Using Library Modules in Verilog Designs

This tutorial explains how Altera’s library modules can be included in Verilog-based designs, which are imple-
mented by using the Quartus® Il software.

Contents:

Example Circuit

Library of Parameterized Modules
Augmented Circuit with an LPM
Results for the Augmented Design

Practical designs often include commonly used circuit blocks such as adders, subtractors, multipliers, decoders,
counters, and shifters. Altera provides efficient implementations of such blocks in the form of library modules that
can be instantiated in Verilog designs. The compiler may recognize that a standard function specified in Verilog
code can be realized using a library module, in which case it may automatically infer this module. However, many
library modules provide functionality that is too complex to be recognized automatically by the compiler. These
modules have to be instantiated in the design explicitly by the user.

Quartus® 11 software includes a library of parameterized modules (LPM). The modules are general in struc-
ture and they are tailored to a specific application by specifying the values of general parameters.

Doing this tutorial, the reader will learn about:
e Library of parameterizes modules (LPMs)
e Configuring an LPM for use in a circuit

e Instantiating an LPM in a designed circuit

The detailed examples in the tutorial were obtained using the Quartus Il version 8.0, but other versions of the
software can also be used.

1 Example Circuit

As an example, we will use the adder/subtractor circuit shown in Figure 1. It can add, subtract, and accu-
mulate n-bit numbers using the 2’s complement number representation. The two primary inputs are numbers
A=ay_1an_9---apgand B = b,_1b,_o---bg, and the primary output is Z = z,_12,_2 - - - 29. Another input
is the AddSub control signal which causes Z = A + B to be performed when AddSub=0and Z = A — B when
AddSub = 1. A second control input, Sdl, is used to select the accumulator mode of operation. If Sl = 0, the
operation Z = A + B is performed, but if S&l = 1, then B is added to or subtracted from the current value of Z.
If the addition or subtraction operations result in arithmetic overflow, an output signal, Overflow, is asserted.

To make it easier to deal with asynchronous input signals, they are loaded into flip-flops on a positive edge of
the clock. Thus, inputs A and B will be loaded into registers Areg and Breg, while Sel and AddSub will be loaded
into flip-flops SelR and AddSUbR, respectively. The adder/subtractor circuit places the result into register Zreg.

3y Sl B= bn -1 bo Addsub
n-bit register F/F n-bit register FIF

Areg= | areg,,_,

\

—
\

n-bit 2-to-1 MUX

Breg= | breg,_; breg,
AddSubR
\J

H= hn—l o o 0 hO

L
G= ' gn_ 1 oo 0] go
V
carryout n-bit adder carryin fa——-
M= | My_y My

. hn _ 1 e o o

l] n-bit register Zreg

over_flow Zreg= | zreg,_, zreg,
F/F e o o
' ,
Overflow 2= 7, Z,

Figure 1. The adder/subtractor circuit.

The required circuit is described by the Verilog code in Figure 2. For our example, we use a 16-bit circuit as
specified by n = 16. Implement this circuit as follows:

o Create a project addersubtractor.

Include a file addersubtractor.v, which corresponds to Figure 2, in the project. For convenience, this file is

Compile the design.

Simulate the design by applying some typical inputs.

provided in the directory DE2_tutorials\design_files, which is included on the CD-ROM that accompanies
the DE2 board and can also be found on Altera’s DE2 web pages.

Choose the Cyclone Il EP2C35F672C6 device, which is the FPGA chip on Altera’s DE2 board.

