
XST User Guide for Virtex-6
and Spartan-6 Devices

UG687 (v 12.1) April 19, 2010

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you
solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce,
distribute, republish, download, display, post, or transmit the Documentation in any form or by any means
including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation.
Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx
assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections
or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NOWARRANTY OF ANY KIND. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING
THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE
DOCUMENTATION.

© Copyright 2002-2010 Xilinx Inc. All Rights Reserved. XILINX, the Xilinx logo, the Brand Window and other
designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their
respective owners. The PowerPC name and logo are registered trademarks of IBM Corp., and used under license.
All other trademarks are the property of their respective owners.

XST User Guide for Virtex-6 and Spartan-6 Devices
2 www.xilinx.com UG687 (v 12.1) April 19, 2010

Preface

About the XST User Guide for Virtex-6
and Spartan-6 Devices

Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

The XST User Guide for Virtex-6 and Spartan-6 Devices is both a reference book and a
guide to methodology. This Guide:
• Describes the Xilinx Synthesis Technology (XST) synthesis tool in detail, including

instructions for running and controlling XST.
• Discusses coding techniques for designing circuits using a Hardware Description

Language (HDL)
• Gives guidelines to leverage built-in optimization techniques and achieve the best

implementation.

This chapter includes:

• Guide Contents
• Acronyms
• Additional Resources
• Conventions

Guide Contents
The XST User Guide for Virtex-6 and Spartan-6 Devices includes:
• Chapter 1, Introduction to Xilinx Synthesis Technology (XST), gives a brief summary

of the Xilinx Synthesis Technology (XST) synthesis tool.
• Chapter 2, Creating and Synthesizing an XST Project, helps you get started with XST,

understand how to create an HDL synthesis project, and how to control and run XST.
• Chapter 3, XST VHDL Language Support, explains how XST supports the VHSIC

Hardware Description Language (VHDL), and provides details on VHDL supported
constructs and synthesis options.

• Chapter 4, XST Verilog Support, describes XST support for Verilog constructs and
meta comments.

• Chapter 5, XST Behavioral Verilog Support, describes XST support for Behavioral
Verilog.

• Chapter 6, XST Mixed Language Support, describes how to run an XST project
that mixes Verilog and VHDL designs.

• Chapter 7, XST HDL Coding Techniques, gives coding examples for digital logic
circuits.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 3

Preface: About the XST User Guide for Virtex-6 and Spartan-6 Devices

• Chapter 8, XST FPGA Optimization, explains how to use constraints to optimize
FPGA devices; explains macro generation; and describes the FPGA device primitive
support.

• Chapter 9, XST Design Constraints, provides general information about XST design
constraints.

• Chapter 10, XST General Constraints, discusses individual XST General Constraints.

• Chapter 11, XST HDL Constraints, discusses individual XST HDL constraints.

• Chapter 12, XST FPGA Constraints (Non-Timing) discusses individual XST FPGA
constraints (non-timing).

• Chapter 13, XST Timing Constraints, discusses XST timing constraints.

• Chapter 14, XST-Supported Third Party Constraints, discusses XST-supported third
party constraints.

• Chapter 15, XST Synthesis Report, describes the XST log file.

• Chapter 16, XST Naming Conventions, describes XST naming conventions.

Acronyms
Acronym Meaning

HDL Hardware Description Language

VHDL VHSIC Hardware Description Language

RTL Register Transfer Level

LRM Language Reference Manual

FSM Finite State Machine

EDIF Electronic Data Interchange Format

LSO Library Search Order

XST Xilinx® Synthesis Technology

XCF XST Constraint File

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

XST User Guide for Virtex-6 and Spartan-6 Devices
4 www.xilinx.com UG687 (v 12.1) April 19, 2010

Preface: About the XST User Guide for Virtex-6 and Spartan-6 Devices

Convention Meaning or Use Example
Courier font Messages, prompts, and

program files that the system
displays

speed grade: - 100

Courier bold Literal commands that you
enter in a syntactical statement

ngdbuild design_name

Helvetica bold Commands that you select
from a menu

File > Open

Keyboard shortcuts Ctrl+C

Italic font Variables in a syntax
statement for which you
must supply values

ngdbuild design_name

References to other manuals See the Command Line
Tools User Guide for more
information.

Emphasis in text If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets [] An optional entry or
parameter. However, in
bus specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis Repetitive material that has
been omitted

IOB #1: Name = QOUT
IOB #2: Name = CLKIN

.

.

.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block . . .
block_name loc1 loc2 ... locn;

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example
Blue text Cross-reference link See the section Additional

Resources for details.

Refer to Title Formats in
Chapter 1 for details.

See Figure 2-5 in the Virtex®-6
Handbook.

Additional Resources
To find additional documentation, see the Xilinx website at:

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 5

Preface: About the XST User Guide for Virtex-6 and Spartan-6 Devices

http://www.xilinx.com/literature

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support

XST User Guide for Virtex-6 and Spartan-6 Devices
6 www.xilinx.com UG687 (v 12.1) April 19, 2010

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=xilinx+literature
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

Table of Contents
Preface About the XST User Guide for Virtex-6 and Spartan-6 Devices.................3

Guide Contents .. 3
Acronyms.. 4
Conventions ... 4
Typographical... 4
Online Document... 5
Additional Resources... 5

Chapter 1 Introduction to Xilinx Synthesis Technology (XST)...............................25
About Xilinx Synthesis Technology (XST) ... 25
What’s New in This Release .. 26

Chapter 2 Creating and Synthesizing an XST Project ..27
Creating an HDL Synthesis Project .. 27

HDL Project File Coding Example .. 28

Running XST in ISE Design Suite .. 28
Running XST in Command Line Mode .. 28

Running XST as a Standalone Tool .. 28
Running XST Interactively.. 29
Running XST in Scripted Mode... 29
XST Script Files.. 29
XST Commands... 30
Improving Readability of an XST Script File... 32

XST Output Files.. 33
XST Typical Output Files .. 33
XST Temporary Output Files .. 33
Names With Spaces in Command Line Mode... 33

Chapter 3 XST VHDL Language Support ...35
Advantages of VHDL... 35
VHDL IEEE Support .. 36
VHDL Data Types .. 36

VHDL Supported Data Types ... 36
VHDL Unsupported Data Types ... 39

VHDL Objects .. 40
VHDL Signals.. 40
VHDL Variables... 40
VHDL Constants ... 40

VHDL Operators .. 41
VHDL Entity and Architecture Descriptions ... 41

VHDL Circuit Descriptions... 42
VHDL Entity Declarations .. 42
VHDL Architecture Declarations .. 43

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 7

VHDL Component Instantiation ... 44
VHDL Recursive Component Instantiation.. 45
VHDL Component Configuration ... 46
VHDL Generics ... 46
Conflicts Among VHDL Generics and Attributes ... 48

VHDL Combinatorial Circuits .. 49
VHDL Concurrent Signal Assignments ... 49
VHDL Generate Statements .. 50
VHDL Combinatorial Processes .. 52

VHDL Sequential Logic... 56
VHDL Sequential Processes With a Sensitivity List... 57
VHDL Sequential Processes Without a Sensitivity List.. 57
VHDL Initial Values and Operational Set/Reset.. 58
VHDL Default Initial Values on Memory Elements .. 59

VHDL Functions and Procedures.. 60
VHDL Assert Statements... 63
VHDL Libraries and Packages .. 65

VHDL Libraries ... 65
VHDL Predefined Packages.. 65
Defining Your Own VHDL Packages ... 68
Accessing VHDL Packages ... 68

VHDL File Type Support... 69
XST VHDL File Read and File Write Capability.. 69
Loading Memory Contents from an External File ... 71
Writing to a File for Debugging Coding Examples.. 71
Rules for Debugging Using Write Operations .. 73

VHDL Constructs... 74
VHDL Design Entities and Configurations .. 74
VHDL Expressions... 75
VHDL Statements .. 76

VHDL Reserved Words.. 77

Chapter 4 XST Verilog Support ...79
About XST Verilog Support .. 79
Verilog Variable Part Selects ... 80

Variable Part Selects Verilog Coding Example .. 80

Structural Verilog Features .. 81
Verilog Parameters ... 82
Verilog Parameter and Attribute Conflicts ... 84
Verilog Usage Restrictions in XST .. 85

Case Sensitivity ... 85
Blocking and Nonblocking Assignments ... 85
Integer Handling ... 86

Verilog–2001 Attributes and Meta Comments.. 86
Verilog-2001 Attributes... 87
Verilog Meta Comments ... 87

Verilog Constructs.. 88
Verilog Constants... 88

XST User Guide for Virtex-6 and Spartan-6 Devices
8 www.xilinx.com UG687 (v 12.1) April 19, 2010

Verilog Data Types... 88
Verilog Continuous Assignments .. 89
Verilog Procedural Assignments ... 89
Verilog Design Hierarchies ... 89
Verilog Compiler Directives.. 90

Verilog System Tasks and Functions .. 90
Verilog System Tasks and Functions Supported in XST....................................... 91
Using Conversion Functions ... 91
Loading Memory Contents With File I/O Tasks .. 91
Display Tasks .. 92
Creating Design Rule Checks with $finish ... 92

Verilog Primitives .. 94
Verilog Reserved Keywords .. 95
Verilog 2001 Support in XST ... 97

Chapter 5 XST Behavioral Verilog Support..99

Behavioral Verilog Variable Declarations... 99
Behavioral Verilog Initial Values .. 100
Behavioral Verilog Arrays Coding Examples ... 100
Behavioral Verilog Multi-Dimensional Arrays .. 101
Behavioral Verilog Data Types .. 101
Behavioral Verilog Legal Statements .. 102
Behavioral Verilog Expressions... 102

About Behavioral Verilog Expressions..102
Behavioral Verilog Supported Operators ..103
Behavioral Verilog Supported Expressions..103
Results of Evaluating Expressions in Behavioral Verilog105

Behavioral Verilog Blocks ... 105
Behavioral Verilog Modules.. 106

Behavioral Verilog Module Declaration ..106
Behavioral Verilog Module Instantiation ..106

Behavioral Verilog Continuous Assignment.. 107
Behavioral Verilog Procedural Assignments.. 107

About Behavioral Verilog Procedural Assignments ...108
Combinatorial Always Blocks ..108
If-Else Statements ...108
Case Statements..109
For and Repeat Loops ...110
While Loops ...111
Sequential Always Blocks ..111
Assign and Deassign Statements ..113
Assignment Extension Past 32 Bits ...113

Behavioral Verilog Tasks and Functions... 114
About Behavioral Verilog Tasks and Functions ...114
Behavioral Verilog Tasks and Functions Coding Examples.................................114
Behavioral Verilog Recursive Tasks and Functions ..116
Behavioral Verilog Constant Functions ...116

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 9

Behavioral Verilog Blocking Versus Non-Blocking Procedural
Assignments ... 117

Behavioral Verilog Constants .. 118
Behavioral Verilog Macros .. 118
Behavioral Verilog Include Files ... 119
Behavioral Verilog Comments... 119
Behavioral Verilog Generate Statements .. 120

About Behavioral Verilog Generate Statements ...120
Behavioral Verilog Generate Loop Statements...120
Behavioral Verilog Generate Conditional Statements...121
Behavioral Verilog Generate Case Statements ...121

Chapter 6 XST Mixed Language Support...123
About XST Mixed Language Support... 124
VHDL and Verilog Boundary Rules ... 124

About VHDL and Verilog Boundary Rules ...124
Instantiating a VHDL Design Unit in a Verilog Design124
Instantiating a Verilog Module in VHDL ..125

Port Mapping.. 126
VHDL Instantiated in Verilog ..126
Verilog Instantiated in VHDL ..127

Generics Support ... 127
Library Search Order (LSO) Files.. 127

About Library Search Order (LSO) Files ...127
Specifying Library Search Order (LSO) Files in ISE Design Suite128
Specifying Library Search Order (LSO) Files in Command Line Mode128
Library Search Order (LSO) Rules ..128

Chapter 7 XST Hardware Description Language (HDL) Coding
Techniques...131
About XST Hardware Description Language (HDL) Coding

Techniques.. 132
Choosing a Description Language .. 132
Macro Inference Flow Overview... 132
Flip-Flops and Registers .. 133

About Flip-Flops and Registers ..133
Flip-Flops and Registers Initialization ..133
Flip-Flops and Registers Control Signals...134
Flip-Flops and Registers Related Constraints ..134
Flip-Flops and Registers Reporting ..135
Flip-Flops and Registers Coding Examples ...135

Latches .. 137
About Latches ..137
Describing Latches..137
Latches Related Constraints...137
Latches Reporting ...138
Latches Coding Examples..138

Tristates... 139

XST User Guide for Virtex-6 and Spartan-6 Devices
10 www.xilinx.com UG687 (v 12.1) April 19, 2010

About Tristates ...140
Tristates Implementation ...140
Tristates Related Constraints..140
Tristates Reporting..141
Tristates Coding Examples ..141

Counters and Accumulators .. 143
About Counters and Accumulators ..143
Counters and Accumulators Implementation..144
Counters and Accumulators Related Constraints ..145
Counters and Accumulators Reporting...145
Counters and Accumulators Coding Examples ...145

Shift Registers .. 147
About Shift Registers ..147
Describing Shift Registers ..147
Shift Registers Implementation ..147
Shift Registers Related Constraints...151
Shift Registers Reporting ...152
Shift Registers Coding Examples..152

Dynamic Shift Registers .. 156
About Dynamic Shift Registers ..156
Dynamic Shift Registers Related Constraints...156
Dynamic Shift Registers Reporting...157
Dynamic Shift Registers Coding Examples ...157

Multiplexers ... 159
About Multiplexers ...159
Multiplexers Implementation...159
Multiplexers Verilog Case Implementation Style Parameter160
Multiplexers Related Constraints ...160
Multiplexers Reporting ...160
Multiplexers Coding Examples ..161

Arithmetic Operators ... 163
About Arithmetic Operators ..163
Arithmetic Operators Signed and Unsigned Support in XST163
Arithmetic Operators Implementation..165

Comparators ... 166
About Comparators ..166
Comparators Related Constraints...166
Comparators Reporting...167
Comparators Coding Examples ...167

Dividers .. 168
About Dividers ...168
Dividers Related Constraints ...168
Dividers Reporting ...168
Dividers Coding Examples ..168

Adders, Subtractors, and Adders/Subtractors .. 169
About Adders, Subtractors, and Adders/Subtractors ...169
Describing a Carry Output ..169
Adders, Subtractors, and Adders/Subtractors Implementation...........................170
Adders, Subtractors, and Adders/Subtractors Related Constraints......................171
Adders, Subtractors, and Adders/Subtractors Reporting....................................171
Adders, Subtractors, and Adders/Subtractors Coding Examples171

Multipliers.. 172

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 11

About Multipliers ...172
Multipliers Implementation...173
Multipliers Related Constraints..174
Multipliers Reporting..175
Multipliers Coding Examples ..175

Multiply-Add and Multiply-Accumulate... 177
About Multiply-Add and Multiply-Accumulate..177
Multiply-Add and Multiply-Accumulate Implementation177
Multiply-Add and Multiply-Accumulate Related Constraints177
Multiply-Add and Multiply-Accumulate Reporting ..178
Multiply-Add and Multiply-Accumulate Coding Examples...............................178

Extended DSP Inferencing .. 180
About Extended DSP Inferencing...180
Symmetric Filters ..180
Extended DSP Inferencing Coding Examples ..181

Resource Sharing ... 181
About Resource Sharing ..182
Resource Sharing Related Constraints ..182
Resource Sharing Reporting ..182
Resource Sharing Coding Examples ...182

RAMs .. 184
About RAMs ..184
Distributed RAMs vs. Block RAMs ..184
RAMs Supported Features...185
RAMs HDL Coding Guidelines..185
Block RAM Optimization Strategies ...218
Distributed RAM Pipelining ..220
RAMs Related Constraints...220
RAM Reporting ..221
RAMs Coding Examples ...223

ROMs.. 247
About Read-Only Memory (ROM) ...247
ROMs Description ..247
ROMs Implementation ..250
ROMs Related Constraints...250
ROM Reporting ..251
ROMs Coding Examples ...251

Finite State Machine (FSM) Components... 255
About Finite State Machine (FSM) Components ..255
Finite State Machine (FSM) Description ..255
Implementing Finite State Machine (FSM) Components on block RAM

Resources ..258
Finite State Machine (FSM) Safe Implementation...258
Finite State Machine (FSM) Related Constraints ..259
Finite State Machine (FSM) Reporting ..260
Finite State Machine (FSM) Coding Examples ...261

Black Boxes... 262
About Black Boxes ..263
Black Boxes Related Constraints...263
Black Boxes Reporting...263
Black Boxes Coding Examples ...263

XST User Guide for Virtex-6 and Spartan-6 Devices
12 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 8 XST FPGA Optimization ...265
Low Level Synthesis .. 265
Mapping Logic to Block RAM... 266
Flip-Flop Implementation Guidelines.. 266
Flip-Flop Retiming... 267

About Flip-Flop Retiming..267
Limitations of Flip-Flop Retiming ..268
Controlling Flip-Flop Retiming ..268

Speed Optimization Under Area Constraint .. 268
Implementation Constraints ... 269
Xilinx Device Primitive Support ... 269

About Device Primitive Support ..270
Generating Primitives Through Attributes..270
Primitives and Black Boxes ..270
VHDL and Verilog Xilinx Device Primitives Libraries..271
Specifying Primitive Properties..272
Reporting of Instantiated Device Primitives ..273
Primitives Related Constraints ...273
Primitives Coding Examples..273

Using the UniMacro Library ... 275
Cores Processing .. 275

Loading Cores ..275
Finding Cores ...275
Cores Reporting..276

Mapping Logic to LUTs ... 276
Controlling Placement on the Device ... 277
Inserting Buffers .. 278
Using the PCI Flow With XST... 278

About Using the PCI Flow With XST..279
Preventing Logic and Flip-Flop Replication ..279
Disabling Read Cores ..279

Chapter 9 XST Design Constraints...281
About Constraints .. 281
Specifying Constraints .. 281
Constraints Precedence Rules ... 282
Synthesis Options in ISE Design Suite .. 282

Setting XST Options in ISE Design Suite ...282
Setting Other XST Command Line Options ..283
Design Goals and Strategies...283

VHDL Attributes.. 283
Verilog-2001 Attributes .. 284

About Verilog-2001 Attributes ...284
Verilog-2001 Syntax...284
Verilog-2001 Limitations..286
Verilog Meta Comments ..287

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 13

XST Constraint File (XCF) ... 287
About the XST Constraint File (XCF) ..287
Native and Non-Native User Constraints File (UCF) Syntax...............................288
Syntax Limitations ..289
Timing Constraints Applicable Only Through the XST Constraint File (XCF)

File..290

Chapter 10 XST General Constraints ...291
Add I/O Buffers (–iobuf) ... 292

Architecture Support...292
Applicable Elements ...292
Propagation Rules...292
Syntax Examples...292

BoxType (BOX_TYPE).. 292
Architecture Support...293
Applicable Elements ...293
Propagation Rules...293
Syntax Examples...293

Bus Delimiter (–bus_delimiter)... 294
Architecture Support...294
Applicable Elements ...294
Propagation Rules...294
Syntax Examples...294

Case (–case)... 294
Architecture Support...294
Applicable Elements ...294
Propagation Rules...295
Syntax Examples...295

Case Implementation Style (–vlgcase) .. 295
Architecture Support...295
Applicable Elements ...296
Propagation Rules...296
Syntax Examples...296

Verilog Macros (-define) .. 296
Architecture Support...296
Applicable Elements ...296
Propagation Rules...296
Syntax Examples...296

Duplication Suffix (–duplication_suffix) .. 297
Architecture Support...298
Applicable Elements ...298
Propagation Rules...298
Syntax Examples...298

Full Case (FULL_CASE)... 298
Architecture Support...298
Applicable Elements ...298
Propagation Rules...298
Syntax Examples...298

Generate RTL Schematic (–rtlview) .. 299
Architecture Support...299
Applicable Elements ...299
Propagation Rules...300

XST User Guide for Virtex-6 and Spartan-6 Devices
14 www.xilinx.com UG687 (v 12.1) April 19, 2010

