to at most 70% of their original size, prior to placement. 
Clustering tends to “smooth” the differences in cell heights 
and widths, and ensures that nodes with high affinities stay 



close together throughout the placement (so that they are not 
unduly pushed apart by the spreading forces). 

Legalization 
Placements produced by FDP are not “valid” in that cells are 
not assigned to rows and some residual overlap may still be 
present. Our legalization strategy is presently quite simple. 
We initially snap cells to their closest rows in order to min- 
imize total cell movement. Greedy juggling of cells is per- 
formed between rows in order to meet width restrictions im- 
posed by the fixed die. Finally, we apply greedy (same-size) 
cell swaps and single-row branch and bound on groups con- 
taining six or fewer cells. 
In the case of circuits containing macro cells, we first test 
the placement using a sequence pair analysis along the lines 
of [25]. In our experience, macro cells generally fit and no 
additional work is required. (Of course, we could choose to 
apply operations on the sequence pair as in [25] if the macro 
cells do not fit inside the fixed die.) Using the results of the 
sequence pair analysis, macro cells are shifted to align with 
rows and remove overlap in the y-direction, and shifted to 
the left and right to remove overlap in the x-direction. Cur- 
rently, no attempt is made to optimize whitespace in the final 
placement. Examples of two placements before and after le- 
galization are shown in Figure 5. 

Circuit KrsRwerk I FDP I Ratio 

HPWL (%) HPWL 
p 

EXPERIMENTAL RESULTS 

Standard Cell Benchmarks 
In the first set of experiments, we were interested in investi- 
gating the stability and capability of our framework to effec- 
tively place standard cell circuits. We modified the ISPD02 
benchmarks in [26, 27, 281, shrinking macro cells to stan- 
dard dimensions, and adjusting problems to maintain an as- 
pect ratio of 1.0 with 5% ~ h i t e s p a c e . ~  
These tests were then applied to Kraftwerk [lo], the com- 
mercial version of the force-directed approach upon which 
our placer is based.’ We found that Kraftwerk produces 
overlapping placements with usually between 30%35% over- 
lap using Klee’s measure, so FDP was set to terminate appro- 
priately. 
The ratios comparing the HPWL of the two placements are 
shown in Table 1. In general, FDP achieved results that were 
7% better in pre-legal wire length, thereby validating the ef- 
ficacy of the methods described in this paper. 
We also compared our results to Capo 8 .7  [4] and Dragon 
3 .01[29], all of which were executed on a Pentium 4,2.8 GHz 
machine running Fedora Linux. Dragon was run in fixed-die 
mode; note that some of the results for Dragon are not avail- 
able because it crashed on a handful of designs. Run times 
for each placement are expressed in minutes, and the wire 

‘These modified standard cell benchmarks are available on our website, at 
http:l/gibbon.Uwaterlao.ca. 
5Due to the method used to acquire the Kraftweek results. a direct 
performance comparison with our placer was not possible. 

lengths are for the half-perimeter (divided by IO6). The re- 
sults reported for FDP are legalized, and the time represents 
the cumulative time required for placement and legalization. 
Results featuring these standard cell benchmarks, as well as 
a set of unit-sized benchmarks (with the same aspect ratio 
and whitespace), are shown in Table 2. In the standard cell 
benchmarks, FDP achieved results that were 2% better than 
Capo 8 .7, with m times that were within a factor of 4 (for 
ibml0 and above). In the unit-sized benchmarks, FDP proved 
to be 3% better than capo 8 .7  on average6 
FDP tends to excel on unit-sized problems for two reasons. 
First, there is a more even distribution of spreading force 
magnitudes, so it is unlikely that some cells will be pushed 
“unfairly” to the wrong side of the placement region. Sec- 
ond, the heuristic improvement strategies employed in our 
legalizer are afforded more alternatives for swapping when 
cell dimensions are the same size. 