/I Top-level module

module addersubtractor (A, B, Clock, Reset, Sel, AddSub, Z, Overflow);
parameter n = 16;
input [n—1:0] A, B;
input Clock, Reset, Sel, AddSub;
output [n—1:0] Z;
output Overflow;
reg SelR, AddSubR, Overflow;
reg [n—1:0] Areg, Breg, Zreg;
wire [n—1:0] G, H, M, Z;
wire carryout, over_flow;

/I Define combinational logic circuit

assign H =Breg " {n{AddSubR}};

mux2tol multiplexer (Areg, Z, SelR, G);
defparam multiplexer.k = n;

adderk nbit_adder (AddSubR, G, H, M, carryout);
defparam nbit_adderk =n;

assign over_flow = carryout * G[n—1] * H[n—1] * M[n—1];

assign Z = Zreg;

/I Define flip-flops and registers
always @ (posedge Reset or posedge Clock)
if (Reset ==1)
begin
Areg <=0; Breg <=0; Zreg <=0;
SelR <= 0; AddSubR <= 0; Overflow <= 0;
end
else
begin
Areg <= A; Breg <= B; Zreg <= M;
SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;
end
endmodule

/I k-bit 2-to-1 multiplexer
module mux2tol (V, W, Selm, F);
parameter k = 8;
input [k—1:0] V, W;
input Selm;
output [k—1:0] F;
reg [k—1:0]F;

always @(V or W or Selm)
if (Selm==0) F=V,

dse F=W;
endmodule

... continued in Part b

Figure 2. Verilog code for the circuit in Figure 1 (Part a).

I k-bit adder
module adderk (carryin, X, Y, S, carryout);
parameter k = 8;
input [k—1:0] X, Y;
input carryin;
output [k—1:0]S;
output carryout;
reg [k—1:0]S;
reg carryout;

always @(X or Y or carryin)
{carryout, S} = X + Y + carryin;
endmodule

Figure 2. Verilog code for the circuit in Figure 1 (Part b).

2 Library of Parameterized Modules

The LPMs in the library of parameterized modules are general in structure and they can be configured to suit a spe-
cific application by specifying the values of various parameters. Select Help > Megafunctions/LPM to see a list-
ing of the available LPMs. One of them is an adder/subtractor module called Ipm_add_sub megafunction. Select
this module to see its description. The module has a number of inputs and outputs, some of which may be omitted
in a given application. Several parameters can be defined to specify a particular mode of operation. For example,
the number of bits in the operands is specified in the parameter LPM_WIDTH. The LPM_REPRESENTATION
parameter specifies whether the operands are to be interpreted as signed or unsigned numbers, and so on. Tem-
plates on how an LPM can be instantiated in a hardware description language are given in the description of the
module. Using these templates is somewhat cumbersome, so Quartus Il software provides a wizard that makes the
instantiation of LPMs easy.

We will use the Ipm_add sub module to simplify our adder/subtractor circuit defined in Figures 1 and 2.
The augmented circuit is given in Figure 3. The Ipm_add_sub module, instantiated under the name megaddsub,
replaces the adder circuit as well as the XOR gates that provide the input H to the adder. Since arithmetic overflow
is one of the outputs that the LPM provides, it is not necessary to generate this output with a separate XOR gate.

To implement this adder/subtractor circuit, create a new directory named tutorial_Ipm, and then create a project
addersubtractor2. Choose the same Cyclone Il EP2C35F672C6 device, to allow a direct comparison of imple-
mented designs.

an_1 ay & B= bn -1 bo AddSub
n-bit register F/IF n-bit register FIF
O
Areg= | areg,_; areg, Breg=| breg,_; breg,
1 e o o ' o e o
n-bit 2-to-1 MUX LUK
SR
I I
G= gn -1 o e 0] go] \
dataa datab
megaddsub module add_sub |-
overflow result ~AddSubR
M= | m,_y my
over_flow e
/ L
FIF n-bit register Zreg
Zreg= | zreg,_, zreg,
‘ e o o '
Overflow Z= Z,_, Z,

Figure 3. The augmented adder/subtractor circuit.

The new design will include the desired LPM subcircuit specified as a Verilog module that will be instantiated
in the top-level Verilog design module. The Verilog module for the LPM subcircuit is generated by using a wizard

as follows:

1. Select Tools > MegaWizard Plug-in Manager, which leads to a sequence of seven pop-up boxes in which

the user can specify the details of the desired LPM.