Syntax Examples...300

Generics (-generics).. 300
Architecture Support...300
Applicable Elements ...300
Propagation Rules...300
Syntax Examples...300

Hierarchy Separator (–hierarchy_separator)... 301
Architecture Support...302
Applicable Elements ...302
Propagation Rules...302
Syntax Examples...302

I/O Standard (IOSTANDARD) ... 302
Keep (KEEP) ... 302
Keep Hierarchy (KEEP_HIERARCHY)... 303

Keep Hierarchy Values..303
Preserving the Hierarchy...303
Keep Hierarchy Diagram...304
Architecture Support...304
Applicable Elements ...304
Propagation Rules...304
Syntax Examples...304

Library Search Order (–lso) ... 305
Architecture Support...305
Applicable Elements ...305
Propagation Rules...305
Syntax Examples...305

LOC... 306
Netlist Hierarchy (-netlist_hierarchy) ... 306

Architecture Support...306
Applicable Elements ...306
Propagation Rules...306
Syntax Examples...306

Optimization Effort (OPT_LEVEL)... 306
Architecture Support...307
Applicable Elements ...307
Propagation Rules...307
Syntax Examples...307

Optimization Goal (OPT_MODE) .. 308
Architecture Support...308
Applicable Elements ...308
Propagation Rules...308
Syntax Examples...308

Parallel Case (PARALLEL_CASE)... 309
Architecture Support...309
Applicable Elements ...309
Propagation Rules...309
Syntax Examples...309

RLOC .. 310
Save (S or SAVE) .. 310
Synthesis Constraint File (–uc).. 310

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 15

Architecture Support...310
Applicable Elements ...310
Propagation Rules...310
Syntax Examples...310

Translate Off (TRANSLATE_OFF) and Translate On
(TRANSLATE_ON).. 311
Architecture Support...311
Applicable Elements ...311
Propagation Rules...311
Syntax Examples...311

Ignore Synthesis Constraints File (–iuc)... 312
Architecture Support...312
Applicable Elements ...312
Propagation Rules...312
Syntax Examples...312

Verilog Include Directories (–vlgincdir) ... 313
Architecture Support...313
Applicable Elements ...313
Propagation Rules...313
Syntax Examples...313

HDL Library Mapping File (–xsthdpini) .. 313
Architecture Support...314
Applicable Elements ...314
Propagation Rules...314
Syntax Examples...315

Work Directory (–xsthdpdir) ... 315
Work Directory Example ...315
Architecture Support...316
Applicable Elements ...316
Propagation Rules...316
Syntax Examples...316

Chapter 11 XST HDL Constraints ...317
Automatic FSM Extraction (FSM_EXTRACT).. 317

Architecture Support...317
Applicable Elements ...317
Propagation Rules...317
Syntax Examples...317

Enumerated Encoding (ENUM_ENCODING) ... 318
Architecture Support...318
Applicable Elements ...319
Propagation Rules...319
Syntax Examples...319

Equivalent Register Removal
(EQUIVALENT_REGISTER_REMOVAL) .. 319
Architecture Support...319
Applicable Elements ...320
Propagation Rules...320
Syntax Examples...320

FSM Encoding Algorithm (FSM_ENCODING) ... 320
Architecture Support...321
Applicable Elements ...321

XST User Guide for Virtex-6 and Spartan-6 Devices
16 www.xilinx.com UG687 (v 12.1) April 19, 2010

Propagation Rules...321
Syntax Examples...321

Mux Minimal Size (MUX_MIN_SIZE) ... 322
Architecture Support...323
Applicable Elements ...323
Propagation Rules...323
Syntax Examples...323

Resource Sharing (RESOURCE_SHARING) ... 323
Architecture Support...323
Applicable Elements ...324
Propagation Rules...324
Syntax Examples...324

Safe Recovery State (SAFE_RECOVERY_STATE) ... 324
Architecture Support...325
Applicable Elements ...325
Propagation Rules...325
Syntax Examples...325

Safe Implementation (SAFE_IMPLEMENTATION).. 325
Architecture Support...326
Applicable Elements ...326
Propagation Rules...326
Syntax Examples...326

Chapter 12 XST FPGA Constraints (Non-Timing) ...329
Asynchronous to Synchronous (ASYNC_TO_SYNC) 330

Architecture Support...331
Applicable Elements ...331
Propagation Rules...331
Syntax Examples...331

Automatic BRAM Packing (AUTO_BRAM_PACKING)................................. 331
Architecture Support...331
Applicable Elements ...332
Propagation Rules...332
Syntax Examples...332

BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO) 332
Architecture Support...332
Applicable Elements ...333
Propagation Rules...333
Syntax Examples...333

Buffer Type (BUFFER_TYPE) .. 334
Architecture Support...334
Applicable Elements ...334
Propagation Rules...334
Syntax Examples...334

Extract BUFGCE (BUFGCE)... 334
Architecture Support...335
Applicable Elements ...335
Propagation Rules...335
Syntax Examples...335

Cores Search Directories (–sd)... 335
Architecture Support...335

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 17

Applicable Elements ...336
Propagation Rules...336
Syntax Examples...336

DSP Utilization Ratio (DSP_UTILIZATION_RATIO) 336
Architecture Support...336
Applicable Elements ...336
Propagation Rules...337
Syntax Examples...337

FSM Style (FSM_STYLE)... 337
Architecture Support...337
Applicable Elements ...338
Propagation Rules...338
Syntax Examples...338

Power Reduction (POWER)... 338
Architecture Support...339
Applicable Elements ...339
Propagation Rules...339
Syntax Examples...339

Read Cores (READ_CORES) ... 340
Architecture Support...340
Applicable Elements ...340
Propagation Rules...341
Syntax Examples...341

LUT Combining (LC) ... 341
Architecture Support...342
Applicable Elements ...342
Propagation Rules...342
Syntax Examples...342

Map Logic on BRAM (BRAM_MAP).. 342
Architecture Support...342
Applicable Elements ...343
Propagation Rules...343
Syntax Examples...343

Max Fanout (MAX_FANOUT)... 343
Architecture Support...344
Applicable Elements ...344
Propagation Rules...344
Syntax Examples...344

Move First Stage (MOVE_FIRST_STAGE)... 345
Architecture Support...346
Applicable Elements ...346
Propagation Rules...346
Syntax Examples...347

Move Last Stage (MOVE_LAST_STAGE) .. 347
Architecture Support...347
Applicable Elements ...348
Propagation Rules...348
Syntax Examples...348

Multiplier Style (MULT_STYLE) .. 348
Architecture Support...349
Applicable Elements ...349

XST User Guide for Virtex-6 and Spartan-6 Devices
18 www.xilinx.com UG687 (v 12.1) April 19, 2010

Propagation Rules...349
Syntax Examples...349

Number of Global Clock Buffers (–bufg)... 350
Architecture Support...350
Applicable Elements ...350
Propagation Rules...350
Syntax Examples...350

Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES) 351
Architecture Support...351
Applicable Elements ...351
Propagation Rules...351
Syntax Examples...351

Pack I/O Registers Into IOBs (IOB) .. 352
RAM Extraction (RAM_EXTRACT).. 352

Architecture Support...352
Applicable Elements ...352
Propagation Rules...353
Syntax Examples...353

RAM Style (RAM_STYLE) .. 353
Architecture Support...354
Applicable Elements ...355
Propagation Rules...355
Syntax Examples...355

Reduce Control Sets (REDUCE_CONTROL_SETS) .. 356
Architecture Support...356
Applicable Elements ...356
Propagation Rules...356
Syntax Examples...356

Register Balancing (REGISTER_BALANCING).. 356
Forward Register Balancing...357
Backward Register Balancing...357
Register Balancing Values..358
Additional Constraints That Affect Register Balancing358
Architecture Support...359
Applicable Elements ...359
Propagation Rules...359
Syntax Examples...359

Register Duplication (REGISTER_DUPLICATION) 360
Architecture Support...360
Applicable Elements ...360
Propagation Rules...360
Syntax Examples...360

ROM Extraction (ROM_EXTRACT) ... 361
Architecture Support...361
Applicable Elements ...361
Propagation Rules...361
Syntax Examples...362

ROM Style (ROM_STYLE) .. 362
Architecture Support...363
Applicable Elements ...363
Propagation Rules...363
Syntax Examples...363

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 19

Shift Register Extraction (SHREG_EXTRACT).. 364
Architecture Support...364
Applicable Elements ...364
Propagation Rules...364
Syntax Examples...364

Shift Register Minimum Size (SHREG_MIN_SIZE) 365
Architecture Support...365
Applicable Elements ...365
Propagation Rules...365
Syntax Examples...366

Use Low Skew Lines (USELOWSKEWLINES) .. 366
Slice (LUT-FF Pairs) Utilization Ratio

(SLICE_UTILIZATION_RATIO)... 366
Architecture Support...366
Applicable Elements ...366
Propagation Rules...366
Syntax Examples...366

Slice (LUT-FF Pairs) Utilization Ratio Delta
(SLICE_UTILIZATION_RATIO_MAXMARGIN) 368
Architecture Support...368
Applicable Elements ...368
Propagation Rules...368
Syntax Examples...368

Map Entity on a Single LUT (LUT_MAP) .. 369
Architecture Support...370
Applicable Elements ...370
Propagation Rules...370
Syntax Examples...370

Use Carry Chain (USE_CARRY_CHAIN)... 370
Architecture Support...371
Applicable Elements ...371
Propagation Rules...371
Syntax Examples...371

Convert Tristates to Logic (TRISTATE2LOGIC) .. 372
Convert Tristates to Logic Limitations ..372
Architecture Support...372
Applicable Elements ...372
Propagation Rules...372
Syntax Examples...373

Use Clock Enable (USE_CLOCK_ENABLE)... 373
Architecture Support...374
Applicable Elements ...374
Propagation Rules...374
Syntax Examples...374

Use Synchronous Set (USE_SYNC_SET).. 375
Architecture Support...375
Applicable Elements ...375
Propagation Rules...376
Syntax Examples...376

Use Synchronous Reset (USE_SYNC_RESET) ... 376
Architecture Support...377

XST User Guide for Virtex-6 and Spartan-6 Devices
20 www.xilinx.com UG687 (v 12.1) April 19, 2010

Applicable Elements ...377
Propagation Rules...377
Syntax Examples...377

Use DSP Block (USE_DSP48) .. 379
Architecture Support...379
Applicable Elements ...380
Propagation Rules...380
Syntax Examples...380

Chapter 13 XST Timing Constraints ...381
Applying Timing Constraints ... 381

About Applying Timing Constraints ..381
Applying Timing Constraints Using Global Optimization Goal..........................382
Applying Timing Constraints Using the User Constraints File (UCF)382
Writing Constraints to the NGC File...382
Additional Options Affecting Timing Constraint Processing..............................382

Cross Clock Analysis (–cross_clock_analysis) ... 382
Architecture Support...382
Applicable Elements ...383
Propagation Rules...383
Syntax Examples...383

Write Timing Constraints (–write_timing_constraints) 383
Architecture Support...383
Applicable Elements ...383
Propagation Rules...383
Syntax Examples...383

Clock Signal (CLOCK_SIGNAL).. 384
Architecture Support...384
Applicable Elements ...384
Propagation Rules...384
Syntax Examples...384

Global Optimization Goal (-glob_opt) ... 385
Global Optimization Goal Domain Definitions..386

XCF Timing Constraint Support ... 386
Period (PERIOD).. 387

Architecture Support...387
Applicable Elements ...387
Propagation Rules...387
Syntax Examples...387

Offset (OFFSET)... 387
Architecture Support...388
Applicable Elements ...388
Propagation Rules...388
Syntax Examples...388

From-To (FROM-TO) ... 388
Architecture Support...388
Applicable Elements ...388
Propagation Rules...388
Syntax Examples...388

Timing Name (TNM) ... 388
Architecture Support...389

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 21

Applicable Elements ...389
Propagation Rules...389
Syntax Examples...389

Timing Name on a Net (TNM_NET)... 389
Architecture Support...389
Applicable Elements ...389
Propagation Rules...389
Syntax Examples...389

Timegroup (TIMEGRP) ... 390
Architecture Support...390
Applicable Elements ...390
Propagation Rules...390
Syntax Examples...390

Timing Ignore (TIG) .. 390
Architecture Support...390
Applicable Elements ...390
Propagation Rules...390
Syntax Examples...391

Chapter 14 XST-Supported Third Party Constraints ...393
XST Equivalents to Third Party Constraints .. 393
Third Party Constraints Syntax Examples .. 397

Third Party Constraints Verilog Syntax Example...397
Third Party Constraints XCF Syntax Examples..397

Chapter 15 XST Synthesis Report ..399
About the XST Synthesis Report .. 399
XST Synthesis Report Contents .. 399

XST Synthesis Report Table of Contents..400
XST Synthesis Report Synthesis Options Summary ...400
XST Synthesis Report HDL Parsing and Elaboration Section400
XST Synthesis Report HDL Synthesis Section..400
XST Synthesis Report Advanced HDL Synthesis Section....................................400
XST Synthesis Report Low Level Synthesis Section..400
XST Synthesis Report Partition Report..401
XST Synthesis Report Design Summary..401

XST Synthesis Report Navigation... 403
Command Line Mode Report Navigation ...404
ISE Design Suite Report Navigation ...404

XST Synthesis Report Information... 404
Message Filtering..404
Quiet Mode ..404

Silent Mode .. 405

Chapter 16 XST Naming Conventions ..407
About XST Naming Conventions .. 407
XST Naming Conventions Coding Examples... 407

Reg in Labelled Always Block Verilog Coding Example.....................................408
Primitive Instantiation in If-Generate Without Label Verilog Coding

Example ..408

XST User Guide for Virtex-6 and Spartan-6 Devices
22 www.xilinx.com UG687 (v 12.1) April 19, 2010

Primitive Instantiation in If-Generate With Label Verilog Coding
Example ..409

Variable in Labelled Process VHDL Coding Example ..410
Flip-Flop Modelled With a Boolean VHDL Coding Example..............................410

XST Net Naming Conventions.. 411
XST Instance Naming Conventions.. 412
XST Case Preservation ... 412
XST Name Generation Control ... 412

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 23

XST User Guide for Virtex-6 and Spartan-6 Devices
24 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 1

Introduction to Xilinx Synthesis
Technology (XST)

Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter provides general information about Xilinx Synthesis Technology (XST), and
describes the changes to XST in this release. This chapter includes:

• About Xilinx Synthesis Technology (XST)

• What’s New in This Release

About Xilinx Synthesis Technology (XST)
The Xilinx Synthesis Technology (XST) software:

• Is the Xilinx® proprietary logic synthesis solution

• Is available in:

– ISE® Design Suite

– PlanAhead™

• Can run as a standalone tool in command-line mode

The Xilinx Synthesis Technology (XST) software:

1. Takes the description of a design in a Hardware Description Language (HDL)
(VHDL or Verilog)

2. Converts it to a synthesized netlist of Xilinx technology-specific logical resources

The synthesized netlist, representing a logical view of the design, is then:

1. Processed by the design implementation tool chain

2. Converted into a physical representation

3. Converted to a bitstream file to program Xilinx devices

For more information about XST, see Xilinx Synthesis Technology (XST) - Frequently
Asked Questions (FAQ). Search for keyword XST FAQ on the Xilinx support website at
http://www.xilinx.com/support.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 25

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

Chapter 1: Introduction to Xilinx Synthesis Technology (XST)

What’s New in This Release
The following enhancements are new in this release:

• Inference support for asymmetric port block RAM. For more information, including
recommended Hardware Description Language (HDL) coding templates and
limitations, see Asymmetric Ports Support (Block RAM) in Chapter 7, XST HDL
Coding Techniques.

• Improved HDL coding templates to model block RAM with byte-write enable
functionality. For more information, see Byte-Write Enable Support (Block RAM) in
Chapter 7, XST HDL Coding Techniques.

• A new automax value for the Use DSP Block (USE_DSP48) constraint. This value:

– Instructs XST to maximize utilization of DSP resources within the limits of
available resources on the selected device.

– Allows you to implement more logic on DSP blocks than can typically be
achieved with the auto value. This can be particularly useful when a tightly
packed device is your primary concern.

• Specifying properties of instantiated device primitives can no longer be done
by means of VHDL attributes, Verilog attributes, or XST Constraint File (XCF)
constraints, and is now rejected. This must now be done with VHDL generics or
Verilog parameters. For more information, see Specifying Primitive Properties in
Chapter 8: XST FPGA Optimization.

• Support for IEEE VHDL floating point packages. For more information, see VHDL
Predefined IEEE Floating Point Packages.

• A new Shift Register Minimum Size (SHREG_MIN_SIZE) option allows you to
control the minimum size of shift registers that are inferred and implemented using
SRL-type resources. While the default minimal size is 2, you may need to raise that
threshold for more efficient resource placement and circuit performance.

XST User Guide for Virtex-6 and Spartan-6 Devices
26 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 2

Creating and Synthesizing an XST
Project

Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter discusses creating and synthesizing an XST Project, and includes:

• Creating an HDL Synthesis Project

• Running XST in ISE® Design Suite

• Running XST in Command Line Mode

• XST Output Files

Creating an HDL Synthesis Project
Unlike other synthesis tools, XST separates information about the design from
information specifying how XST should process it.

• Information about the design is stored in an HDL Synthesis Project.

• Synthesis parameters are provided in an XST Script file.

An HDL synthesis project is an ASCII text file that lists the various HDL source files that
compose the design. It usually has a .prj extension. Each line specifies a separate
HDL source file.

The syntax is:

<hdl_language> <compilation_library> <source_file>

where

• hdl_language specifies whether the designated HDL source file is written in VHDL or
Verilog. This field allows you to create mixed VHDL and Verilog language projects.

• compilation_library specifies the logic library where the HDL is compiled. The default
logic library is work.

• source_file specifies the HDL source file, and can use an absolute or a relative path. A
relative path is relative to the location of the HDL synthesis project file.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 27

Chapter 2: Creating and Synthesizing an XST Project

HDL Project File Coding Example
The following HDL project file example uses relative paths:

vhdl work my_vhdl1.vhd
verilog work my_vlg1.v
vhdl my_vhdl_lib ../my_other_srcdir/my_vhdl2.vhd
verilog my_vlg_lib my_vlg2.v

When run from XST in ISE® Design Suite, XST automatically creates an HDL project
file with a .prj extension in the project directory. Entries are added to the project file
whenever you add an HDL source file to the project. For more information, see the
ISE Design Suite Help.

If you run XST from the command line, you must create the HDL synthesis project
file manually. For XST to load the HDL synthesis project, you must provide an Input
File Name (–ifn) switch on the run command line. The switch tells XST the location of
the HDL synthesis project file.

Running XST in ISE Design Suite
To run XST in ISE® Design Suite:
1. Create a new project (File > New Project)
2. Import HDL source files (Project > Add Copy of Source)
3. In Design > Hierarchy, select the top-level block of the design
4. If ISE Design Suite did not select the correct block as the top-level block:

a. Select the correct block
b. Right-click Select Set as Top Module
c. Right-click Processes > Synthesize-XST

5. To view all available synthesis options, select Process > Properties.
6. To start synthesis:

a. Right-click
b. Select Run (Or double-click Synthesize–XST).

For more information, see the ISE Design Suite Help.

Running XST in Command Line Mode
This section discusses Running XST in Command Line Mode, and includes:
• Running XST as a Standalone Tool
• Running XST Interactively
• Running XST in Scripted Mode
• XST Script Files
• XST Commands
• Improving Readability of an XST Script File

Running XST as a Standalone Tool
XST can run as a standalone tool from a terminal or console window. Use command
line mode to run XST as part of a scripted design implementation instead of using the
graphical environment of ISE® Design Suite.