MixedSize Benchmarks 
In the second set of experiments, we investigated FDP’s han- 
dling of mixed-size problems. We compare to results re- 
cently published in [26], which include values from Capo, 
Kraf twerk, and mPG [30]. As our testing platform differs 
from those used in [26], we cannot compare the relative per- 
formance of each approach, but we can compare the quality 
of the final placements. Performance values are provided as 
a “reality-check”. 
We do not explicitly compare to the recent results of [5]. 
Our tool distributes whitespace throughout the placement 
area, whereas [5] appears to pack to the left. While the wire 
lengths of [5] are excellent, the differences in whitespace 

~ ____~ ____ 

6We note that, to facilitate indirect comparison with other tools, capo 8 . 5  
produces results that are, on average, 2% worse than Capo 8 .  I ,  and thus 
between 4 and 5% worse than FOP on lhese benchmarks. Space constraints, 
however, did not permit a full comparison with Capo 8 . 5  in this paper. 
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ibmO1 before legalization ibmOl after legalization 

Figure 5:  Illustration of ibmOl and I :  

ibm04 before legalization 

ibm04, before and after legalization. 

ibm04 after legalization 

Table 2: Standard cell (and unit-sized) benchmarks with an aspect ratio of 1.0 and 5% whitespace. Run times are observed on 
a 2.8 GHz Pentium, and reported in minutes. The reported wire length is HPWL. 

allocation appear to make comparisons difficult and poten- 
tially misleading. 
The results for the macro cell benchmarks are shown in Ta- 
ble 3. Note that Capo I corresponds to the “Improved Flow 
1 (C)” of [26], while Capo I1 corresponds to “Flow 2.” in 
[26]. We emphasize that Capo I1 and Kraftwerk results 
are not legal whereas the results for our tool are legalized, 
and that the ratios comparing our placer to Capo uses the 
best value from either of the Capo flows for each problem. 
Relative to the best of the Capo flows, FDP produced very 
comparable results. Moreover, FDP achieved results that were 
9% better than Kraftwerk and 1% better than mPG. Our run 
times for these problems also appear to be quite reasonable. 
These numbers confirm that FDP not only implements but ex- 
tends the techniques presented in [lo], rendering placements 
that are on-par with current state-of-the-art methods. 

CONCLUSIONS 
In this paper, we discussed the implementation of a force- 
directed analytic placer. Several engineering details, such as 
methods for force computation and spreading assessment, 
were investigated, and various new methods for improving 
quality were presented. The quality of our approach was 

compared to other leading-edge tools and the results were 
found to be favorable, with performance of most designs 
usually within 4 times that of Capo 8 . 7  and results up to 
3% better, on average, for unit-sized standard cells. 
While top-down panitioning strategies have received consid- 
erable attention over the past five years, relatively few details 
have surfaced about force-directed placers. For instance, we 
know of no freely-available frameworks for investigations 
into force-based placement. We feel that the enhancements 
introduced by our tool have brought it in-line with state-of- 
the-art technologies, and that by releasing its source code, 
we may stimulate further investigation in this milieu.’ 
All told, we believe that there is still considerable room to 
improve the quality of results achieved from force-based tech- 
niques. Both the placer and spread metrics can be extended 
to consider additional objectives, such as routing, conges- 
tion, timing, variable whitespace allocation, and 3D place- 
ment simply by replacing the quad-tree with an oct-nee. More- 
over, we feel that partitioning one or two levels prior to an- 
alytic placement could improve results. Cutlines added by 
a partitioning method would not only have the effect of cre- 

’The C++ source code for our placer is available for free download at 
http://gibban.uwaterloo.ca. 
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Table 3: Macro cell benchmark results. Run times for Capo and Kraftwerk are observed on a 2 GHz Pentium. Run times for 
mPG are observed on a Sun Blade 1000 running at 750 MHz. Run times for FDP are observed on a 2.8 GHz Pentium. 

ating a more initially-spread design, they would also render 
the Hessians more diagonally dominant and therefore faster 
to solve with a conjugate gradient technique. Lastly, we be- 
lieve that there is still considerable room to improve upon 
our run times through parameter tweaking and a stretching 
technique along the lines of [18]. 
We expect that further research on this placement methodol- 
ogy will continue to be very rewarding, and expect to inves- 
tigate these ideas for inclusion in the not-too-distant future. 
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