2. In the box shown in Figure 4 indicate Create a new custom megafunction variation and click Next.

MegaWizard Plug-In Manager [page 1]

A

‘which action do you want to perform?

(* iCreate a new custom megafunction variatior;

" Edit an existing custom megafunction variation

" Copy an existing custom megafunction variation

Copyright € 1991-2008 Altera Corporation

The Mega'wizard Flug-In Manager helps you create or modify
design files that contain custom variations of megafunctions.

3

Cancel |

| Mest » |

Figure 4. Choose to define an LPM.

MegaWizard Plug-In Manager [page 2a] PZ|

Wwhich megafunction would you like to customize™? ‘wihich device family will you be Cyclone |1 -

7
Select a megafunction from the list below usIng:
=[] Installed Plug-lns A ‘which twpe of output file do you want to create?
Altera SOPC Builder " AHDL
] Arithmetic
~
] ALTACCUMULATE YHDL
ALTECC + Verilog HDL
ALTFP_ADD_SUB]
- o 3
ALTFP_COMPARE what name do you want for the output file? Browse.
ALTFP_COMNYERT [r:Mbutorial_lprmtmegaddsub. v
ALTFP_DIV
ALTFP_MULT
ALTFP_SGRT
ALTMEMMULT ™ Retumn to this page for anather create operation
ALTMULT_ACCUM [MAC)
ALTMULT_ADD Mate: To compile a project successfully in the Quartus || software,
ALTMULT COMPLE your design files must be in the project directory, in the global user
ALTSQHT_ libraries specified in the Options dialog box (Tools menu), or a user

library specified in the User Libraries page of the Settings dialog
bow [Assignments menu).

LPH EDMHE “rour current user library directonies are:
LPt_COUMTER

LPH_DIVIDE

LP_MULT

PARALLEL_aDD

ommuhications

Cancel | < Back | Mest » | |

Figure 5. Choose an LPM from the available library.

3. The box in Figure 5 provides a list of the available LPMs. Expand the “arithmetic” sublist and select
LPM_ADD_SUB. Choose Verilog HDL as the type of output file that should be created. The output file
must be given a name; choose the name megaddsub.v and indicate that the file should be placed in the
directory tutorial_Ipmas shown in the figure. Press Next.

MegaWizard Plug-In Manager, - LPM_ADD_SUB [page 3 of 8]

About Documentation
Currently selected device Family:
megaddsub v = v hs
add_sub [Match project/default

dataa[1s.0
datab[15.0 E

Hows wide should the 'dataa’ and 'datab’ input buses be? bitz

‘which operating mode do you want For the adder/subtractor?
1 Addition anly
1 Subtraction only

(®! Create an 'add_sub' input port to allow me ta da bath
[1 adds; 0 subtracts)

Resource Uzage
32 ut

| Cancel ” < Back ” Mext = ” Einish |

Figure 6. Specify the size of data inputs.

4. In the box in Figure 6 specify that the width of the data inputs is 16 bits. Also, specify the operating mode
in which one of the ports allows performing both addition and subtraction of the input operand, under the
control of the add_sub input. A symbol for the resulting LPM is shown in the top left corner. Note that if
add_sub = 1 then result = A + B; otherwise, result = A — B. This interpretation of the control input and
the operation performed is different from our original design in Figures 1 and 2, which we have to account
for in the modified design. Observe that we have included this change in the circuit in Figure 3. Click Next.

MegaWizard Plug-In Manager, - LPM_ADD_SUB [page 4 of 8]

About

Docurnentation

Is the 'dataa’ or 'datab’ input bus value a constant?

dataa[1s.0
datab[15.0

&) Mo, both values wvary

! Yes, dataa =
) Yes, datab =

‘which type of additionsubtraction do you want?
) Unsigned
! Signed

Resource Uzage
32 ut

| Cancel ” < Back ” Mext = ” Einish |

Figure 7. Further specification of inputs.