XST User Guide for Virtex-6 and Spartan-6 Devices
28 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 2: Creating and Synthesizing an XST Project

Before running XST in command line mode, set the following environment variables
to point to the correct Xilinx® software installation directory. The following example
is for 64-bit Linux.

setenv XILINX setenv PATH $XILINX/bin/lin64:$PATH
setenv LD_LIBRARY_PATH $XILINX/lib/lin64:$LD_LIBRARY_PATH

The XST command line syntax is:

xst[.exe] [-ifn in_file_name] [-ofn out_file_name] [-intstyle

To run XST in command line mode:

• On Linux, run xst

• On Windows, run xst.exe

XST command line options include:

• –ifn

Designates the XST script file containing the commands to execute

– If the –ifn switch is omitted, XST runs interactively

– If the –ifn switch is specified, XST runs in scripted mode

• –ofn

Forces redirection of the XST log to a directory and file of your choice. By default,
the XST log is written to an .srp file in the work directory.

• intstyle

Controls reporting on the standard output. If you are running XST in command line
mode, see Silent Mode in Chapter 15, XST Synthesis Report.

Running XST Interactively
If you run XST without the –ifn option, you can enter instructions at the XST command
prompt. The –ifn option has no effect in interactive mode, since no XST log file is created.

Running XST in Scripted Mode
Rather than typing or pasting commands at the command prompt, Xilinx® recommends
that you create an XST script file containing the desired commands and options. When
you run XST as part of a scripted design implementation flow, you must either manually
prepare an XST script file in advance, or automatically generate it on the fly.

XST Script Files
An XST script file is an ASCII text file containing one or more XST commands. Each
command can include various options. There is no mandatory file extension for XST
script files. ISE® Design Suite creates XST script files with an .xst extension.

An XST script file is passed to XST by the –ifn option:

xst -ifn myscript.xst

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 29

Chapter 2: Creating and Synthesizing an XST Project

XST Commands
XST recognizes the following commands:
• XST Run Command
• XST Set Command
• XST Script Command
• XST Help Command

You can control some commands with options. Using an option incorrectly generates
an error message.

ERROR:Xst:1361 - Syntax error in command run for option "-ofmt" :
parameter "EDN" is not allowed.

XST Run Command
The run command is the main synthesis command. The run command allows you to
run synthesis in its entirety, beginning with the parsing of the HDL source files, and
ending with the generation of the final netlist.

The run command can also be used to run HDL Parsing and Elaboration only. You can
do so to verify language compliance, or to pre-compile HDL files. You can use the
run command only once per script file.

The syntax is:

run option_1 value option_2 value …

Except for option values that designate elements of the HDL description (for example
the top-level module of the design), the run command is not case sensitive. You can
specify an option in either lower case or UPPER case. For example, option values of yes
and YES are treated identically.

XST Run Command Basic Options
Option Type Command Line Name Option Value
Input File Name Mandatory -ifn Relative or absolute path to

an HDL Synthesis Project
file.

Output File Name Mandatory -ofn Relative or absolute path to a
file where the post-synthesis
NGC netlist is to be saved.
The .ngc extension may be
omitted.

Target Device Mandatory -p A specific device, such
as xc6vlx240t-ff1759-1,
or generic device family
appellation, such as virtex6.

Top Module Name Mandatory -top Name of the VHDL entity or
Verilog module describing
the top level of your design.

VHDL Top Level
Architecture

Optional -ent Name of the specific VHDL
architecture to be tied to the
top level VHDL entity. Not
applicable if the top level of
your design is described in
Verilog.

XST User Guide for Virtex-6 and Spartan-6 Devices
30 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 2: Creating and Synthesizing an XST Project

For additional command line options, see:
• Chapter 10, XST General Constraints
• Chapter 11, XST HDL Constraints
• Chapter 12, XST FPGA Constraints (Non-Timing)
• Chapter 13, XST Timing Constraints
• Chapter 14, XST-Supported Third Party Constraints

XST Set Command
Use set to set preferences before invoking run.

set –option_name [option_value]

XST set command options are shown in the following table. For more information,
see Chapter 9, XST Design Constraints.

XST Set Command Options
Option Description Values
-tmpdir Location of all temporary files

generated by XST during a
session

Any valid path to a directory

-xsthdpdir Work Directory (location of
all files resulting from HDL
compilation)

Any valid path to a directory

-xsthdpini HDL Library Mapping File
(.INI file)

file_name

XST Script Command
In interactive mode, the script command loads and executes an XST Script file.

The syntax is:

script script_file_name

The script command provides an absolute or relative path to the XST script files.

XST Help Command
Use the help command to view:
• Supported Families
• All Commands for a Specific Device
• Specific Commands for a Specific Device

Supported Families
For a list of supported families, type help at the command line with no argument.

help

XST issues the following message:

--> help ERROR:Xst:1356 - Help : Missing "-arch ".
Please specify what family you want to target
available families:
spartan6
virtex6

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 31

Chapter 2: Creating and Synthesizing an XST Project

All Commands for a Specific Device
For a list of all commands for a specific device, type the following at the command line:

help -arch family_name

where
family_name is a supported device family

For example, to view a list of all commands for Virtex®-6 devices, type:

help -arch virtex6

Specific Commands for a Specific Device
For information about a specific command for a specific device, type the following at
the command line:

help -arch family_name -command command_name

where
• family_name is a supported device family
• command_name is one of the following commands:

– run
– set
– time

For example, to see information about the run command for Virtex-6 devices type:

help -arch virtex6 -command run

Improving Readability of an XST Script File
To improve the readability of an XST script file, especially if you use many options to
run synthesis, observe the following rules:
• Each option-value pair is on a separate line.
• The first line contains only the run command without any options.
• There are no blank lines in the middle of the command.
• Each line containing an option-value pair begins with a dash (-).

– -ifn
– -ifmt
– -ofn

• Each option has one value.
• There are no options without a value.
• The value for a given option can be:

– Predefined by XST (for example, yes or no)
– Any string, such as a file name or a name of the top level entity

Options such as –vlgincdir accept several directories as values.
Separate the directories with spaces, and enclose them in braces {...}.
-vlgincdir {c:\vlg1 c:\vlg2}

For more information, see Names With Spaces in Command Line Mode.
– An integer

• Use the pound (#) character to comment out options, or to place additional
comments in the script file.

XST User Guide for Virtex-6 and Spartan-6 Devices
32 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 2: Creating and Synthesizing an XST Project

Example XST Script File
run
-ifn myproject.prj
-ofn myproject.ngc
-ofmt NGC
-p virtex6
-opt_mode area
-opt_mode speed
-opt_level 1

XST Output Files
This section discusses XST Output Files, and includes:
• XST Typical Output Files
• XST Temporary Output Files
• Names With Spaces in Command Line Mode

XST Typical Output Files
XST typically generates the following output files:

• Output NGC netlist (.ngc)
– In ISE® Design Suite, the .ngc file is created in the project directory.
– In command line mode, the .ngc file is created in the current directory, or in

any other directory specified by run -ofn.
• Register Transfer Level (RTL) netlist for the RTL Viewer (.ngr)
• Synthesis log file (.srp)
• Temporary files

XST Temporary Output Files
In command line mode, XST generates temporary files in the XST temp directory. The
default XST temp directory is:
• Workstations

/tmp

• Windows
The directory specified by either the TEMP or TMP environment variable

Run set -tmpdir <directory> at the XST prompt, or in an XST script file, to change the
XST temp directory.

HDL compilation files are generated in the temp directory. The default temp directory
is the xst subdirectory of the current directory.

The temp directory contains the files resulting from the compilation of all VHDL and
Verilog files during all XST sessions. Eventually, the number of files stored in the temp
directory can severely impact CPU performance. Since XST does not automatically
clean the temp directory, Xilinx® recommends that you manually clean the XST temp
directory regularly.

Names With Spaces in Command Line Mode
XST supports file and directory names with spaces in command line mode. Enclose file
or directory names containing spaces in double quotes:

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 33

Chapter 2: Creating and Synthesizing an XST Project

“C:\my project”

The command line syntax for options supporting multiple directories (-sd and
-vlgincdir) has changed. Enclose multiple directories in braces {...}:

-vlgincdir {"C:\my project" C:\temp}

In previous releases of XST, multiple directories were included in double quotes. XST
still supports this convention, provided directory names do not contain spaces. Xilinx®
recommends that you change existing scripts to the new syntax.

XST User Guide for Virtex-6 and Spartan-6 Devices
34 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3

XST VHDL Language Support
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter discusses XST support for VHSIC Hardware Description Language
(VHDL), and includes:

• Advantages of VHDL
• VHDL IEEE Support
• VHDL Data Types
• VHDL Objects
• VHDL Operators
• VHDL Entity and Architecture Descriptions
• VHDL Combinatorial Circuits
• VHDL Sequential Logic
• VHDL Functions and Procedures
• VHDL Assert Statements
• VHDL Libraries and Packages
• VHDL File Type Support
• VHDL Constructs
• VHDL Reserved Words

For more information, see:
• IEEE VHDL Language Reference Manual (LRM)
• Chapter 9, XST Design Constraints, especially VHDL Attributes

Advantages of VHDL
VHDL offers a broad set of constructs to compactly describe complicated logic. VHDL
allows you to:

• Describe the structure of a system — how it is decomposed into subsystems, and
how those subsystems are interconnected.

• Specify the function of a system using familiar programming language forms.
• Simulate a system design before it is implemented and programmed in hardware.
• Easily produce a detailed, device-dependent version of a design to be synthesized

from a more abstract specification. This allows you to concentrate on more strategic
design decisions, and reduce the overall time to market.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 35

Chapter 3: XST VHDL Language Support

VHDL IEEE Support
XST features a VHDL IEEE 1076-1993 fully compliant parsing and elaboration engine.

XST supports non-LRM compliant constructs when the construct:

• Is supported by the majority of synthesis and simulation tools

• Greatly simplifies coding

• Does not cause problems during synthesis

• Does not negatively impact quality of results

For example, the LRM does not allow instantiation with a port map where a formal
port is a buffer and the corresponding effective port is an out (and vice-versa). XST
does support such instantiation.

VHDL Data Types
This section discusses VHDL Data Types, and includes:

• VHDL Supported Data Types

• VHDL Unsupported Data Types

Some of the types described below are part of predefined packages. For information on
where they are compiled, and how to load them, see VHDL Predefined Packages.

VHDL Supported Data Types
This section discusses VHDL Supported Data Types, and includes:

• VHDL Predefined Enumerated Types

• VHDL User-Defined Enumerated Types

• VHDL Bit Vector Types

• VHDL Integer Types

• VHDL Multi-Dimensional Array Types

• VHDL Record Types

VHDL Predefined Enumerated Types
The following predefined VHDL enumerated types are supported for hardware
description:

• The bit type, defined in the standard package

Allowed values are 0 (logic zero) and 1 (logic 1)

• The boolean type, defined in the standard package

Allowed values are false and true

• The std_logic type defined in the IEEE std_logic_1164 package

The following table lists allowed values and their interpretation by XST.

XST User Guide for Virtex-6 and Spartan-6 Devices
36 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

std_logic Allowed Values
Value Meaning What XST does

U unitialized Not accepted by XST

X unknown Treated as don’t care

0 low Treated as logic zero

1 high Treated as logic one

Z high impedance Treated as high impedance

W weak unknown Not accepted by XST

L weak low Treated identically to 0

H weak high Treated identically to 1
- don’t care Treated as don’t care

XST- Supported Overloaded Enumerated Types
Type Defined In IEEE

Package
SubType Of Contains Values

std_ulogic std_logic_1164 N/A • same nine values
as std_logic

• does not contain
predefined
resolution
functions

X01 std_logic_1164 std_ulogic X, 0, 1

X01Z std_logic_1164 std_ulogic X, 0, 1, Z

UX01 std_logic_1164 std_ulogic U, X, 0 1

UX01Z std_logic_1164 std_ulogic U, X, 0, Z

VHDL User-Defined Enumerated Types
You can also create your own enumerated types, usually to describe the states of a
Finite State Machine (FSM).

VHDL User-Defined Enumerated Types Coding Example
type STATES is (START, IDLE, STATE1, STATE2, STATE3) ;

VHDL Bit Vector Types
The following vector types are supported for hardware description:

• The bit_vector type, defined in the standard package, models a vector of bit
elements.

• The std_logic_vector type, defined in the IEEE std_logic_1164 package,
models a vector of std_logic elements.

The following overloaded types are also available:

• The std_ulogic_vector type, defined in the IEEE std_logic_1164 package
• The unsigned type, defined in the IEEE std_logic_arith package
• The signed type, defined in the IEEE std_logic_arith package

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 37

Chapter 3: XST VHDL Language Support

VHDL Integer Types
The integer type is a predefined VHDL type. By default, an integer is implemented
on 32 bits by XST. For a more compact implementation, define the exact range of
applicable values as follows:

type MSB is range 8 to 15

You can also take advantage of the predefined natural and positive types,
overloading the integer type.

VHDL Multi-Dimensional Array Types
XST supports multi-dimensional array types, with no restriction on the number of
dimensions. However, Xilinx® recommends that you describe no more than three
dimensions. Objects of multi-dimensional array type that you can describe are:

• Signals

• Constants

• Variables

Objects of multi-dimensional array type can be passed to functions. They can also be
used in component instantiations.

Fully Constrained Array Type Coding Examples
An array type must be fully constrained in all dimensions.

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB12 is array (11 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB12;

You can also declare an array as a matrix.

subtype TAB13 is array (7 downto 0,4 downto 0) of STD_LOGIC_VECTOR (8 downto 0);

The following coding examples demonstrate the uses of multi-dimensional array signals
and variables in assignments.

Consider the following declarations:

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB05 is array (4 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB05;
signal WORD_A : WORD8;
signal TAB_A, TAB_B : TAB05;
signal TAB_C, TAB_D : TAB03;
constant CNST_A : TAB03 := (
("00000000","01000001","01000010","10000011","00001100"),
("00100000","00100001","00101010","10100011","00101100"),
("01000010","01000010","01000100","01000111","01000100"));

XST User Guide for Virtex-6 and Spartan-6 Devices
38 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

You can now specify the following:
• A multi-dimensional array signal or variable

TAB_A <= TAB_B; TAB_C <= TAB_D; TAB_C <= CNST_A;

• An index of one array

TAB_A (5) <= WORD_A; TAB_C (1) <= TAB_A;

• Indexes of the maximum number of dimensions

TAB_A (5) (0) <= ’1’; TAB_C (2) (5) (0) <= ’0’

• A slice of the first array

TAB_A (4 downto 1) <= TAB_B (3 downto 0);

• An index of a higher level array and a slice of a lower level array

TAB_C (2) (5) (3 downto 0) <= TAB_B (3) (4 downto 1); TAB_D (0) (4) (2 downto 0)
\\ <= CNST_A (5 downto 3)

Add the following declaration:

subtype MATRIX15 is array(4 downto 0, 2 downto 0) of STD_LOGIC_VECTOR (7 downto
0);

signal MATRIX_A : MATRIX15;

You can now specify the following:

• A multi-dimensional array signal or variable

MATRIXA <= CNST_A

• An index of one row of the array

MATRIXA (5) <= TAB_A;

• Indexes of the maximum number of dimensions

MATRIXA (5,0) (0) <= ’1’;

Indices can be variable.

VHDL Record Types
XST supports record types. A record type can be described as:

type mytype is record
field1 : std_logic;
field2 : std_logic_vector (3 downto 0)
end record;

• A field of a record types can also be of type record.
• Constants can be record types.
• Record types cannot contain attributes.
• XST supports aggregate assignments to record signals.

VHDL Unsupported Data Types
The real type defined in the standard package is supported only for the purpose of
performing calculations, such as the calculation of generics values. You cannot define a
synthesizable object of type real.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 39

Chapter 3: XST VHDL Language Support

VHDL Objects
This section discuss VHDL objects, and includes:

• VHDL Signals

• VHDL Variables

• VHDL Constants

VHDL Signals
You can declare VHDL signals in:

• An architecture declarative part

Use VHDL signals anywhere within that architecture.

• A block

Use VHDL signals within that block.

• Assign VHDL signals with the <= signal assignment operator.

signal sig1 : std_logic;
sig1 <= ’1’;

VHDL Variables
VHDL variables are declared in a process or a subprogram, and are used within that
process or subprogram.

Assign VHDL variables with the := assignment operator.

variable var1 : std_logic_vector (7 downto 0); var1 := "01010011";

VHDL Constants
You can declare VHDL constants in any declarative region, and can be used within that
region. Their values cannot be changed once declared.

signal sig1 : std_logic_vector (5 downto 0);constant init0 :
std_logic_vector (5 downto 0) := "010111";sig1 <= init0;

XST User Guide for Virtex-6 and Spartan-6 Devices
40 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

VHDL Operators
Supported VHDL operators are shown in Supported/Unsupported VHDL Operators
later in this chapter. This section provides examples on how to use each shift operator.
• The SLL (Shift Left Logic) operator

sig1 <= A(4 downto 0) sll 2

is logically equivalent to:

sig1 <= A(2 downto 0) & "00";

• The SRL (Shift Right Logic) operator

sig1 <= A(4 downto 0) srl 2

is logically equivalent to:

sig1 <= "00" & A(4 downto 2);

• The SLA (Shift Left Arithmetic) operator

sig1 <= A(4 downto 0) sla 2

is logically equivalent to:

sig1 <= A(2 downto 0) & A(0) & A(0);

• The SRA (Shift Right Arithmetic) operator

sig1 <= A(4 downto 0) sra 2

is logically equivalent to:

sig1 <= <= A(4) & A(4) & A(4 downto 2);

• The ROL (Rotate Left) operator

sig1 <= A(4 downto 0) rol 2

is logically equivalent to:

sig1 <= A(2 downto 0) & A(4 downto 3);

• The ROR (Rotate Right) operator

A(4 downto 0) ror 2

is logically equivalent to:

sig1 <= A(1 downto 0) & A(4 downto 2);

VHDL Entity and Architecture Descriptions
This section discusses VHDL Entity and Architecture Descriptions, and includes:
• VHDL Circuit Descriptions
• VHDL Entity Declarations
• VHDL Architecture Declarations
• VHDL Component Instantiation
• VHDL Recursive Component Instantiation
• VHDL Component Configuration
• VHDL Generics
• Conflicts Among VHDL Generics and Attributes

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 41

Chapter 3: XST VHDL Language Support

VHDL Circuit Descriptions
A VHDL circuit description (design unit) consists of two parts:

• Entity declaration

– Provides the external view of the circuit

– Describes what can be seen from the outside, including the interface of the
circuit, such as the I/O ports and generics

• Architecture

– Provides the internal view of the circuit

– Describes the behavior or the structure of the circuit

VHDL Entity Declarations
The I/O ports of the circuit are declared in the entity. Each port has a:

• name

• mode

– in

– out

– inout

– buffer

• type

While ports are usually constrained, they can also be left unconstrained in the entity
declaration. If left unconstrained, their width is defined at instantiation when the
connection between formal ports and actual signals is made. Unconstrained ports allow
you to create different instantiations of the same entity, defining different port widths.

However, Xilinx® recommends that you define ports that are constrained through
generics, and that you apply different values of those generics at instantiation. You
should not have an unconstrained port on the top-level entity.

Array types of more than one-dimension are not accepted as ports.

The entity declaration can also declare generics. For more information, see VHDL
Generics.

XST User Guide for Virtex-6 and Spartan-6 Devices
42 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

NOT RECOMMENDED Coding Example WITH Buffer Port Mode
Xilinx does not recommend using buffer port mode. Although VHDL allows buffer port
mode when a signal is used both internally and as an output port (when there is only
one internal driver), buffer ports are a potential source of errors during synthesis, and
complicate validation of post-synthesis results through simulation.

entity alu is
port(

CLK : in STD_LOGIC;
A : in STD_LOGIC_VECTOR(3 downto 0);
B : in STD_LOGIC_VECTOR(3 downto 0);
C : buffer STD_LOGIC_VECTOR(3 downto 0));

end alu;

architecture behavioral of alu is
begin

process begin
if rising_edge(CLK) then

C <= UNSIGNED(A) + UNSIGNED(B) UNSIGNED(C);
end if;

end process;
end behavioral;

RECOMMENDED Coding Example WITHOUT Buffer Port Mode
In the NOT RECOMMENDED Coding Example WITH Buffer Port Mode above, signal C,
used both internally and as an output port, has been modelled with a buffer mode.
Every level of hierarchy in the design that can be connected to C must also be declared
as a buffer. To drop the buffer mode in this example, insert a dummy signal and declare
port C as an output, as shown in the following coding example.

entity alu is
port(

CLK : in STD_LOGIC;
A : in STD_LOGIC_VECTOR(3 downto 0);
B : in STD_LOGIC_VECTOR(3 downto 0);
C : out STD_LOGIC_VECTOR(3 downto 0));

end alu;

architecture behavioral of alu is
-- dummy signal
signal C_INT : STD_LOGIC_VECTOR(3 downto 0);

begin
C <= C_INT;
process begin

if rising_edge(CLK) then
C_INT <= A and B and C_INT;

end if;
end process;

end behavioral;

VHDL Architecture Declarations
You can declare internal signals in the architecture. Each internal signal has a:

• name

• type

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 43

Chapter 3: XST VHDL Language Support

VHDL Architecture Declaration Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity EXAMPLE is
port (

A,B,C : in std_logic;
D,E : out std_logic);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal T : std_logic;

begin
...

end ARCHI;

VHDL Component Instantiation
Component instantiation allows you to instantiate a design unit (component) inside
another design unit in order to create a hierarchically structured design description.