5. In the box in Figure 7, specify that the values of both inputs may vary and select Signed for the type of
addition/subtraction. Click Next.

MegaWizard Plug-In Manager, - LPM_ADD_SUB [page 5 of 8]

LPM_ADD_SUB

EoX

Docurnentation

megaddsub

averflow,

Do you want any optional inputs or outputs?
add_sub

dataa[1s.0 Iy
datab[15.0

Input:
["] Create a carry/borrow-out input

Outputs:
["] Create a carry/borrow-in output
M Create an overflow output

Resource Uzage
33 ut

| Cancel ” < Back ” Mext = ” Einish |

Figure 8. Specify the Overflow output.

6. The box in Figure 8 allows the designer to indicate optional inputs and outputs that may be specified. Since
we need the overflow signal, make the Create an overflow output choice and press Next.

MegaWizard Plug-In Manager, - LPM_ADD_SUB [page 6 of 8]

Docurnentation

megaddsub

cldd_sub L .
Ao0_sU Do you want to pipeline the function’?

dataa[1s.0 Iy & No
resul[15.0
datab{15..0]) Yes, T want an output latency of Clock cycles
averflow,

Resource Uzage
33 ut

| Cancel ” < Back ” Mext = ” Einish |

Figure 9. Refuse the pipelining option.
7. In the box in Figure 9 say No to the pipelining option and click Next.

8. Figure 10 shows the simulation model files needed to simulate the generated design. Press Next to proceed
to the final page.

10

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 7 of 8] -- EDA

_a LPM_ADD_SUB

About

Docurnentation

Simulation Libraries

To properly simulate the generated design files, the Following simulation model
file{s) are needed

megaddsub

averflow,

add_sub

dataa[15.0 Iy
clatab[15..0

File | Description
Ipm LPM megafunction simulation library

Timing and resource estimation

Generates a netlist For timing and resource estimation For this megafunction, IF
wou are synthesizing your design with a third-party synthesis tool, using a
timing and resource estimation netlist can allow For better design optimization,

Mot all third-party synthesis tools support this Feature - check with the tool
vendor for complete support information.

Mote: Metlist generation can be a time-intensive process, The size of the
design and the speed of your system affect the time it takes For netlist
generation to complete,

["] Generate netlist
Resource Usage

33 It

| Cancel ” < Back ” Mext = ” Finish |

Figure 10. Simulation model files.

9. Figure 11 gives a summary which shows the files that the wizard will create. Press Finish to complete the
process.

11

MegaWizard Plug-In Manager - LPM_ADD_SUB [page B of 8] -- Summary

_,a LPM_ADD_SUB

Docurnentation

About

Surmmary

Turn on the files you wish to generate, & gray checkmark indicates a file that is
rmegaddsub automatically generated, and a red checkmark indicates an optional file, Click
dad sub Finish to generate the selected files, The state of each checkbox is maintained in
Add_zu subsequent Megawizard Plug-In Manager sessions,
dataa[15.0
datab[15.0 The MegaWwizard Plug-In Manager creates the selected files in the following
(—u direckary:
Dibutorial_lpmi

File | Description

[megaddsub.v Wariation file

O megaddsub.ine AHDL Include file

O megaddsub.cmp WHOL component declaration file

O megaddsub. bsf Guartuz || symbaol file

O megaddsub_inst.v Instantiation template file

[megaddsub_bb.v ‘erilog HOL black-box file

B4 megaddsub_waveforms. himl Sample waveforms in summary

L..megaddsub_wave® jpg Sample waveform file(z]
Resource Usage
33 ut
| Cancel ” < Back | | Einish |

Figure 11. Files created by the wizard.

10. The box in Figure 12 may pop up. If it does, press Yes to add the newly generated files to the project.

Quartus Il IP Files

‘when pou create an Altera IP variation, a Quartusz || [P File iz generated. Quartusz || [P Files
are used to represent the Altera IP in your design. Do you want to add the Quartusz || [P File
to the project?

I~ Automatically add Quartus |1 1P Files ta all projects

[Mate: Turning on thiz option permanently suppresses this dialog box. You can change this
zetting in the Options dialog box)

Figure 12. Add the new files to the project.

3 Augmented Circuit with an LPM

We will use the file megaddsub.v in our modified design. Figure 13 depicts the Verilog code in this file; note that
we have not shown the comments in order to keep the figure small.

12

/I Adder/subtractor module created by the MegaWizard
module megaddsub (

add_sub,

dataa,

datab,

result,

overflow);

input add_sub;

input [15:0] dataa;

input [15:0] datab;

output [15:0] result;

output overflow;

wire sub_wire0;

wire [15:0] sub_wirel;

wire overflow = sub_wire0;

wire [15:0] result = sub_wirel1[15:0];

Ipm_add_sub lpm_add_sub_component (
.dataa (dataa),
.add_sub (add_sub),
.datab (datab),
.overflow (sub_wire0),
result (sub_wirel));

defparam
Ipm_add_sub_component.lpm_width = 16,
Ipm_add_sub_component.Ilpm_direction = "UNUSED",
Ipm_add_sub_component.lpm_type = "LPM_ADD_SUB",
Ipm_add_sub_component.lpm_hint = "ONE_INPUT _IS_CONSTANT=NQO";

endmodule

Figure 13. Verilog code for the ADD_SUB LPM.

The modified Verilog code for the adder/subtractor design is given in Figure 14. Put this code into a file adder-
subtractor2.v under the directory tutorial_Ipm. For convenience, the required file addersubtractor2.v is provided
in the directory DE2_tutorials\design_files, which is included on the CD-ROM that accompanies the DE2 board
and can also be found on Altera’s DE2 web pages. The differences between this code and Figure 2 are:

e The assign statements that define the over_flow signal and the XOR gates (along with the signal defined as
wire H) are no longer needed.

e The adderk instance of the adder circuit is replaced by megaddsub. Note that the dataa and datab inputs
shown in Figure 6 are driven by the G and Breg vectors, respectively. Also, the inverted version of the
AddSubR signal is specified to conform with the usage of this control signal in the LPM.

e The adderk module is deleted from the code.

13

/I Top-level module

module addersubtractor2 (A, B, Clock, Reset, Sel, AddSub, Z, Overflow);
parameter n = 16;
input [n—1:0] A, B;
input Clock, Reset, Sel, AddSub;
output [n—1:0] Z;
output Overflow;
reg SelR, AddSubR, Overflow;
reg [n—1:0] Areg, Breg, Zreg;
wire [n—1:0] G, M, Z;
wire over_flow;

/I Define combinational logic circuit
mux2tol multiplexer (Areg, Z, SelR, G);
defparam multiplexer.k = n;
megaddsub nbit_adder (~AddSubR, G, Breg, M, over_flow);
assign Z = Zreg;

/I Define flip-flops and registers
always @(posedge Reset or posedge Clock)
if (Reset ==1)
begin
Areg <=0; Breg <=0; Zreg <=0;
SelR <=0; AddSubR <=0; Overflow <= 0;
end
else
begin
Areg <= A; Breg <= B, Zreg <= M;
SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;
end
endmodule

/I k-bit 2-to-1 multiplexer
module mux2tol (V, W, Selm, F);
parameter k = 8;
input [k—1:0]1 V, W,
input Selm;
output [k—1:0]F;
reg [k—1:0]F;

always @(V or W or Selm)
if (Selm==0) F=V,
dse F=W,
endmodule

Figure 14. Verilog code for the circuit in Figure 3.