To perform component instantiation:

1. Create the design unit (entity and architecture) modelling the functionality to be
instantiated.

2. Declare the component to be instantiated in the declarative region of the parent
design unit architecture.

3. Instantiate and connect this component in the parent design unit’s architecture body.

4. Map (connect) formal ports of the component to actual signals and ports of the
parent design unit.

The main elements of a component instantiation statement are:

• label

Identifies the instance

• association list

– Introduced by the reserved port map keyword

– Ties formal ports of the component to actual signals or ports of the parent
design unit

• optional association list

– Introduced by the reserved generic map keyword

– Provides actual values to formal generics defined in the component

XST supports unconstrained vectors in component declarations.

XST User Guide for Virtex-6 and Spartan-6 Devices
44 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

VHDL Component Instantiation Coding Example
The following coding example shows the structural description of a half adder
composed of four nand2 components:

--
-- A simple component instantiation example
-- Involves a component declaration and the component instantiation itself
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/instantiation/instantiation_simple.vhd
--
entity sub is

generic (
WIDTH : integer := 4);

port (
A,B : in BIT_VECTOR(WIDTH-1 downto 0);
O : out BIT_VECTOR(2*WIDTH-1 downto 0));

end sub;

architecture archi of sub is
begin

O <= A & B;
end ARCHI;

entity top is
generic (

WIDTH : integer := 2);
port (

X, Y : in BIT_VECTOR(WIDTH-1 downto 0);
Z : out BIT_VECTOR(2*WIDTH-1 downto 0));

end top;

architecture ARCHI of top is

component sub -- component declaration
generic (

WIDTH : integer := 2);
port (

A,B : in BIT_VECTOR(WIDTH-1 downto 0);
O : out BIT_VECTOR(2*WIDTH-1 downto 0));

end component;

begin

inst_sub : sub -- component instantiation
generic map (

WIDTH => WIDTH
)
port map (
A => X,
B => Y,
O => Z

);

end ARCHI;

VHDL Recursive Component Instantiation
XST supports recursive component instantiation. XST does not support direct
instantiation for recursion. To prevent endless recursive calls, the number of recursions
is limited by default to 64. Use -recursion_iteration_limit to control the number
of allowed recursive calls, as shown in the following coding example.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 45

Chapter 3: XST VHDL Language Support

VHDL Recursive Component Instantiation Coding Example
--
-- Recursive component instantiation
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/instantiation/instantiation_recursive.vhd
--
library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity single_stage is
generic (

sh_st: integer:=4);
port (

CLK : in std_logic;
DI : in std_logic;
DO : out std_logic);
end entity single_stage;

architecture recursive of single_stage is
component single_stage

generic (
sh_st: integer);

port (
CLK : in std_logic;
DI : in std_logic;
DO : out std_logic);

end component;
signal tmp : std_logic;
begin

GEN_FD_LAST: if sh_st=1 generate
inst_fd: FD port map (D=>DI, C=>CLK, Q=>DO);

end generate;
GEN_FD_INTERM: if sh_st /= 1 generate

inst_fd: FD port map (D=>DI, C=>CLK, Q=>tmp);
inst_sstage: single_stage

generic map (sh_st => sh_st-1)
port map (DI=>tmp, CLK=>CLK, DO=>DO);

end generate;
end recursive;

VHDL Component Configuration
Use a component configuration to explicitly link a component with the appropriate
model (entity and architecture pair). XST supports component configuration in the
declarative part of the architecture. Use the following syntax:

for instantiation_list : component_name use
LibName.entity_Name(Architecture_Name);

For example, the following statement indicates that all NAND2 components use the
design unit consisting of entity NAND2 and architecture ARCHI, and that is compiled
in the work library.

For all : NAND2 use entity work.NAND2(ARCHI);

When the configuration clause is missing for a component instantiation, XST links the
component to the entity with the same name (and same interface), and the selected
architecture to the most recently compiled architecture. If no entity or architecture is
found, a black box is generated during synthesis.

VHDL Generics
VHDL generics are the equivalent of Verilog parameters.

XST User Guide for Virtex-6 and Spartan-6 Devices
46 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

VHDL generics help you create scalable design modelizations. Use generics to
parameterize functionality such as bus sizes, or the amount of certain repetitive elements
in the design unit.

VHDL generics also allow you to write compact, factorized VHDL code. For example,
for the same functionality that must be instantiated multiple times, but with different
bus sizes, you need describe only one design unit with generics, as shown in the VHDL
Generic Parameters Coding Example below.

You can declare generic parameters in the entity declaration part. XST supports all
types for generics including:

• integer

• boolean

• string

• real

• std_logic_vector

Declare a generic with a default value.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 47

Chapter 3: XST VHDL Language Support

VHDL Generic Parameters Coding Example
--
-- VHDL generic parameters example
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/generics/generics_1.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity addern is
generic (

width : integer := 8);
port (

A,B : in std_logic_vector (width-1 downto 0);
Y : out std_logic_vector (width-1 downto 0));

end addern;

architecture bhv of addern is
begin

Y <= A + B;
end bhv;

Library IEEE;
use IEEE.std_logic_1164.all;

entity top is
port (

X, Y, Z : in std_logic_vector (12 downto 0);
A, B : in std_logic_vector (4 downto 0);
S :out std_logic_vector (17 downto 0));
end top;

architecture bhv of top is
component addern

generic (width : integer := 8);
port (

A,B : in std_logic_vector (width-1 downto 0);
Y : out std_logic_vector (width-1 downto 0));

end component;
for all : addern use entity work.addern(bhv);

signal C1 : std_logic_vector (12 downto 0);
signal C2, C3 : std_logic_vector (17 downto 0);

begin
U1 : addern generic map (width=>13) port map (X,Y,C1);
C2 <= C1 & A;
C3 <= Z & B;
U2 : addern generic map (width=>18) port map (C2,C3,S);

end bhv;

Conflicts Among VHDL Generics and Attributes
Since you can apply VHDL generics and attributes to both instances and components in
the Hardware Description Language (HDL) source code, and you can specify attributes
in a constraints file, conflicts can occasionally arise.

XST User Guide for Virtex-6 and Spartan-6 Devices
48 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

XST uses the following rules of precedence to resolve these conflicts:

1. Specifications on an instance (lower level) take precedence over specifications on a
component (higher level).

2. If a generic and an attribute are applicable to the same instance or the same
component, the attribute is considered, regardless of where the generic was
specified. Xilinx® does not recommend using both mechanisms to define the same
constraint. XST flags such occurrences.

3. An attribute specified in the XST Constraint File (XCF) always takes precedence over
attributes or generics specified in the VHDL code.

4. Security attributes on the block definition always have higher precedence than
any other attribute or generic.

VHDL Combinatorial Circuits
XST supports the following VHDL combinatorial circuits:

• VHDL Concurrent Signal Assignments

• VHDL Generate Statements

• VHDL Combinatorial Processes

VHDL Concurrent Signal Assignments
Combinatorial logic can be described using concurrent signal assignments that can be
specified in the body of an architecture.

VHDL supports three types of concurrent signal assignments:

• Simple

• Selected (with-select-when)

• Conditional (when-else)

The following principles apply:

• You can describe as many concurrent statements as needed.

• The order of appearance in the architecture is irrelevant.

• All statements are concurrently active.

• The concurrent assignment is re-evaluated when any signal on the right side of
the assignment changes value.

• The re-evaluated result is assigned to the signal on the left-hand side.

Simple Signal Assignment VHDL Coding Example
T <= A and B;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 49

Chapter 3: XST VHDL Language Support

Concurrent Selection Assignment VHDL Coding Example
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

--
-- Concurrent selection assignment in VHDL
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/combinatorial/concurrent_selected_assignment.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity concurrent_selected_assignment is
generic (

width: integer := 8);
port (

a, b, c, d : in std_logic_vector (width-1 downto 0);
sel : in std_logic_vector (1 downto 0);
T : out std_logic_vector (width-1 downto 0));

end concurrent_selected_assignment;

architecture bhv of concurrent_selected_assignment is
begin

with sel select
T <= a when "00",

b when "01",
c when "10",
d when others;

end bhv;

Concurrent Conditional Assignment (When-Else) VHDL Coding Example
--
-- A concurrent conditional assignment (when-else)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/combinatorial/concurrent_conditional_assignment.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity concurrent_conditional_assignment is
generic (
width: integer := 8);
port (

a, b, c, d : in std_logic_vector (width-1 downto 0);
sel : in std_logic_vector (1 downto 0);
T : out std_logic_vector (width-1 downto 0));

end concurrent_conditional_assignment;

architecture bhv of concurrent_conditional_assignment is
begin

T <= a when sel = "00" else
b when sel = "01" else
c when sel = "10" else
d;

end bhv;

VHDL Generate Statements
This section discusses VHDL Generate Statements, and includes:

• VHDL For-Generate Statements

• VHDL If-Generate Statements

XST User Guide for Virtex-6 and Spartan-6 Devices
50 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

VHDL For-Generate Statements
Repetitive structures can be described using a for-generate statement. In the
following coding example, the for-generate statement describes the calculation of
the result and carry out for each bit position of this 8-bit adder.

Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

For-Generate Statement VHDL Coding Example
--
-- A for-generate example
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/combinatorial/for_generate.vhd
--
entity for_generate is

port (
A,B : in BIT_VECTOR (0 to 7);
CIN : in BIT;
SUM : out BIT_VECTOR (0 to 7);
COUT : out BIT);

end for_generate;

architecture archi of for_generate is
signal C : BIT_VECTOR (0 to 8);

begin
C(0) <= CIN;
COUT <= C(8);
LOOP_ADD : for I in 0 to 7 generate

SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));

end generate;
end archi;

VHDL If-Generate Statements
A typical use of the if-generate statement is to activate distinct parts of the Hardware
Description Language (HDL) source code based on the result of a test, such as a test of a
generic value. For example, a generic may indicate which Xilinx® FPGA device family
is being targeted. An if-generate statement tests the value of this generic against a
specific device family, and activates a section of the HDL source code that was written
specifically for this device family.

The if-generate statement is supported for static (non-dynamic) conditions.

In the following coding example, a generic N-bit adder with a width ranging between
4and 32 is described with an if-generate and a for-generate statement.

Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 51

Chapter 3: XST VHDL Language Support

For-Generate Nested in an If-Generate Statement VHDL Coding Example
--
-- A for-generate nested in a if-generate
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/combinatorial/if_for_generate.vhd
--
entity if_for_generate is

generic (
N : INTEGER := 8);

port (
A,B : in BIT_VECTOR (N downto 0);
CIN : in BIT;
SUM : out BIT_VECTOR (N downto 0);
COUT : out BIT);

end if_for_generate;

architecture archi of if_for_generate is
signal C : BIT_VECTOR (N+1 downto 0);

begin
IF_N: if (N>=4 and N<=32) generate

C(0) <= CIN;
COUT <= C(N+1);
LOOP_ADD : for I in 0 to N generate

SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));

end generate;
end generate;

end archi;

VHDL Combinatorial Processes
This section discusses VHDL Combinatorial Processes, and includes:
• About VHDL Combinatorial Processes
• VHDL Variable and Signal Assignments
• VHDL If-Else Statements
• VHDL Case Statements
• VHDL For-Loop Statements

About VHDL Combinatorial Processes
Combinatorial logic can be modelled with a process. A process is combinatorial when
signals assigned in the process are explicitly assigned a new value every time the process
is executed. No such signal should implicitly retain its current value.

Hardware inferred from a combinatorial process does not involve any memory elements.
When all assigned signals in a process are always explicitly assigned in all possible
paths within a process block, the process is combinatorial. A signal that is not explicitly
assigned in all branches of an if or case statement typically leads to a latch inference.
When XST infers unexpected latches, examine the HDL source code and look for a
signal that is not explicitly assigned.

A combinatorial process has a sensitivity list appearing within parentheses after the
process keyword. A process is activated if an event (value change) appears on one of
the sensitivity list signals. For a combinatorial process, this sensitivity list must contain:

• All signals in conditions (for example, if and case)
• All signals on the right hand side of an assignment

If one or more signals is missing from the sensitivity list, XST:

• Issues a warning message
• Adds the missing signals to the sensitivity list

XST User Guide for Virtex-6 and Spartan-6 Devices
52 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

In this case, the synthesis results can differ from the initial design specification. To
avoid problems during simulation, explicitly add all missing signals in the HDL source
code and re-run synthesis.

A process can contain local variables.

VHDL Variable and Signal Assignments
This section discusses VHDL Variable and Signal Assignments, and gives the following
coding examples:

• Variable and Signal Assignment VHDL Coding Example One

• Variable and Signal Assignment VHDL Coding Example Two

Variable and Signal Assignment VHDL Coding Example One
The following coding example illustrates how to assign a signal within a process.

--
-- Signal assignment in a process
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/signals_variables/signal_in_process.vhd
--
entity signal_in_process is

port (
A, B : in BIT;
S : out BIT);

end signal_in_process;

architecture archi of signal_in_process is
begin

process (A, B)
begin

S <= ’0’ ;
if ((A and B) = ’1’) then

S <= ’1’ ;
end if;

end process;
end archi;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 53

Chapter 3: XST VHDL Language Support

Variable and Signal Assignment VHDL Coding Example Two
A process can also contain local variables. Variables are declared and used within a
process. They are generally not visible outside the process.

--
-- Variable and signal assignment in a process
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/signals_variables/variable_in_process.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity variable_in_process is
port (

A,B : in std_logic_vector (3 downto 0);
ADD_SUB : in std_logic;
S : out std_logic_vector (3 downto 0));

end variable_in_process;

architecture archi of variable_in_process is
begin

process (A, B, ADD_SUB)
variable AUX : std_logic_vector (3 downto 0);

begin
if ADD_SUB = ’1’ then

AUX := A + B ;
else

AUX := A - B ;
end if;
S <= AUX;

end process;
end archi;

VHDL If-Else Statements
If-else and if-elsif-else statements use true-false conditions to execute
statements. If the expression evaluates to true, the if branch is executed. If the
expression evaluates to false, x, or z, the else branch is executed. A block of multiple
statements can be executed in an if or else branch, using begin and end keywords.
If-else statements can be nested.

XST User Guide for Virtex-6 and Spartan-6 Devices
54 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

If-Else Statement VHDL Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (

a, b, c, d : in std_logic_vector (7 downto 0);
sel1, sel2 : in std_logic;
outmux : out std_logic_vector (7 downto 0));

end mux4;

architecture behavior of mux4 is
begin

process (a, b, c, d, sel1, sel2)
begin

if (sel1 = ’1’) then
if (sel2 = ’1’) then

outmux <= a;
else

outmux <= b;
end if;

else
if (sel2 = ’1’) then

outmux <= c;
else

outmux <= d;
end if;

end if;
end process;

end behavior;

VHDL Case Statements
Case statements perform a comparison to an expression to evaluate one of a number
of parallel branches. The case statement evaluates the branches in the order they are
written. The first branch that evaluates to true is executed. If none of the branches
match, the default branch is executed.

Case Statement VHDL Coding Example
library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (

a, b, c, d : in std_logic_vector (7 downto 0);
sel : in std_logic_vector (1 downto 0);
outmux : out std_logic_vector (7 downto 0));

end mux4;

architecture behavior of mux4 is
begin

process (a, b, c, d, sel)
begin

case sel is
when "00" => outmux <= a;
when "01" => outmux <= b;
when "10" => outmux <= c;
when others => outmux <= d; -- case statement must be complete

end case;
end process;

end behavior;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 55

Chapter 3: XST VHDL Language Support

VHDL For-Loop Statements
The for statement is supported for:

• Constant bounds
• Stop test condition using any of the following operators:

– <
– <=
– >
– >=

• Next step computation falling within one of the following specifications:
– var = var + step
– var = var - step

where
♦ var is the loop variable
♦ step is a constant value

• Next and exit statements

For-Loop Statement VHDL Coding Example
--
-- For-loop example
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/combinatorial/for_loop.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity countzeros is
port (

a : in std_logic_vector (7 downto 0);
Count : out std_logic_vector (2 downto 0));

end countzeros;

architecture behavior of countzeros is
signal Count_Aux: std_logic_vector (2 downto 0);

begin
process (a, Count_Aux)
begin

Count_Aux <= "000";
for i in a’range loop

if (a(i) = ’0’) then
Count_Aux <= Count_Aux + 1;

end if;
end loop;
Count <= Count_Aux;

end process;
end behavior;

VHDL Sequential Logic
This section discusses VHDL Sequential Logic and includes:
• VHDL Sequential Processes With a Sensitivity List
• VHDL Sequential Processes Without a Sensitivity List
• VHDL Initial Values and Operational Set/Reset
• VHDL Default Initial Values on Memory Elements

XST User Guide for Virtex-6 and Spartan-6 Devices
56 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

VHDL Sequential Processes With a Sensitivity List
A process is sequential (as opposed to combinatorial) when some assigned signals
are not explicitly assigned in all paths within the process. In this case, the hardware
generated has an internal state or memory (flip-flops or latches). Describing sequential
logic using a process with a sensitivity list includes:

• A sensitivity list that contains the clock signal and any optional signal controlling
the sequential element asynchronously (asynchronous set/reset)

• An if statement that models the clock event

• Modelization of any asynchronous control logic (asynchronous set/reset) is done
before the clock event statement

• Modelization of the synchronous logic (data, optional synchronous set/reset,
optional clock enable) is done in the clock event if branch

The syntax is:

process (<sensitivity list>)
begin

<asynchronous part>
<clock event>
<synchronous part>

end;

The clock event statement can be described for a rising edge clock as:

If clk’event and clk = ‘1’ then

The clock event statement can be described for a falling edge clock as:

If clk’event and clk = ‘0’ then

For greater clarity, you can instead use the VHDL’93 IEEE standard rising_edge and
falling_edge functions. The above statements become:

If rising_edge(clk) then
If falling_edge(clk) then

If XST detects that a signal has been omitted from the sensitivity list, it issues a warning.
Missing signals are automatically added to the list. Xilinx® recommends adding the
missing signals to the HDL source code. Failure to do so can cause difficulties when
validating your synthesized solution through simulation.

Xilinx recommends using the sensitivity-list based description style to describe
sequential logic. For more information, see Chapter 7, XST HDL Coding Techniques,
which describes macro inference of such functions as registers and counters.

VHDL Sequential Processes Without a Sensitivity List
XST allows the description of sequential logic using a wait statement. In this case, the
sequential processes is described without a sensitivity list.

• The same process cannot have both a sensitivity list and a wait statement.

• There can be only one wait statement in the process.

• The wait statement must be the first statement of the process.

• The condition in the wait statement describes the sequential logic clock.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 57

Chapter 3: XST VHDL Language Support

VHDL Sequential Process Using a Wait Statement Coding Example
process
begin

wait until rising_edge(clk);
q <= d;

end process;

Describing a Clock Enable in the Wait Statement Coding Example
A clock enable can be described in the wait statement together with the clock.

process
begin

wait until rising_edge(clk) and clken = ’1’;
q <= d;

end process;

Describing a Clock Enable After the Wait Statement Coding Example
You can also describe the clock enable separately.

process
begin

wait until rising_edge(clk);
if clken = ’1’ then

q <= d;
end if;

end process;

Besides the clock enable, this coding method also allows you to describe
synchronous control logic, such as a synchronous reset or set. You cannot describe a
sequential element with asynchronous control logic using a process without a sensitivity
list. Only a process with a sensitivity list allows such functionality. XST does not
allow description of a latch based on a wait statement. For greater flexibility, Xilinx®
recommends describing synchronous logic using a process with a sensitivity list.