14

If the megaddsub.v file has not been included in the project (e.g. if you answered No in the box in Figure
12, or possibly if the box did not show up at all), you need to include it manually. To include the megaddsub.v
file in the project, select Project > Add/Remove Files in Project to reach the window in Figure 15. The file
addersubtractor2.v should already be listed as being included in the project. Browse for the other files by clicking
the button File name: ... to reach the window in Figure 16. Select the file megaddsub.v and click Open, which
returns to the window in Figure 15. Click Add to include the file and then click OK. Now, the modified design can
be compiled and simulated in the usual way.

Settings - addersubtractor @

Categorny:
p 2
Files
Libraries Select the design files pou want ta include in the project. Click Add Al to add all design files in the
Device project directory to the project.

Operating Settings and Conditions

Wolkage .
File name:
Temperature
= Compilation Process Settings File name Type Library | Design entry/s... | HDL versior Add Al
Early Timing Estimate addersubtractorZ v Verlog HOL... <Mones>

Incremental Compilation
ED& Tool Settings
Design Enty/Synthesis
Simulatiorn
Timing Analysiz
Farmal Yerification
Phwsical Synthesis
Board-Level
alysiz & Synthesiz Settings
WHDL Input
Werilog HOL [nput
Default Parameters
Synthesis Metlizt O ptimizations
Fitter Settings
Physical Synthesis O ptimization
Timing Analysiz Settings
Timeluest Timing Analyzer
=I- Clazzic Timing Analyzer Setting
Clazzic Timing Anayzer Re
Agzernbler
Diesign Azzigtant — b7 LS
SignalT ap Il Logic Analyzer
Logic Analyzer Interface 3

Ciren il mbmr © mbhinmn —
| » ok | Cancel

[LLEEL

Y

=1

IE

Figure 15. Inclusion of the new file in the project.

Select File 53

Look, jn: |L'f) tutorial_lpm j = E3-
5 b
< addersubtractor2.v

My Recent megaddsub.v
Documents megaddsub_bb.v

Desktop

My Documents

3

My Computer
My Nebwork File name: |megaddsub.v j Open |
Flaces
Files of type: |Design Files [".tdf;".vhd;".vhdl;".v;".vlg;".verilogﬂ Cancel

Figure 16. Specify the megaddsub.v file.

15

4 Resultsfor the Augmented Design

Compile the design and look at the summary, which is depicted in Figure 17. Observe that the modified design is
implemented in 51 logic elements, rather than 52 obtained when using the code in Figure 2. The reduction in the
number of logic elements is small because our example is rather simple. In more complex designs the advantage
of using LPMs is likely to be more pronounced. The reason is that the LPMs implement the required logic more
efficiently than what the compiler can do from simple Verilog code, such as the code in Figure 2. The user should
consider using an LPM whenever a suitable one exists.

5 Compilation Report - Flow Summary

EhE Legal Notice
S Flow Summary
SHEE Flow Settings) Flow Status Successhul - Tue Jun 17 16:25:41 2008
gg :::zx E'IZ';'S[;Z?;'LG'°'°°"' et Huartus Il Version 8.0 Build 215 5/23/2008 5J Full Version
S Flow Log Revision Mame addersubtractor2
o @D Analysis & Synthesis Top-level Entity Mame addersubtractor?
+- & Fitker Farnily Cyclone Il
+- & Assembler Device EP2C35FE72CE
+I &0 Timing Analyzer Timing Madels Final
Met timing requirements es
Total logic elements B A33216(<1 %)
Total combinational functions BO/A33216(<1 %)
Dedicated logic registers 66T %)
Total registers 36
Tatal ping 53/475(11 %)
Total wirtual ping 1]
Total memory bits 0/483840(0%)
Embedded Multiplier 3-bit elements 0/ 70[0%
Total PLLs 0/4(0%)
£ >

Figure 17. Compilation Results for the Augmented Circuit.

Copyright (©2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service names are the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time
without notice. Altera assumes no responsibility or liability arising out of the application or use of any informa-
tion, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of device specifications before relying on any published infor-
mation and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, rep-

resentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

16