VHDL Initial Values and Operational Set/Reset
In VHDL, you can initialize registers when you declare them.

The initialization value:

• Is a constant

• May be generated from a function call (for example, loading initial values from an
external data file)

• Cannot depend on earlier initial values

• Can be a parameter value propagated to a register

Initializing Registers VHDL Coding Example One
The following coding example specifies a power-up value, to which the sequential
element is initialized when the circuit goes live, and the circuit global reset is applied.

signal arb_onebit : std_logic := ’0’;
signal arb_priority : std_logic_vector(3 downto 0) := "1011";

XST User Guide for Virtex-6 and Spartan-6 Devices
58 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

Initializing Registers VHDL Coding Example Two
You can also initialize sequential elements operationally, describing set/reset values and
local control logic. To do so, assign a value to a register when the register reset line goes
to the appropriate value, as shown in the following coding example.

process (clk, rst)
begin

if rst=’1’ then
arb_onebit <= ’0’;

end if;
end process;

For more information about the advantages and disadvantages of operational set/reset,
and the advantages and disadvantages of asynchronous versus synchronous set/reset,
see Flip-Flops and Registers in Chapter 7, HDL Coding Techniques.

Initializing Registers VHDL Coding Example Three
The following coding example mixes power-up initialization and operational reset.

--
-- Register initialization
-- Specifying initial contents at circuit powes-up
-- Specifying an operational set/reset
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/initial/initial_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity initial_1 is
Port (

clk, rst : in std_logic;
din : in std_logic;
dout : out std_logic);

end initial_1;

architecture behavioral of initial_1 is
signal arb_onebit : std_logic := ’1’; -- power-up to vcc

begin

process (clk)
begin

if (rising_edge(clk)) then
if rst=’1’ then -- local synchronous reset

arb_onebit <= ’0’;
else

arb_onebit <= din;
end if;

end if;
end process;

dout <= arb_onebit;

end behavioral;

VHDL Default Initial Values on Memory Elements
Because every memory element in a Xilinx® FPGA device must come up in a known
state, in certain cases, XST does not apply IEEE standards for initial values. In the
previous coding example, if arb_onebit is not initialized to 1 (one), XST assigns it a
default of 0 (zero) as its initial state. In this case, XST does not follow the IEEE standard,
where U is the default for std_logic. This process of initialization is the same for
both registers and RAMs.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 59

Chapter 3: XST VHDL Language Support

Where possible, XST adheres to the IEEE VHDL standard when initializing signal
values. If no initial values are supplied in the VHDL code, XST uses the default values
(where possible) as shown in the XST column in the following table.

VHDL Initial Values
Type IEEE XST

bit 0 0

std_logic U 0

bit_vector (3 downto 0) 0 0

std_logic_vector (3 downto 0) 0 0

integer (unconstrained) integer’left integer’left

integer range 7 downto 0 integer’left = 7 integer’left = 7 (coded as 111)

integer range 0 to 7 integer’left = 0 integer’left = 0 (coded as 000)

Boolean FALSE FALSE (coded as 0)

enum (S0,S1,S2,S3) type’left = S0 type’left = S0 (coded as 000)

Unconnected output ports default to the values shown in the XST column. If the output
port has an initial condition, XST ties the unconnected output port to the explicitly
defined initial condition.

According to the IEEE VHDL specification, input ports cannot be left unconnected. As a
result, XST issues an error message if an input port is not connected. Even the open
keyword is not sufficient for an unconnected input port.

VHDL Functions and Procedures
Declaring a function or a procedure in VHDL lets you handle blocks that are used
multiple times in a design. Functions and procedures can be declared in the declarative
part of an entity, in an architecture or in a package. A function or procedure consists
of a declarative part and a body.

The declarative part specifies:

• Input parameters

• Output and inout parameters (procedures only)

• Output and inout parameters (procedures only)

These parameters can be unconstrained. They are not constrained to a given bound. The
content is similar to the combinatorial process content. Resolution functions are not
supported except the one defined in the IEEE std_logic_1164 package

XST User Guide for Virtex-6 and Spartan-6 Devices
60 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

Function Declared Within a Package VHDL Coding Example
The following coding example shows a function declared within a package. The ADD
function declared here is a single bit adder. This function is called four times with the
proper parameters in the architecture to create a 4-bit adder.

--
-- Declaration of a function in a package
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/functions_procedures/function_package_1.vhd
--
package PKG is

function ADD (A,B, CIN : BIT)
return BIT_VECTOR;

end PKG;

package body PKG is
function ADD (A,B, CIN : BIT)
return BIT_VECTOR is

variable S, COUT : BIT;
variable RESULT : BIT_VECTOR (1 downto 0);

begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
RESULT := COUT & S;
return RESULT;

end ADD;
end PKG;

use work.PKG.all;

entity EXAMPLE is
port (

A,B : in BIT_VECTOR (3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);

begin
S0 <= ADD (A(0), B(0), CIN);
S1 <= ADD (A(1), B(1), S0(1));
S2 <= ADD (A(2), B(2), S1(1));
S3 <= ADD (A(3), B(3), S2(1));
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);

end ARCHI;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 61

Chapter 3: XST VHDL Language Support

Procedure Declared Within a Package VHDL Coding Example
Following is the same example using a procedure instead.

--
-- Declaration of a procedure in a package
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/functions_procedures/procedure_package_1.vhd
--
package PKG is

procedure ADD (
A, B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0));

end PKG;

package body PKG is
procedure ADD (

A, B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0)

) is
variable S, COUT : BIT;

begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
C := COUT & S;

end ADD;
end PKG;

use work.PKG.all;

entity EXAMPLE is
port (

A,B : in BIT_VECTOR (3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin

process (A,B,CIN)
variable S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);

begin
ADD (A(0), B(0), CIN, S0);
ADD (A(1), B(1), S0(1), S1);
ADD (A(2), B(2), S1(1), S2);
ADD (A(3), B(3), S2(1), S3);
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);

end process;
end ARCHI;

Recursive Functions VHDL Coding Example
XST supports recursive functions. The following coding example models an n! function:

function my_func(x : integer) return integer is
begin

if x = 1 then
return x;

else
return (x*my_func(x-1));

end if;
end function my_func;

XST User Guide for Virtex-6 and Spartan-6 Devices
62 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

VHDL Assert Statements
XST supports VHDL Assert statements. Assert statements help you debug your design,
enabling you to detect undesirable conditions such as:

• Bad values for generics, constants, and generate conditions

• Bad values for parameters in called functions

For any failed condition in an Assert statement, depending on the severity level, XST
either:

• Issues a warning message, or

• Rejects the design and issues an error message

XST supports the Assert statement only with static condition.

The following coding example contains a block (SINGLE_SRL) which describes a shift
register. The size of the shift register depends on the SRL_WIDTH generic value. The
Assert statement ensures that the implementation of a single shift register does not
exceed the size of a single Shift Register LUT (SRL).

Since the size of the SRL is 16 bit, and XST implements the last stage of the shift register
using a flip-flop in a slice, the maximum size of the shift register cannot exceed 17 bits.
The SINGLE_SRL block is instantiated twice in the entity named TOP, the first time with
SRL_WIDTH equal to 13, and the second time with SRL_WIDTH equal to 18.

Use of an Assert Statement for Design Rule Checking VHDL Coding
Example
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 63

Chapter 3: XST VHDL Language Support

Each directory contains a summary.txt file listing all examples together with a brief
overview.

--
-- Use of an assert statement for design rule checking
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/asserts/asserts_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity SINGLE_SRL is
generic (SRL_WIDTH : integer := 24);
port (

clk : in std_logic;
inp : in std_logic;
outp : out std_logic);

end SINGLE_SRL;

architecture beh of SINGLE_SRL is
signal shift_reg : std_logic_vector (SRL_WIDTH-1 downto 0);

begin
assert SRL_WIDTH <= 17
report "The size of Shift Register exceeds the size of a single SRL"
severity FAILURE;

process (clk)
begin

if rising_edge(clk) then
shift_reg <= shift_reg (SRL_WIDTH-2 downto 0) & inp;

end if;
end process;

outp <= shift_reg(SRL_WIDTH-1);
end beh;

library ieee;
use ieee.std_logic_1164.all;

entity TOP is
port (

clk : in std_logic;
inp1, inp2 : in std_logic;
outp1, outp2 : out std_logic);

end TOP;

architecture beh of TOP is
component SINGLE_SRL is

generic (SRL_WIDTH : integer := 16);
port(

clk : in std_logic;
inp : in std_logic;
outp : out std_logic);

end component;
begin

inst1: SINGLE_SRL
generic map (SRL_WIDTH => 13)
port map(

clk => clk,
inp => inp1,
outp => outp1);

inst2: SINGLE_SRL
generic map (SRL_WIDTH => 18)
port map(

clk => clk,
inp => inp2,
outp => outp2);

end beh;

XST User Guide for Virtex-6 and Spartan-6 Devices
64 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

XST issues the following error message.

HDL Elaboration *
===
Elaborating entity <TOP> (architecture <beh>) from library <work>.

Elaborating entity <SINGLE_SRL> (architecture <beh>) with generics from library <work>.

Elaborating entity <SINGLE_SRL> (architecture <beh>) with generics from library <work>.
ERROR:HDLCompiler:1242 - "VHDL_Language_Support/asserts/asserts_1.vhd"

Line 15: "The size of Shift Register exceeds the size of a single SRL": exiting elaboration
"VHDL_Language_Support/asserts/asserts_1.vhd"
Line 4. netlist SINGLE_SRL(18)(beh) remains a blackbox, due to errors in its contents

VHDL Libraries and Packages
This section discusses VHDL Libraries and Packages and includes:

• VHDL Libraries

• VHDL Predefined Packages

• Defining Your Own VHDL Packages

• Accessing VHDL Packages

VHDL Libraries
A library is a directory in which design units (entity or architectures and packages) are
compiled. Each VHDL and Verilog source file is compiled into a designated library.

Creating an HDL Synthesis Project in Chapter 2, Creating and Synthesizing an XST
Project, describes the syntax of the HDL synthesis project file, and explains how to
specify the library into which the contents of an HDL source file is compiled.

A design unit that was compiled into a library can be invoked from any VHDL source
file, provided that you have referenced it through a library clause.

The syntax is:

library library_name;

The work library is the default library, and does not require a library clause. To change
the name of the default library, use run -work_lib.

The physical location of the default library, and of any other user-defined library, is a
subdirectory with the same name located under a directory defined by Work Directory
(–xsthdpdir).

VHDL Predefined Packages
XST supports predefined packages defined in the std and ieee standard libraries.
They are pre-compiled and can be directly included in the VHDL code. You need not
compile those libraries. The predefined packages are:

• VHDL Predefined Standard Packages

• VHDL Predefined IEEE Packages

• VHDL Predefined IEEE Real Type and IEEE math_real Packages

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 65

Chapter 3: XST VHDL Language Support

VHDL Predefined Standard Packages
The standard package defines basic VHDL types, including:

• bit

• bit_vector

• integer

• natural

• real

• boolean

The standard package is included by default.

VHDL Predefined IEEE Packages
XST supports the following IEEE packages, defining more common data types,
functions, and procedures:

• numeric_bit

Defines unsigned and signed vector types based on bit, as well as all overloaded
arithmetic operators, conversion functions, and extended functions for these types.

• std_logic_1164

Defines std_logic, std_ulogic, std_logic_vector, and
std_ulogic_vector types, as well as conversion functions based on these types.

• std_logic_arith (Synopsys)

Defines unsigned and signed vector types based on std_logic. Also defines
overloaded arithmetic operators, conversion functions, and extended functions
for these types.

• numeric_std

Defines unsigned and signed vector types based on std_logic. Also defines
overloaded arithmetic operators, conversion functions, and extended functions for
these types. Equivalent to std_logic_arith.

• std_logic_unsigned (Synopsys)

Defines unsigned arithmetic operators for std_logic and std_logic_vector

• std_logic_signed (Synopsys)

Defines signed arithmetic operators for std_logic and std_logic_vector

• std_logic_misc (Synopsys)

Defines supplemental types, subtypes, constants, and functions for the
std_logic_1164 package, such as and_reduce and or_reduce

IEEE packages are pre-compiled in the ieee library.

XST User Guide for Virtex-6 and Spartan-6 Devices
66 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

VHDL Predefined IEEE Fixed and Floating Point Packages
XST supports IEEE fixed and floating point packages.
• The fixed_pkg package contains functions for fixed point math. This package

is already precompiled into the library ieee_proposed and may be invoked as
follows:
– use ieee.std_logic_1164.all;

– use ieee.numeric_std.all;

– library ieee_proposed;

– use ieee_proposed.fixed_pkg.all;

• The float_pkg package contains functions for floating point math. This package is
already precompiled into ieee_proposed and can be used as follows:
– use ieee.std_logic_1164.all;

– use ieee.numeric_std.all;

– library ieee_proposed;

– use ieee_proposed.float_pkg.all;

VHDL Predefined IEEE Real Type and IEEE math_real Packages
The real type, as well as functions and procedures in the IEEE math_real package, are
supported for only calculations (such as calculation of generics values). They cannot be
used to describe synthesizable functionality.

VHDL Real Number Constants
Constant Value Constant Value

math_e e math_log_of_2 ln2

math_1_over_e 1/e math_log_of_10 ln10

math_pi π math_log2_of_e log2e

math_2_pi 2π math_log10_of_e log10e

math_1_over_pi 1/ π math_sqrt_2 √2

math_pi_over_2 π/2 math_1_oversqrt_2 1/√2

math_pi_over_3 π/3 math_sqrt_pi √π

math_pi_over_4 π/4 math_deg_to_rad 2π/360

math_3_pi_over_2 3π/2 math_rad_to_deg 360/2π

VHDL Real Number Functions
ceil(x) realmax(x,y) exp(x) cos(x) cosh(x)

floor(x) realmin(x,y) log(x) tan(x) tanh(x)

round(x) sqrt(x) log2(x) arcsin(x) arcsinh(x)

trunc(x) cbrt(x) log10(x) arctan(x) arccosh(x)

sign(x) "**"(n,y) log(x,y) arctan(y,x) arctanh(x)

"mod"(x,y) "**"(x,y) sin(x) sinh(x)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 67

Chapter 3: XST VHDL Language Support

Defining Your Own VHDL Packages
You can create your own packages to define:

• Types and subtypes

• Constants

• Functions and procedures

• Component declarations

Defining your own packages allows access to shared definitions and models from other
parts of your project.

Defining a package requires:

• Package declaration

Declares each of the elements listed above

• Package body

Describes the functions and procedures declared in the package declaration

Package Declaration Syntax
package mypackage is

type mytype is
record
first : integer;
second : integer;

end record;

constant myzero : mytype := (first => 0, second => 0);

function getfirst (x : mytype) return integer;

end mypackage;

Package Body Syntax
package body mypackage is

function getfirst (x : mytype) return integer is
begin
return x.first;

end function;

end mypackage;

Accessing VHDL Packages
To access definitions of a package, you must:

• Include the library in which the package has been compiled with a library clause

• Designate the package, or a specific definition contained in the package, with a
use clause

Use the following syntax:

library library_name;

use library_name.package_name.all;

XST User Guide for Virtex-6 and Spartan-6 Devices
68 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

Insert these lines immediately before the entity or architecture in which you use the
package definitions. Because the work library is the default library, you can omit the
library clause if the designated package has been compiled into this library.

VHDL File Type Support
This section discusses VHDL File Type Support, and includes:
• XST VHDL File Read and File Write Capability
• Loading Memory Contents from an External File
• Writing to a File for Debugging
• Rules for Debugging Using Write Operations

XST VHDL File Read and File Write Capability
XST supports a limited File Read and File Write capability for VHDL.

File Read capability can be used for initializing memories from an external data file.

For more information, see Specifying Initial Contents in an External Data File in Chapter
7, XST HDL Coding Techniques.

File Write capability can be used for:

• Debugging
• Writing a specific constant or generic value to an external file

The textio package:

• Is available in the std library
• Provides basic text-based File I/O capabilities
• Defines the following procedures for file I/O operations

– readline

– read

– writeline

– write

The std_logic_textio package:

• Is available in the ieee library
• Provides extended text I/O support for other data types, overloading the read and

write procedures as shown in the following table.

XST File Type Support
Function Package

file (type text only) standard

access (type line only) standard

file_open (file, name, open_kind) standard

file_close (file) standard

endfile (file) standard

text std.textio

line std.textio

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 69

Chapter 3: XST VHDL Language Support

Function Package
width std.textio

readline (text, line) std.textio

readline (line, bit, boolean) std.textio

read (line, bit) std.textio

readline (line, bit_vector, boolean) std.textio

read (line, bit_vector) std.textio

read (line, boolean, boolean) std.textio

read (line, boolean) std.textio

read (line, character, boolean) std.textio

read (line, character) std.textio

read (line, string, boolean) std.textio

read (line, string) std.textio

write (file, line) std.textio

write (line, bit, boolean) std.textio

write (line, bit) std.textio

write (line, bit_vector, boolean) std.textio

write (line, bit_vector) std.textio

write (line, boolean, boolean) std.textio

write (line, boolean) std.textio

write (line, character, boolean) std.textio

write (line, character) std.textio

write (line, integer, boolean) std.textio

write (line, integer) std.textio

write (line, string, boolean) std.textio

write (line, string) std.textio

read (line, std_ulogic, boolean) ieee.std_logic_textio

read (line, std_ulogic) ieee.std_logic_textio

read (line, std_ulogic_vector), boolean ieee.std_logic_textio

read (line, std_ulogic_vector) ieee.std_logic_textio

read (line, std_logic_vector, boolean) ieee.std_logic_textio

read (line, std_logic_vector) ieee.std_logic_textio

write (line, std_ulogic, boolean) ieee.std_logic_textio

write (line, std_ulogic) ieee.std_logic_textio

write (line, std_ulogic_vector, boolean) ieee.std_logic_textio

write (line, std_ulogic_vector) ieee.std_logic_textio

write (line, std_logic_vector, boolean) ieee.std_logic_textio

write (line, std_logic_vector) ieee.std_logic_textio

hread ieee.std_logic_textio

XST User Guide for Virtex-6 and Spartan-6 Devices
70 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

XST supports both implicit and explicit file open and close operations. A file is implicitly
opened when declared as follows:

file myfile : text open write_mode is "myfilename.dat"; --
declaration and implicit open

Explicitly open and close an external file as follows:

file myfile : text; -- declaration

variable file_status : file_open_status;

…

file_open (file_status, myfile, "myfilename.dat", write_mode);
-- explicit open

…

file_close(myfile); -- explicit close

Loading Memory Contents from an External File
See Specifying Initial Contents in an External Data File in Chapter 7, XST HDL Coding
Techniques.

Writing to a File for Debugging Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 71

Chapter 3: XST VHDL Language Support

Writing to a File (Explicit Open/Close) VHDL Coding Example
File write capability is often used for debugging. In the following coding example, write
operations are performed to a file that has been explicitly opened.

--
-- Writing to a file
-- Explicit open/close with the VHDL’93 FILE_OPEN and FILE_CLOSE procedures
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/file_type_support/filewrite_explicitopen.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_arith.ALL;
use IEEE.STD_LOGIC_TEXTIO.all;
use STD.TEXTIO.all;

entity filewrite_explicitopen is
generic (data_width: integer:= 4);
port (clk : in std_logic;

di : in std_logic_vector (data_width - 1 downto 0);
do : out std_logic_vector (data_width - 1 downto 0));

end filewrite_explicitopen;

architecture behavioral of filewrite_explicitopen is
file results : text;
constant base_const: std_logic_vector(data_width - 1 downto 0):= conv_std_logic_vector(3,data_width);
constant new_const: std_logic_vector(data_width - 1 downto 0):= base_const + "0100";

begin

process(clk)
variable txtline : line;
variable file_status : file_open_status;

begin
file_open (file_status, results, "explicit.dat", write_mode);
write(txtline,string’("--------------------"));
writeline(results, txtline);
write(txtline,string’("Base Const: "));
write(txtline, base_const);
writeline(results, txtline);
write(txtline,string’("New Const: "));
write(txtline,new_const);
writeline(results, txtline);
write(txtline,string’("--------------------"));
writeline(results, txtline);
file_close(results);

if rising_edge(clk) then
do <= di + new_const;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6 and Spartan-6 Devices
72 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

Writing to a File (Implicit Open/Close) VHDL Coding Example
You can also rely on an implicit file open.

--
-- Writing to a file. Implicit open/close
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: VHDL_Language_Support/file_type_support/filewrite_implicitopen.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_arith.ALL;
use IEEE.STD_LOGIC_TEXTIO.all;
use STD.TEXTIO.all;

entity filewrite_implicitopen is
generic (data_width: integer:= 4);
port (clk : in std_logic;

di : in std_logic_vector (data_width - 1 downto 0);
do : out std_logic_vector (data_width - 1 downto 0));

end filewrite_implicitopen;

architecture behavioral of filewrite_implicitopen is
file results : text open write_mode is "implicit.dat";
constant base_const: std_logic_vector(data_width - 1 downto 0):= conv_std_logic_vector(3,data_width);
constant new_const: std_logic_vector(data_width - 1 downto 0):= base_const + "0100";

begin

process(clk)
variable txtline : LINE;

begin
write(txtline,string’("--------------------"));
writeline(results, txtline);
write(txtline,string’("Base Const: "));
write(txtline,base_const);
writeline(results, txtline);
write(txtline,string’("New Const: "));
write(txtline,new_const);
writeline(results, txtline);
write(txtline,string’("--------------------"));
writeline(results, txtline);

if rising_edge(clk) then
do <= di + new_const;

end if;
end process;

end behavioral;

Rules for Debugging Using Write Operations
During a std_logic read operation, the only allowed characters are 0 and 1. Other
values such as X and Z are not allowed. XST rejects the design if the file includes
characters other than 0 and 1, except that XST ignores a blank space character.

Do not use identical names for files in different directories.

Do not use conditional calls to read procedures:

if SEL = ’1’ then
read (MY_LINE, A(3 downto 0));

else
read (MY_LINE, A(1 downto 0));

end if;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 73

Chapter 3: XST VHDL Language Support

VHDL Constructs
This section discusses VHDL Constructs, and includes:

• VHDL Design Entities and Configurations
• VHDL Expressions
• VHDL Statements

VHDL Design Entities and Configurations
XST supports VHDL design entities and configurations except as noted below.

• VHDL Entity Headers
– Generics

Supported
– Ports

Supported, including unconstrained ports
– Entity Statement Part

Unsupported
• VHDL Packages

– STANDARD
– Type TIME is not supported

• VHDL Physical Types
– TIME

Ignored
– REAL

Supported, but only in functions for constant calculations
• VHDL Modes

Linkage
Unsupported

• VHDL Declarations
Type
Supported for
♦ Enumerated types
♦ Types with positive range having constant bounds
♦ Bit vector types
♦ Multi-dimensional arrays

• VHDL Objects
– Constant Declaration

Supported except for deferred constant
– Signal Declaration

Supported except for register and bus type signals
– Attribute Declaration

Supported for some attributes, otherwise skipped. For more information, see
Chapter 9, XST Design Constraints.

• VHDL Specifications
Supported for some predefined attributes only:

XST User Guide for Virtex-6 and Spartan-6 Devices
74 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

♦ HIGHLOW

♦ LEFT

♦ RIGHT

♦ RANGE

♦ REVERSE_RANGE

♦ LENGTH

♦ POS

♦ ASCENDING

♦ EVENT

♦ LAST_VALUE

• Configuration
Supported only with the all clause for instances list. If no clause is added, XST looks
for the entity or architecture compiled in the default library

• Disconnection
Unsupported

Object names can contain underscores in general (for example, DATA_1), but XST does
not allow signal names with leading underscores (for example, _DATA_1).

VHDL Expressions
This section discusses VHDL Expressions, and includes:

• Supported/Unsupported VHDL Operators
• Supported/Unsupported VHDL Operands

Supported/Unsupported VHDL Operators
Operator Supported/Unsupported

Logical Operators: and, or, nand, nor, xor, xnor, not Supported

Relational Operators: =, /=, <, <=, >, >= Supported

& (concatenation) Supported

Adding Operators: +, - Supported

* Supported

/ Supported if the right operand is a constant power of 2, or if
both operands are constant

rem Supported if the right operand is a constant power of 2

mod Supported if the right operand is a constant power of 2

Shift Operators: sll, srl, sla, sra, rol, ror Supported

abs Supported

** Supported if the left operand is 2

Sign: +, - Supported

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 75

Chapter 3: XST VHDL Language Support

Supported/Unsupported VHDL Operands
Operand Supported/Unsupported

Abstract Literals Only integer literals are supported

Physical Literals Ignored

Enumeration Literals Supported

String Literals Supported

Bit String Literals Supported

Record Aggregates Supported

Array Aggregates Supported

Function Call Supported

Qualified Expressions Supported for accepted predefined attributes

Types Conversions Supported

Allocators Unsupported

Static Expressions Supported

VHDL Statements
VHDL supports all statements except as noted in the tables below.

VHDL Wait Statements
Wait Statement Supported/Unsupported

Wait on sensitivity_list until
Boolean_expression. For more information,
see VHDL Combinatorial Circuits.

Supported with one signal in the sensitivity
list and in the Boolean expression. Multiple
Wait statements not supported.

Note XST does not support Wait statements
for latch descriptions.

Wait for time_expression... For more
information, see VHDL Combinatorial
Circuits.

Unsupported

Assertion Statement Supported (only for static conditions)

Signal Assignment Statement Supported (delay is ignored)

Variable Assignment Statement Supported

Procedure Call Statement Supported

If Statement Supported

Case Statement Supported

XST User Guide for Virtex-6 and Spartan-6 Devices
76 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 3: XST VHDL Language Support

VHDL Loop Statements

Loop Statement Supported/Unsupported
for... loop... end loop Supported for constant bounds only. Disable

statements are not supported.

while... loop... end loop Supported

loop ... end loop Only supported in the particular case of
multiple Wait statements

Next Statement Supported

Exit Statement Supported

Return Statement Supported

Null Statement Supported

VHDL Concurrent Statements

Concurrent Statement Supported/Unsupported
Process Statement Supported

Concurrent Procedure Call Supported

Concurrent Assertion Statement Ignored

Concurrent Signal Assignment Statement Supported (no after clause, no transport
or guarded options, no waveforms)
UNAFFECTED is supported.

Component Instantiation Statement Supported

for-generate Statement supported for constant bounds only

if-generate Statement supported for static condition only

VHDL Reserved Words
abs access after alias

all and architecture array

assert attribute begin block

body buffer bus case

component configuration constant disconnect

downto else elsif end

entity exit file for

function generate generic group

guarded if impure in

inertial inout is label

library linkage literal loop
map mod nand new

next nor not null

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 77

Chapter 3: XST VHDL Language Support

of on open or

others out package port

postponed procedure process pure

range record register reject
rem report return rol
ror select severity signal

shared sla sll sra

srl subtype then to

transport type unaffected units

until use variable wait

when while with xnor

xor

XST User Guide for Virtex-6 and Spartan-6 Devices
78 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 4

XST Verilog Support
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter describes XST Verilog Support, and includes:
• About XST Verilog Support
• Verilog Variable Part Selects
• Structural Verilog Features
• Verilog Parameters
• Verilog Parameter and Attribute Conflicts
• Verilog Usage Restrictions in XST
• Verilog 2001 Attributes and Meta Comments
• Verilog Constructs
• Verilog System Tasks and Functions
• Verilog Primitives
• Verilog Reserved Keywords
• Verilog-2001 Support in XST

About XST Verilog Support
Complex circuits are commonly designed using a top down methodology. Various
specification levels are required at each stage of the design process. For example, at the
architectural level, a specification can correspond to a block diagram or an Algorithmic
State Machine (ASM) chart. A block or ASM stage corresponds to a register transfer
block where the connections are N-bit wires, such as:
• Register
• Adder
• Counter
• Multiplexer
• Glue logic
• Finite State Machine (FSM)

A Hardware Description Language (HDL) such as Verilog allows the expression of
notations such as ASM charts and circuit diagrams in a computer language.

Verilog provides both behavioral and structural language structures. These structures
allow expressing design objects at high and low levels of abstraction. Designing
hardware with a language such as Verilog allows using software concepts such as
parallel processing and object-oriented programming. Verilog has a syntax similar to C
and Pascal, and is supported by XST as IEEE 1364.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 79

Chapter 4: XST Verilog Support

Verilog support in XST allows you to describe the global circuit and each block in the
most efficient style. Synthesis is then performed with the best synthesis flow for each
block. Synthesis in this context is the compilation of high-level behavioral and structural
Verilog HDL statements into a flattened gate-level netlist, which can then be used to
custom program a programmable logic device such as a Virtex® device. Different
synthesis methods are used for arithmetic blocks, glue logic, and Finite State Machine
(FSM) components.

This Guide assumes that you are familiar with basic Verilog concepts. For more
information, see the IEEE Verilog HDL Reference Manual.

For more information about XST support for Verilog constructs and meta comments, see:

• Verilog design constraints and options

Chapter 9, XST Design Constraints

• Verilog attribute syntax

Verilog 2001 Attributes and Meta Comments in Chapter 4, XST Verilog Support.

• Setting Verilog options in the Process window of ISE® Design Suite

Chapter 10, XST General Constraints

For information about Behavioral Verilog, see Chapter 5, XST Behavioral Verilog
Support.

Verilog Variable Part Selects
Verilog–2001 allows you to use variables to select a group of bits from a vector. A
variable part select is defined by the starting point of its range and the width of the
vector, instead of being bounded by two explicit values. The starting point of the part
select can vary, but the width of the part select remains constant.

Variable Part Selects Symbols
Symbol Meaning
+ (plus) The part select increases from the starting

point

- (minus) The part select decreases from the starting
point

Variable Part Selects Verilog Coding Example
reg [3:0] data;
reg [3:0] select; // a value from 0 to 7
wire [7:0] byte = data[select +: 8];

XST User Guide for Virtex-6 and Spartan-6 Devices
80 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 4: XST Verilog Support

Structural Verilog Features
Structural Verilog descriptions assemble several blocks of code and allow the
introduction of hierarchy in a design. The basic concepts of hardware structure are
as follows.

• Component

Building or basic block

• Port

Component I/O connector

• Signal

Corresponds to a wire between components

In Verilog, a component is represented by a design module.

• The module declaration provides an external view of the component. It describes
what can be seen from the outside, including the component ports.

• The module body provides an internal view. It describes the behavior or the structure
of the component.

The connections between components are specified within component instantiation
statements. These statements specify an instance of a component occurring within
another component or the circuit. Each component instantiation statement is labeled
with an identifier.

Besides naming a component declared in a local component declaration, a component
instantiation statement contains an association list (the parenthesized list). The list
specifies which actual signals or ports are associated with which local ports of the
component declaration.

Verilog provides a large set of built-in logic gates which can be instantiated to build
larger logic circuits. The set of logical functions described by the built-in gates includes:

• AND

• OR

• XOR

• NAND

• NOR

• NOT

2-Input XOR Function Verilog Coding Example
module build_xor (a, b, c);

input a, b;
output c;
wire c, a_not, b_not;

not a_inv (a_not, a);
not b_inv (b_not, b);
and a1 (x, a_not, b);
and a2 (y, b_not, a);
or out (c, x, y);

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 81

Chapter 4: XST Verilog Support

Each instance of the built-in modules has a unique instantiation name such as:

• a_inv

• b_inv

• out

Half Adder Verilog Coding Example
The following coding example shows the structural description of a half adder
composed of four, 2-input nand modules.

module halfadd (X, Y, C, S);
input X, Y;
output C, S;
wire S1, S2, S3;

nand NANDA (S3, X, Y);
nand NANDB (S1, X, S3);
nand NANDC (S2, S3, Y);
nand NANDD (S, S1, S2);
assign C = S3;

endmodule

The structural features of Verilog also allow you to design circuits by instantiating
pre-defined primitives such as gates, registers and Xilinx® specific primitives such as
CLKDLL and BUFG. These primitives are other than those included in Verilog. These
pre-defined primitives are supplied with the XST Verilog libraries (unisim_comp.v).

Instantiating an FDC and a BUFG Primitive Verilog Coding Example
module example (sysclk, in, reset, out);

input sysclk, in, reset;
output out;
reg out;
wire sysclk_out;

FDC register (out, sysclk_out, reset, in); //position based referencing
BUFG clk (.O(sysclk_out),.I(sysclk)); //name based referencing
...

The unisim_comp.v library file supplied with XST includes the definitions for FDC
and BUFG.

Verilog Parameters
Verilog parameters:
• Allow you to create parameterized code that can be easily reused and scaled
• Make code more readable, more compact, and easier to maintain
• Can be used to describe such functionality as bus sizes, or the amount of certain

repetitive elements in the modelled design unit
• Are constants. For each instantiation of a parameterized module, default parameter

values can be overridden.
• Are the equivalent of VHDL generics

Null string parameters are not supported.

Use Generics (-generics) to redefine Verilog parameters values defined in the
top-level design block. This allows you to modify the design configuration without
modifying the source code. This feature is useful for such processes as IP core generation
and flow testing.

XST User Guide for Virtex-6 and Spartan-6 Devices
82 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 4: XST Verilog Support

Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

Verilog Parameters Coding Example
//
// A Verilog parameter allows to control the width of an instantitated
// block describing register logic
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/parameter/parameter_1.v
//
module myreg (clk, clken, d, q);

parameter SIZE = 1;

input clk, clken;
input [SIZE-1:0] d;
output reg [SIZE-1:0] q;

always @(posedge clk)
begin

if (clken)
q <= d;

end

endmodule

module parameter_1 (clk, clken, di, do);

parameter SIZE = 8;

input clk, clken;
input [SIZE-1:0] di;
output [SIZE-1:0] do;

myreg #8 inst_reg (clk, clken, di, do);

endmodule

Instantiation of the module lpm_reg with a instantiation width of 8 causes the instance
buf_373 to be 8 bits wide.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 83

Chapter 4: XST Verilog Support

Verilog Parameters and Generate-For Coding Example
The following example illustrates how to control the creation of repetitive elements
using parameters and generate-for constructs. For more information, see Behavioral
Verilog Generate Loop Statements.

//
// A shift register description that illustrates the use of parameters and
// generate-for constructs in Verilog
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/parameter/parameter_generate_for_1.v
//
module parameter_generate_for_1 (clk, si, so);

parameter SIZE = 8;

input clk;
input si;
output so;

reg [0:SIZE-1] s;

assign so = s[SIZE-1];

always @ (posedge clk)
s[0] <= si;

genvar i;
generate

for (i = 1; i < SIZE; i = i+1)
begin : shreg

always @ (posedge clk)
begin

s[i] <= s[i-1];
end

end
endgenerate

endmodule

Verilog Parameter and Attribute Conflicts
Conflicts occasionally arise since:

• Parameters and attributes can be applied to both instances and modules in the
Verilog code, and

• Attributes can also be specified in a constraints file

To resolve these conflicts, XST uses the following rules of precedence:

1. Specifications on an instance (lower level) take precedence over specifications on a
module (higher level).

2. If a parameter and an attribute are specified on either the same instance or the same
module, the parameter takes precedence. XST issues a warning message.

3. An attribute specified in the XST Constraint File (XCF) takes precedence over
attributes or parameters specified in the Verilog code.

XST User Guide for Virtex-6 and Spartan-6 Devices
84 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 4: XST Verilog Support

When an attribute specified on an instance overrides a parameter specified on a module
in XST, a simulation tool can still use the parameter. If that occurs, there will be a
simulation mismatch with post-synthesis results.

Verilog Parameter and Attribute Conflicts Precedence
Parameter on an Instance Parameter on a Module

Attribute on an Instance Apply Parameter (XST issues
warning)

Apply Attribute (possible
simulation mismatch)

Attribute on a Module Apply Parameter Apply Parameter (XST issues
warning)

Attribute in XCF Apply Attribute (XST issues
warning)

Apply Attribute

Security attributes on the module definition always have higher precedence than any
other attribute or parameter.

Verilog Usage Restrictions in XST
This section discusses limitations in XST Verilog support, and supported features for
which Xilinx® recommends restrictions. This section includes:

• Case Sensitivity
• Blocking and Nonblocking Assignments
• Integer Handling

Case Sensitivity
XST fully supports Verilog case sensitivity. However, you must be aware of potential
name collisions.

Since Verilog is case sensitive, module, instance, and signal names can theoretically be
made unique by changing capitalization. XST can successfully synthesize a design with
instance and signal names differing only by capitalization. However, when module names
differ only by capitalization, XST errors out.

Do not rely exclusively on capitalization to make object names unique. Doing so can
cause problems in mixed language projects. You may also be unable to apply constraints
through an XST Constraint File (XCF) file.

Blocking and Nonblocking Assignments
XST supports both blocking and non-blocking assignments.

Do not mix blocking and non-blocking assignments. Although synthesized without
error by XST, they can cause errors during simulation.

Unacceptable Coding Example One
Do not mix blocking and non-blocking assignments to the same signal.

always @(in1)
begin

if (in2)
out1 = in1;

else
out1 <= in2;

end

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 85

Chapter 4: XST Verilog Support

Unacceptable Coding Example Two
Do not mix blocking and non-blocking assignments for different bits of the same signal.

if (in2)
begin

out1[0] = 1’b0;
out1[1] <= in1;

end
else
begin

out1[0] = in2;
out1[1] <= 1’b1;

end

Integer Handling
XST handles integers differently from other synthesis tools in several instances. They
must be coded in a particular way.

• Integer Handling in Verilog Case Statements

• Integer Handling in Verilog Concatenations

Integer Handling in Verilog Case Statements
Unsized integers in case item expressions can cause unpredictable results. In the
following coding example, the case item expression 4 is an unsized integer that causes
unpredictable results. To avoid problems, size the 4 to 3 bits as follows.

Integer Handling in Verilog Case Statements Coding Example
reg [2:0] condition1;
always @(condition1)
begin
case(condition1)
4 : data_out = 2; // < will generate bad logic
3’d4 : data_out = 2; // < will work
endcase
end

Integer Handling in Verilog Concatenations
Unsized integers in concatenations can cause unpredictable results. If you use an
expression that results in an unsized integer, assign the expression to a temporary signal,
and use the temporary signal in the concatenation as follows.

Integer Handling in Verilog Concatenations Coding Example
reg [31:0] temp;
assign temp = 4’b1111 % 2;
assign dout = {12/3,temp,din};

Verilog–2001 Attributes and Meta Comments
XST supports:

• Verilog-2001 Attributes

• Verilog Meta Comments

XST User Guide for Virtex-6 and Spartan-6 Devices
86 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 4: XST Verilog Support

Verilog-2001 Attributes
XST supports Verilog-2001 attribute statements. Attributes are comments that pass
specific information to software tools such as synthesis tools. Xilinx® recommends
Verilog-2001 Attributes since they are more generally accepted. Verilog-2001 attributes
can be specified anywhere for operators or signals within module declarations and
instantiations. Other attribute declarations may be supported by the compiler, but
are ignored by XST.

Use attributes to:
• Set constraints on individual objects, such as:

– module

– instance

– net

• Set the following synthesis constraints
– Full Case (FULL_CASE)
– Parallel Case (PARALLEL_CASE)

Verilog Meta Comments
Meta comments are comments that are understood by the Verilog parser. Use Verilog
meta comments to:
• Set constraints on individual objects, such as:

– module

– instance

– net

• Set directives on synthesis:
– parallel_case and full_case

– translate_on and translate_off
– All tool specific directives (for example, syn_sharing)

For more information, see Chapter 9, XST Design Constraints.

Meta comments can be written using the following styles:
• C-style (/* ... */)

C-style comments can be multiple line.
• Verilog style (// ...)

Verilog style comments end at the end of the line.

XST supports:
• Both C-style and Verilog style meta comments
• Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)

// synthesis translate_on
// synthesis translate_off

• Parallel Case (PARALLEL_CASE)

// synthesis parallel_case full_case // synthesis parallel_case
// synthesis full_case

• Constraints on individual objects

The general syntax is:

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 87

Chapter 4: XST Verilog Support

// synthesis attribute [of] ObjectName [is] AttributeValue

Verilog Meta Comments Syntax Examples
// synthesis attribute RLOC of u123 is R11C1.S0

// synthesis attribute HUSET u1 MY_SET

// synthesis attribute fsm_extract of State2 is "yes"

// synthesis attribute fsm_encoding of State2 is "gray"

Verilog Constructs
This section discusses supported and unsupported Verilog constructs, and includes:

• Verilog Constants

• Verilog Data Types

• Verilog Continuous Assignments

• Verilog Procedural Assignments

• Verilog Design Hierarchies

• Verilog Compiler Directives

Note XST does not allow underscores as the first character of signal names (for
example, _DATA_1)

Verilog Constants
XST supports all Verilog constants except as shown in the following table.

Verilog Constants Supported in XST
Constant Supported/Unsupported
Integer Supported

Real Supported

Strings Unsupported

Verilog Data Types
XST supports all Verilog data types except as shown in the following table.

Verilog Data Types Supported in XST
Data Type Category Supported/Unsupported
Net types tri0, tri1, trireg Unsupported

Drive strengths All Ignored

Registers Real and realtime registers Unsupported

Named events All Unsupported

XST User Guide for Virtex-6 and Spartan-6 Devices
88 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 4: XST Verilog Support

Verilog Continuous Assignments
XST supports all Verilog continuous assignments except as shown in the following table.

Verilog Continuous Assignments Supported in XST
Continuous Assignment Supported/Unsupported
Drive Strength Ignored

Delay Ignored

Verilog Procedural Assignments
XST supports all Verilog Procedural Assignments except as shown in the following table.

Verilog Procedural Assignments Supported in XST
Procedural Assignment Supported/Unsupported
assign Supported with limitations. See Behavioral

Verilog Assign and Deassign Statements.

deassign Supported with limitations. See Behavioral
Verilog Assign and Deassign Statements.

force Unsupported

release Unsupported

forever statements Unsupported

repeat statements Supported, but repeat value must be constant

for statements Supported, but bounds must be static

delay (#) Ignored

event (@) Unsupported

wait Unsupported

Named Events Unsupported

Parallel Blocks Unsupported

Specify Blocks Ignored

Disable Supported except in For and Repeat Loop
statements.

Verilog Design Hierarchies
XST supports all Verilog design hierarchies except as shown in the following table.

Verilog Design Hierarchies Supported in XST
Design Hierarchy Supported/Unsupported
module definition Supported

macromodule definition Unsupported

hierarchical names Unsupported

defparam Supported

array of instances Supported

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 89

Chapter 4: XST Verilog Support

Verilog Compiler Directives
XST supports all Verilog compiler directives except as shown in the following table.

Verilog Compiler Directives Supported in XST
Compiler Directive Supported/Unsupported

‘celldefine ‘endcelldefine Ignored

‘default_nettype Supported

‘define Supported

‘ifdef ‘else ‘endif Supported

‘undef, ‘ifndef, ‘elsif, Supported

‘include Supported

‘resetall Ignored

‘timescale Ignored

‘unconnected_drive ‘nounconnected_drive Ignored

‘uselib Unsupported

‘file, ‘line Supported

Verilog System Tasks and Functions
This section discusses Verilog System Tasks and Functions and includes:

• Verilog System Tasks and Functions Supported in XST

• Using Conversion Functions

• Loading Memory Contents with File I/O Tasks

• Display Tasks

• Creating Design Rule Checks with $finish

XST User Guide for Virtex-6 and Spartan-6 Devices
90 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 4: XST Verilog Support

Verilog System Tasks and Functions Supported in XST
System Task or Function Supported/Unsupported Comment
$display Supported Escape sequences are limited

to %d, %b, %h, %o, %c and %s

$fclose Supported

$fdisplay Supported

$fgets Supported

$finish Supported $finish is supported
for statically never active
conditional branches only

$fopen Supported

$fscanf Supported Escape sequences are limited
to %b and %d

$fwrite Supported

$monitor Ignored

$random Ignored

$readmemb Supported

$readmemh Supported

$signed Supported

$stop Ignored

$strobe Ignored

$time Ignored

$unsigned Supported

$write Supported Escape sequences are limited
to %d, %b, %h, %o, %c and %s

all others Ignored

The XST Verilog compiler ignores unsupported system tasks.

Using Conversion Functions
The $signed and $unsigned system tasks can be called on any expression using the
following syntax:

$signed(expr) or $unsigned(expr)

The return value from these calls is the same size as the input value. Its sign is forced
regardless of any previous sign.

Loading Memory Contents With File I/O Tasks
The $readmemb and $readmemh system tasks can be used to initialize block memories.
For more information, see Specifying Initial Contents in an External Data File in Chapter
7, XST HDL Coding Techniques.

Use $readmemb for binary and $readmemh for hexadecimal representation. To avoid
possible differences between XST and simulator behavior, Xilinx® recommends that you
use index parameters in these system tasks.

$readmemb("rams_20c.data",ram, 0, 7);

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 91

Chapter 4: XST Verilog Support

Display Tasks
Display tasks can be used to print information to the console or write it to an external
file. You must call these tasks from within initial blocks. XST supports the following
subset of escape sequences:

• %h

• %d

• %o

• %b

• %c

• %s

Verilog $display Syntax Example
The following example shows the syntax for $display that reports the value of a
binary constant in decimal.

parameter c = 8’b00101010;

initial
begin
$display ("The value of c is %d", c);
end

The following information is written to the log file during the HDL Analysis phase:

Analyzing top module <example>.
c = 8’b00101010
"foo.v" line 9: $display : The value of c is 42

Creating Design Rule Checks with $finish
Although the $finish simulation control task is primarily intended for simulation,
XST partially supports it, allowing you to use $finish to create built-in design rule
checks. Design rule checking detects design configurations that are syntactically correct,
but which may result in unworkable or otherwise undesired implementations. Using
$finish can save significant synthesis and implementation time by forcing an early
exit of XST when it detects undesired conditions.

XST ignores $finish if its execution depends on the occurrence of specific dynamic
conditions during simulation or operation of the circuit on the board. Only simulation
tools can detect such situations. Synthesis tools, including XST, ignore them.

Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
92 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 4: XST Verilog Support

Ignored Use of $finish Verilog Coding Example
//
// Ignored use of $finish for simulation purposes only
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/system_tasks/finish_ignored_1.v
//
module finish_ignored_1 (clk, di, do);

input clk;
input [3:0] di;
output reg [3:0] do;

initial
begin
do = 4’b0;
end

always @(posedge clk)
begin
if (di < 4’b1100)
do <= di;

else
begin
$display("%t, di value %d should not be more than 11", $time, di);
$finish;
end

end

endmodule

Occurrences of the $finish system task in dynamically active situations are flagged
and ignored.

A $finish is considered by XST if its execution depends only on static conditions that
can be fully evaluated during elaboration of the Verilog source code. Such statically
evaluated conditions mainly involve comparison of parameters against expected values.
This is typically done in a module initial block as shown below. Use the $display
system task in conjunction with $finish to create exit messages to help you locate the
root cause of an early exit by XST.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 93

Chapter 4: XST Verilog Support

Supported Use of $finish for Design Rule Checking Verilog Coding
Example

//
// Supported use of $finish for design rule checking
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/system_tasks/finish_supported_1.v
//
module finish_supported_1 (clk, di, do);

parameter integer WIDTH = 4;
parameter DEVICE = "virtex6";

input clk;
input [WIDTH-1:0] di;
output reg [WIDTH-1:0] do;

initial
begin
if (DEVICE != "virtex6")
begin
$display ("DRC ERROR: Unsupported device family: %s.", DEVICE);
$finish;
end
if (WIDTH < 8)
begin
$display ("DRC ERROR: This module not tested for data width: %d. Minimum allowed width is 8.", WIDTH);
$finish;
end

end

always @(posedge clk)
begin
do <= di;
end

endmodule

XST ignores the $stop Verilog simulation control task.

Verilog Primitives
XST supports Verilog primitives as follows.

• XST supports certain gate-level primitives. The supported syntax is:

gate_type instance_name (output, inputs,...);

Following is a gate-level primitive instantiations coding example.

and U1 (out, in1, in2); bufif1 U2 (triout, data, trienable);

• XST supports all Verilog Gate Level primitives except as shown in the following
table.

XST User Guide for Virtex-6 and Spartan-6 Devices
94 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 4: XST Verilog Support

Verilog Gate Level Primitives Supported in XST
Primitive Supported/Unsupported

Pulldown and pullup Unsupported

Drive strength and delay Ignored

Arrays of primitives Unsupported

• XST does not support Verilog Switch-Level primitives, such as:

– cmos, nmos, pmos, rcmos, rnmos, rpmos

– rtran, rtranif0, rtranif1, tran, tranif0, tranif1

• XST does not support Verilog user-defined primitives.

Verilog Reserved Keywords
The following table shows Verilog Reserved Keywords. Keywords marked with an
asterisk (*) are reserved by Verilog, but are not supported by XST.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 95

Chapter 4: XST Verilog Support

Verilog Reserved Keywords
always and assign automatic

begin buf bufif0 bufif1
case casex casez cell*
cmos config* deassign default

defparam design* disable edge

else end endcase endconfig*

endfunction endgenerate endmodule endprimitive

endspecify endtable endtask event

for force forever fork

function generate genvar highz0

highz1 if ifnone incdir*

include* initial inout input

instance* integer join large

liblist* library* localparam macromodule

medium module nand negedge
nmos nor noshow-cancelled* not

notif0 notif1 or output

parameter pmos posedge primitive

pull0 pull1 pullup pulldown

pulsestyle- _ondetect* pulsestyle- _onevent* rcmos real

realtime reg release repeat

rnmos rpmos rtran rtranif0

rtranif1 scalared show-cancelled* signed

small specify specparam strong0

strong1 supply0 supply1 table

task time tran tranif0

tranif1 tri tri0 tri1

triand trior trireg use*

vectored wait wand weak0

weak1 while wire wor

xnor xor

XST User Guide for Virtex-6 and Spartan-6 Devices
96 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 4: XST Verilog Support

Verilog 2001 Support in XST
XST supports the following Verilog-2001 features. For more information, see
Verilog-2001: A Guide to the New Features by Stuart Sutherland, or IEEE Standard Verilog
Hardware Description Language manual, (IEEE Standard 1364-2001).

• Generate statements

• Combined port/data type declarations

• ANSI-style port list

• Module parameter port lists

• ANSI C style task/function declarations

• Comma separated sensitivity list

• Combinatorial logic sensitivity

• Default nets with continuous assigns

• Disable default net declarations

• Indexed vector part selects

• Multi-dimensional arrays

• Arrays of net and real data types

• Array bit and part selects

• Signed reg, net, and port declarations

• Signed based integer numbers

• Signed arithmetic expressions

• Arithmetic shift operators

• Automatic width extension past 32 bits

• Power operator

• N sized parameters

• Explicit in-line parameter passing

• Fixed local parameters

• Enhanced conditional compilation

• File and line compiler directives

• Variable part selects

• Recursive Tasks and Functions

• Constant Functions

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 97

XST User Guide for Virtex-6 and Spartan-6 Devices
98 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5

XST Behavioral Verilog Support
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter describes XST Behavioral Verilog Support, and includes:
• Behavioral Verilog Variable Declarations
• Behavioral Verilog Initial Values
• Behavioral Verilog Arrays Coding Examples
• Behavioral Verilog Multi-Dimensional Arrays
• Behavioral Verilog Data Types
• Behavioral Verilog Legal Statements
• Behavioral Verilog Expressions
• Behavioral Verilog Blocks
• Behavioral Verilog Modules
• Behavioral Verilog Continuous Assignments
• Behavioral Verilog Procedural Assignments
• Behavioral Verilog Tasks and Functions
• Behavioral Verilog Blocking Versus Non-Blocking Procedural Assignments
• Behavioral Verilog Constants
• Behavioral Verilog Macros
• Behavioral Verilog Include Files
• Behavioral Verilog Comments
• Behavioral Verilog Generate Statements

Behavioral Verilog Variable Declarations
Variables in Verilog can be declared as integer or real. These declarations are
intended for use in test code only. Verilog provides data types such as reg and wire
for actual hardware description.

The difference between reg and wire depends on whether the variable is given its
value in a procedural block (reg) or in a continuous assignment (wire). Both reg and
wire have a default width of one bit (scalar). To specify an N-bit width (vectors) for
a declared reg or wire, the left and right bit positions are defined in square brackets
separated by a colon. In Verilog-2001, both reg and wire data types can be signed
or unsigned.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 99

Chapter 5: XST Behavioral Verilog Support

Variable Declarations Coding Example
reg [3:0] arb_priority;
wire [31:0] arb_request;
wire signed [8:0] arb_signed;

Behavioral Verilog Initial Values
In Verilog-2001, you can initialize registers when you declare them. The initial value
specified:
• Is a constant
• Cannot depend on earlier initial values
• Cannot be a function or task call
• Can be a parameter value propagated to the register
• Specifies all bits of a vector

When you give a register an initial value in a declaration, XST sets this value on the
output of the register at global reset, or at power up. A value assigned this way is carried
in the NGC file as an INIT attribute on the register, and is independent of any local reset.

Behavioral Verilog Initial Values Coding Example One
reg arb_onebit = 1’b0;
reg [3:0] arb_priority = 4’b1011;

You can also assign a set/reset (initial) value to a register in your behavioral Verilog code.
Assign a value to a register when the register reset line goes to the appropriate value as
shown in the following coding example.

Behavioral Verilog Initial Values Coding Example Two
always @(posedge clk)
begin

if (rst)
arb_onebit <= 1’b0;

end

When you set the initial value of a variable in the behavioral code, it is implemented in
the design as a flip-flop whose output can be controlled by a local reset. As such, it is
carried in the NGC file as an FDP or FDC flip-flop.

Behavioral Verilog Arrays Coding Examples
Verilog allows arrays of reg and wire to be defined as shown below.

Behavioral Verilog Arrays Coding Example One
The following coding example describes an array of 32 elements. Each element is 4-bits
wide.

reg [3:0] mem_array [31:0];

Behavioral Verilog Arrays Coding Example Two
The following coding example describes an array of 64 8-bit wide elements which can be
assigned only in structural Verilog code.

wire [7:0] mem_array [63:0];

XST User Guide for Virtex-6 and Spartan-6 Devices
100 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Multi-Dimensional Arrays
XST supports multi-dimensional array types of up to two dimensions. Multi-dimensional
arrays can be any net or any variable data type. You can code assignments and
arithmetic operations with arrays, but you cannot select more than one element of
an array at one time. You cannot pass multi-dimensional arrays to system tasks or
functions, or to regular tasks or functions.

Behavioral Verilog Multi-Dimensional Array Coding Example One
The following Verilog coding example describes an array of 256 x 16 wire elements of
8-bits each, which can be assigned only in structural Verilog code

wire [7:0] array2 [0:255][0:15];

Behavioral Verilog Multi-Dimensional Array Coding Example Two
The following Verilog coding example describes an array of 256 x 8 register elements,
each 64 bits wide, which can be assigned in behavioral Verilog code.

reg [63:0] regarray2 [255:0][7:0];

Behavioral Verilog Data Types
The Verilog representation of the bit data type contains the following values:

• 0

logic zero
• 1

logic one
• x

unknown logic value
• z

high impedance

XST supports the following Verilog data types:

• net

• wire

• tri

• triand/wand

• trior/wor

• registers

• reg

• integer

• supply nets

• supply0

• supply1

• constants

• parameter

• Multi-Dimensional Arrays (Memories)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 101

Chapter 5: XST Behavioral Verilog Support

Net and registers can be either:

• Single bit (scalar)
• Multiple bit (vectors)

Behavioral Verilog Data Types Coding Example
The following coding example shows sample Verilog data types found in the declaration
section of a Verilog module.

wire net1; // single bit net
reg r1; // single bit register
tri [7:0] bus1; // 8 bit tristate bus
reg [15:0] bus1; // 15 bit register
reg [7:0] mem[0:127]; // 8x128 memory register
parameter state1 = 3’b001; // 3 bit constant
parameter component = "TMS380C16"; // string

Behavioral Verilog Legal Statements
The following statements (variable and signal assignments) are legal in Behavioral
Verilog:
• variable = expression
• if (condition) statement
• else statement
• case (expression)

expression: statement
...
default: statement
endcase

• for (variable = expression; condition; variable = variable + expression) statement
• while (condition) statement
• forever statement
• functions and tasks

All variables are declared as integer or reg. A variable cannot be declared as a wire.

Behavioral Verilog Expressions
This section discusses Behavioral Verilog Expressions, and includes:

• About Behavioral Verilog Expressions
• Behavioral Verilog Supported Operators
• Behavioral Verilog Supported Expressions
• Results of Evaluating Expressions in Behavioral Verilog

About Behavioral Verilog Expressions
An expression involves constants and variables with arithmetic, logical, relational,
and conditional operators. Logical operators are further divided into bit-wise and
logical, depending on whether they are applied to an expression involving several
bits or a single bit.

XST User Guide for Virtex-6 and Spartan-6 Devices
102 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Supported Operators
The following table shows Behavioral Verilog Supported Operators.

Behavioral Verilog Supported Operators
Arithmetic Logical Relational Conditional

+ & < ?
- && ==

* | ===

** || <=

/ ^ >=

% ~ >=

~^ !=

^~ !==
<< >
>>
<<<
>>>

Behavioral Verilog Supported Expressions
Expression Symbol Supported/Unsupported

Concatenation {} Supported

Replication {{}} Supported

Arithmetic +, -, *,** Supported

Division / Supported only if second
operand is a power of 2, or if
both operands are constant

Modulus % Supported only if second
operand is a power of 2

Addition + Supported

Subtraction - Supported

Multiplication * Supported

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 103

Chapter 5: XST Behavioral Verilog Support

Expression Symbol Supported/Unsupported
Power ** Supported

• Both operands are
constants, with the
second operand being
non-negative.

• If the first operand is a 2,
then the second operand
can be a variable.

• XST does not support
the real data type. Any
combination of operands
that results in a real type
causes an error.

• The values X (unknown)
and Z (high impedance)
are not allowed.

Relational >, <, >=, <= Supported

Logical Negation ! Supported

Logical AND && Supported

Logical OR || Supported

Logical Equality == Supported

Logical Inequality != Supported

Case Equality === Supported

Case Inequality !== Supported

Bitwise Negation ~ Supported

Bitwise AND & Supported

Bitwise Inclusive OR | Supported

Bitwise Exclusive OR ^ Supported

Bitwise Equivalence ~^, ^~ Supported

Reduction AND & Supported

Reduction NAND ~& Supported

Reduction OR | Supported

Reduction NOR ~| Supported

Reduction XOR ^ Supported

Reduction XNOR ~^, ^~ Supported

Left Shift << Supported

Right Shift Signed >>> Supported

Left Shift Signed <<< Supported

Right Shift >> Supported

Conditional ?: Supported

Event OR or, ’,’ Supported

XST User Guide for Virtex-6 and Spartan-6 Devices
104 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

Results of Evaluating Expressions in Behavioral Verilog
The following table shows evaluated expressions based on the most frequently used
operators. The (===) and (!==) operators are special comparison operators. Use them
in simulation to see if a variable is assigned a value of (x) or (z). They are treated as
(==) or (!=) by synthesis.

Results of Evaluating Expressions in Behavioral Verilog
a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b
0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 1 1 1

0 x x 0 x 1 0 0 x x x

0 z x 0 x 1 0 0 x x x

1 0 0 0 1 1 0 0 1 1 1

1 1 1 1 0 0 1 1 1 1 0

1 x x 0 x 1 x x 1 1 x

1 z x 0 x 1 x x 1 1 x

x 0 x 0 x 1 0 0 x x x

x 1 x 0 x 1 x x 1 1 x

x x x 1 x 0 x x x x x

x z x 0 x 1 x x x x x

z 0 x 0 x 1 0 0 x x x

z 1 x 0 x 1 x x 1 1 x

z x x 0 x 1 x x x x x

z z x 1 x 0 x x x x x

Behavioral Verilog Blocks
Block statements group statements together. XST supports sequential blocks only.
Within these blocks, the statements are executed in the order listed. Block statements are
designated by begin and end keywords. XST does not support parallel blocks.

All procedural statements occur in blocks that are defined inside modules. The two
kinds of procedural blocks are:

• Initial block

• Always block

Within each block, Verilog uses begin and end to enclose the statements. Since initial
blocks are ignored during synthesis, only always blocks are discussed. Always blocks
usually take the following format:

always
begin
statement
....
end

Each statement is a procedural assignment line terminated by a semicolon.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 105

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Modules
In Verilog, a design component is represented by a module. This section discusses
Behavioral Verilog Modules, and includes:

• Behavioral Verilog Module Declaration

• Behavioral Verilog Module Instantiation

Behavioral Verilog Module Declaration
A behavioral Verilog module is declared as illustrated in the following coding examples.

Behavioral Verilog Module Declaration Coding Example One
module example (A, B, O);
input A, B;

output O;

assign O = A & B;

endmodule

The module declaration consists of:

• The module name

• A list of I/O ports

• The module body where you define the intended functionality

The end of the module is signalled by a mandatory endmodule statement.

The I/O ports of the circuit are declared in the module declaration. Each port is
characterized by:

• A name

• A mode:

– input

– output

– inout

• Range information if the port is of array type

Behavioral Verilog Module Declaration Coding Example Two
module example (

input A,
input B
output O

):

assign O = A & B;

endmodule

Behavioral Verilog Module Instantiation
A behavioral Verilog module is instantiated in another module as follows.

XST User Guide for Virtex-6 and Spartan-6 Devices
106 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Module Instantiation Coding Example
module top (A, B, C, O);

input A, B, C;
output O;
wire tmp;

example inst_example (.A(A), .B(B), .O(tmp));

assign O = tmp | C;

endmodule

A module instantiation statement defines an instance name, and contains a port
association list that specifies how the instance is connected in the parent module. Each
element of the list ties a formal port of the module declaration, to an actual net of the
parent module.

Behavioral Verilog Continuous Assignment
Continuous assignments model combinatorial logic in a concise way. Both explicit and
implicit continuous assignments are supported.

• Explicit continuous assignments start with an assign keyword after the net has
been separately declared.

wire mysignal;
...
assign mysignal = select ? b : a;

• Implicit continuous assignments combine declaration and assignment.

wire misignal = a | b;

XST ignores delays and strengths given to a continuous assignment. Continuous
assignments are allowed on wire and tri data types only.

Behavioral Verilog Procedural Assignments
This section discusses Behavioral Verilog Procedural Assignments, and includes:

• About Behavioral Verilog Procedural Assignments

• Combinatorial Always Blocks

• If-Else Statements

• Case Statements

• For and Repeat Loops

• While Loops

• Sequential Always Blocks

• Assign and Deassign Statements

• Assignment Extension Past 32 Bits

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 107

Chapter 5: XST Behavioral Verilog Support

About Behavioral Verilog Procedural Assignments
Procedural assignments are:
• Used to assign values to variables declared as reg
• Introduced by always blocks, tasks, and functions
• Usually used to model registers and Finite State Machine (FSM) components

XST supports:
• Combinatorial functions
• Combinatorial and sequential tasks
• Combinatorial and sequential always blocks

Combinatorial Always Blocks
Combinatorial logic can be modeled efficiently using two forms of Verilog time control
statements:
• Delay: # (pound)
• Event control: @ (at)

The delay time control statement is relevant for simulation only and is ignored by
synthesis tools.

Since the # (pound) time control statement is ignored for synthesis, this discussion
describes modelling combinatorial logic with the @ (at) time control statement.

A combinatorial always block has a sensitivity list appearing within parentheses after
always@.

An always block is activated if an event (value change or edge) appears on one of
the sensitivity list signals. This sensitivity list can contain any signal that appears in
conditions (if or case, for example), and any signal appearing on the right hand side of
an assignment. By substituting an @ (at) without parentheses for a list of signals, the
always block is activated for an event in any of the always block’s signals as described
above.

In combinatorial processes, if a signal is not explicitly assigned in all branches of if or
case statements, XST generates a latch to hold the last value. To the creation of latches,
make sure that all assigned signals in a combinatorial process are always explicitly
assigned in all paths of the process statements.

The following statements can be used in a process:
• Variable and signal assignments
• if-else statements
• case statements
• for-while loop statements
• Function and task calls

If-Else Statements
If-else statements use true-false conditions to execute statements.
• If the expression evaluates to true, the first statement is executed.
• If the expression evaluates to false, x or z, the else statement is executed.

A block of multiple statements can be executed using begin and end keywords.
If-else statements can be nested.

XST User Guide for Virtex-6 and Spartan-6 Devices
108 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

If-Else Statement Coding Example
The following coding example shows how a multiplexer can be described using an
if-else statement:

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin

if (sel[1])
if (sel[0])

outmux = d;
else

outmux = c;
else

if (sel[0])
outmux = b;

else
outmux = a;

end

endmodule

Case Statements
Case statements perform a comparison to an expression to evaluate one of a number
of parallel branches. The case statement evaluates the branches in the order they are
written. The first branch that evaluates to true is executed. If none of the branches
matches, the default branch is executed.

• Do not use unsized integers in case statements. Always size integers to a specific
number of bits. Otherwise, results can be unpredictable.

• Casez treats all z values in any bit position of the branch alternative as a don’t
care.

• Casex treats all x and z values in any bit position of the branch alternative as a
don’t care.

• The question mark (?) can be used as a don’t care in either the casez or casex
case statements

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 109

Chapter 5: XST Behavioral Verilog Support

Case Statement Coding Example
The following coding example shows how a multiplexer can be described using a case
statement.

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin

case (sel)
2’b00: outmux = a;
2’b01: outmux = b;
2’b10: outmux = c;
default: outmux = d;

endcase
end

endmodule

The preceding case statement evaluates the values of input sel in priority order. To
avoid priority processing, Xilinx® recommends that you use a parallel-case Verilog
attribute to ensure parallel evaluation of the sel inputs.

Replace the case statement above with:

(* parallel_case *) case(sel)

For and Repeat Loops
When using always blocks, repetitive or bit slice structures can also be described using
the for statement or the repeat statement.

The for statement is supported for:

• Constant bounds

• Stop test condition using the following operators:

– <

– <=

– >

– >=

• Next step computation falling in one of the following specifications:

– var = var + step

– var = var - step

where

– var is the loop variable

– step is a constant value

The repeat statement is supported for constant values only.

XST User Guide for Virtex-6 and Spartan-6 Devices
110 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

Disable statements are not supported.

module countzeros (a, Count);
input [7:0] a;
output [2:0] Count;
reg [2:0] Count;
reg [2:0] Count_Aux;

integer i;

always @(a)
begin

Count_Aux = 3’b0;
for (i = 0; i < 8; i = i+1)
begin

if (!a[i])
Count_Aux = Count_Aux+1;

end
Count = Count_Aux;

end
endmodule

While Loops
When using always blocks, use the while statement to execute repetitive procedures.
A while loop executes other statements until its test expression becomes false. It is
not executed if the test expression is initially false.

• The test expression is any valid Verilog expression.

• To prevent endless loops, use the -loop_iteration_limit option.

• While loops can have disable statements. The disable statement is used inside
a labeled block, since the syntax is:

disable <blockname>

parameter P = 4;
always @(ID_complete)
begin : UNIDENTIFIED

integer i;
reg found;
unidentified = 0;
i = 0;
found = 0;
while (!found && (i < P))
begin

found = !ID_complete[i];
unidentified[i] = !ID_complete[i];
i = i + 1;

end
end

Sequential Always Blocks
Describe a sequential circuit with an always blocks and a sensitivity list that contains
the following edge-triggered (with posedge or negedge) events:

• A mandatory clock event

• Optional set/reset events (modelling asynchronous set/reset control logic)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 111

Chapter 5: XST Behavioral Verilog Support

If no optional asynchronous signal is described, the always block is structured as
follows:

always @(posedge CLK)
begin

<synchronous_part>
end

If optional asynchronous control signals are modelled, the always block is instead
structured as follows:

always @(posedge CLK or posedge ACTRL1 or à)
begin

if (ACTRL1)
<$asynchronous part>

else
<$synchronous_part>

end

Sequential Always Block Coding Example One
The following example describes an 8-bit register with e rising-edge clock. There are
no other control signals.

module seq1 (DI, CLK, DO);
input [7:0] DI;
input CLK;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
DO <= DI ;

endmodule

Sequential Always Block Coding Example Two
The following example adds an active-high asynchronous reset.

module EXAMPLE (DI, CLK, ARST, DO);
input [7:0] DI;
input CLK, ARST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge ARST)
if (ARST == 1’b1)

DO <= 8’b00000000;
else

DO <= DI;

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
112 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

Sequential Always Block Coding Example Three
The following example shows an active-high asynchronous reset, an active-low
asynchronous set.

module EXAMPLE (DI, CLK, ARST, ASET, DO);
input [7:0] DI;
input CLK, ARST, ASET;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge ARST or negedge ASET)
if (ARST == 1’b1)

DO <= 8’b00000000;
else if (ASET == 1’b1)

DO <= 8’b11111111;
else

DO <= DI;

endmodule

Sequential Always Block Coding Example Four
The following example describes a register with no asynchronous set/rest, but with a
synchronous reset.

module EXAMPLE (DI, CLK, SRST, DO);
input [7:0] DI;
input CLK, SRST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
if (SRST == 1’b1)

DO <= 8’b00000000;
else

DO <= DI;

endmodule

Assign and Deassign Statements
Assign and deassign statements are not supported.

Assignment Extension Past 32 Bits
If the expression on the left-hand side of an assignment is wider than the expression on
the right-hand side, the left-hand side is padded to the left according to the following
rules:
• If the right-hand side expression is signed, the left-hand side expression is padded

with the sign bit.
• If the right-hand expression is unsigned, the left-hand expression is padded with 0s

(zeroes).
• For unsized x or z constants only, the following rule applies. If the value of

the right-hand expression’s left-most bit is z (high impedance) or x (unknown),
regardless of whether the right-hand expression is signed or unsigned, the left-hand
expression is padded with that value (z or x, respectively).

These rules follow the Verilog-2001 standard. They are not backwardly compatible
with Verilog-1995.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 113

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Tasks and Functions
This section discusses Behavioral Verilog Tasks and Functions, and includes:

• About Behavioral Verilog Tasks and Functions

• Behavioral Verilog Tasks and Functions Coding Examples

• Behavioral Verilog Recursive Tasks and Functions

• Behavioral Verilog Constant Functions

About Behavioral Verilog Tasks and Functions
When the same code is used multiple times across a design, using tasks and functions
reduces the amount of code and facilitates maintenance.

Tasks and functions must be declared and used in a module. The heading part contains
the following parameters:

• Input parameters (only) for functions

• Input/output/inout parameters for tasks

The return value of a function can be declared either signed or unsigned. The contents
are similar to the contents of the combinatorial always block.

Behavioral Verilog Tasks and Functions Coding Examples
This section discusses Behavioral Verilog Tasks and Functions Coding Examples, and
includes:

• Behavioral Verilog Tasks and Functions Coding Example One

• Behavioral Verilog Tasks and Functions Coding Example Two

XST User Guide for Virtex-6 and Spartan-6 Devices
114 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Tasks and Functions Coding Example One
In the following example, an ADD function describing a 1-bit adder is declared and
invoked four times, with the proper parameters in the architecture, to create a 4-bit adder.

//
// An example of a function in Verilog
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/functions_tasks/functions_1.v
//
module functions_1 (A, B, CIN, S, COUT);

input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
wire [1:0] S0, S1, S2, S3;

function signed [1:0] ADD;
input A, B, CIN;
reg S, COUT;
begin

S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B%CIN);
ADD = {COUT, S};

end
endfunction

assign S0 = ADD (A[0], B[0], CIN),
S1 = ADD (A[1], B[1], S0[1]),
S2 = ADD (A[2], B[2], S1[1]),
S3 = ADD (A[3], B[3], S2[1]),
S = {S3[0], S2[0], S1[0], S0[0]},
COUT = S3[1];

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 115

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Tasks and Functions Coding Example Two
In the following coding example, the same functionality is described with a task.

//
// Verilog tasks
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/functions_tasks/tasks_1.v
//
module tasks_1 (A, B, CIN, S, COUT);

input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
reg [3:0] S;
reg COUT;
reg [1:0] S0, S1, S2, S3;

task ADD;
input A, B, CIN;
output [1:0] C;
reg [1:0] C;
reg S, COUT;
begin

S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
C = {COUT, S};

end
endtask

always @(A or B or CIN)
begin

ADD (A[0], B[0], CIN, S0);
ADD (A[1], B[1], S0[1], S1);
ADD (A[2], B[2], S1[1], S2);
ADD (A[3], B[3], S2[1], S3);
S = {S3[0], S2[0], S1[0], S0[0]};
COUT = S3[1];

end

endmodule

Behavioral Verilog Recursive Tasks and Functions
Verilog-2001 supports recursive tasks and functions. You can use recursion only with the
automatic keyword. To prevent endless recursive calls, the number of recursions is
limited by default to 64. Use -recursion_iteration_limit to control the number
of allowed recursive calls.

Behavioral Verilog Recursive Tasks and Functions Coding Example
function automatic [31:0] fac;

input [15:0] n;
if (n == 1)

fac = 1;
else

fac = n * fac(n-1); //recursive function call
endfunction

Behavioral Verilog Constant Functions
XST supports function calls to calculate constant values.

XST User Guide for Virtex-6 and Spartan-6 Devices
116 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Constant Functions Coding Example
//
// A function that computes and returns a constant value
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/functions_tasks/functions_constant.v
//
module functions_constant (clk, we, a, di, do);

parameter ADDRWIDTH = 8;
parameter DATAWIDTH = 4;
input clk;
input we;
input [ADDRWIDTH-1:0] a;
input [DATAWIDTH-1:0] di;
output [DATAWIDTH-1:0] do;

function integer getSize;
input addrwidth;
begin

getSize = 2**addrwidth;
end

endfunction

reg [DATAWIDTH-1:0] ram [getSize(ADDRWIDTH)-1:0];

always @(posedge clk) begin
if (we)

ram[a] <= di;
end
assign do = ram[a];

endmodule

Behavioral Verilog Blocking Versus Non-Blocking Procedural
Assignments

The pound (#) and at sign (@) time control statements delay execution of the
statement following them until the specified event is evaluated as true. Blocking and
non-blocking procedural assignments have time control built into their respective
assignment statement. The pound (#) delay is ignored for synthesis.

Behavioral Verilog Blocking Procedural Assignment Syntax Coding
Example One
reg a;
a = #10 (b | c);

Behavioral Verilog Blocking Procedural Assignment Syntax Coding
Example Two (Alternate)
if (in1) out = 1’b0;
else out = in2;

As the name implies, these types of assignments block the current process from
continuing to execute additional statements at the same time. These should mainly be
used in simulation.

Non-blocking assignments, on the other hand, evaluate the expression when the
statement executes, but allow other statements in the same process to execute as well at
the same time. The variable change occurs only after the specified delay.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 117

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Non-Blocking Procedural Assignment Syntax Coding
Example One
variable <= @(posedge_or_negedge_bit) expression;

Behavioral Verilog Non-Blocking Procedural Assignment Coding Example
Two
The following example shows how to use a non-blocking procedural assignment.

if (in1) out <= 1’b1;
else out <= in2;

Behavioral Verilog Constants
Constants in Verilog are assumed to be decimal integers. To specify constants explicitly
in binary, octal, decimal, or hexadecimal, prefix them with the appropriate syntax. For
example, the following constant expressions represent the same value:

• 4’b1010

• 4’o12

• 4’d10

• 4’ha

Behavioral Verilog Macros
Verilog defines macros as follows:

’define TESTEQ1 4’b1101

The defined macro is referenced later in the design code as follows:

if (request == ’TESTEQ1)

Behavioral Verilog Macros Coding Example One
’define myzero 0
assign mysig = ’myzero;

The Verilog ’ifdef and ’endif constructs determine whether or not a macro is
defined. These constructs are used to define conditional compilation. If the macro called
out by the ’ifdef command has been defined, that code is compiled. If not, the code
following the ’else command is compiled. The ’else is not required, but ’endif
must complete the conditional statement.

Behavioral Verilog Macros Coding Example Two
’ifdef MYVAR
module if_MYVAR_is_declared;
...
endmodule
’else
module if_MYVAR_is_not_declared;
...
endmodule
’endif

Use Verilog Macros (-define) to define (or redefine) Verilog macros. This allows you
to modify the design configuration without modifying the source code. This feature is
useful for such processes as IP core generation and flow testing.

XST User Guide for Virtex-6 and Spartan-6 Devices
118 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Include Files
Verilog allows you to separate Hardware Description Language (HDL) source code into
more than one file. To reference the code contained in another file, use the following
syntax in the current file:

’include "path/file-to-be-included "

The path can be relative or absolute.

Multiple ’include statements are allowed in the same Verilog file. This feature makes
your code more manageable in a team design environment where different files describe
different modules of the design.

To enable the file in your ’include statement to be recognized, identify the directory in
which it resides, either to ISE® Design Suite or to XST.

• Since ISE Design Suite searches the project directory by default, adding the file to
your project directory identifies the file to ISE Design Suite.

• To direct ISE Design Suite to a different directory, include a path (relative or
absolute) in the ’includestatement in the HDL source code.

• To point XST directly to your include file directory, use Verilog Include Directories
(-vlgincdir)

• If the include file is required for ISE Design Suite to construct the design hierarchy,
this file must either reside in the project directory, or be referenced by a relative or
absolute path. The file need not be added to the project.

The XST design project file provides another way to make a Verilog file contents visible
to the rest of your project. Xilinx® recommends the XST design project file method. If
you use the file inclusion technique, be aware of a potential conflict. Do not include a
Verilog file with the mechanism described here, and, at the same time, list that file in
your XST design project file. Doing so results in an error as follows:

ERROR:HDLCompiler:687 - "include_sub.v" Line 1: Illegal redeclaration of module <sub>.

You may encounter this error if you add Verilog files with such inclusions to an ISE
Design Suite project. Because ISE Design Suite adds them to the XST design project file,
a multiple-definition conflict can result.

Behavioral Verilog Comments
XST supports both forms of Behavioral Verilog comments:

• One-line comments, starting with a double forward slash (//)

// This is a one-line comment

• Multiple-line block comments, starting with /* and ending with */

/* This is a
Multiple-line
comment

*/

Behavioral Verilog comments are similar to those used in such languages as C++.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 119

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Generate Statements
This section discusses Behavioral Verilog Generate Statements, and includes:

• About Behavioral Verilog Generate Statements
• Behavioral Verilog Generate Loop Statements
• Behavioral Verilog Generate Conditional Statements
• Behavioral Verilog Generate Case Statements

About Behavioral Verilog Generate Statements
Verilog generate statements allow you to create parameterized and scalable code.
The contents of a generate statement is conditionally instantiated into your design.
Generate statements are resolved during Verilog elaboration

Generate statements are a powerful way to create repetitive or scalable structures, or
to create functionality conditional to a particular criteria being met. Structures likely to
be created using a generate statement are:
• Primitive or module instances
• Initial or always procedural blocks
• Continuous assignments
• Net and variable declarations
• Parameter redefinitions
• Task or function definitions

Describe generate statements within a module scope. They start with a generate
keyword, and end with an endgenerate keyword.

XST supports all three forms of Verilog generate statements:
• generate-loop (generate-for)

• generate-conditional (generate-if-else)

• generate-case (generate-case)

Behavioral Verilog Generate Loop Statements
Use a generate-for loop to create one or more instances that can be placed inside a
module. Use the generate-for loop the same way you use a normal Verilog for loop,
with the following limitations:
• The index for a generate-for loop has a genvar variable.
• The assignments in the for loop control refers to the genvar variable.
• The contents of the for loop are enclosed by begin and end statements. The begin

statement is named with a unique qualifier.

Behavioral Verilog Generate Loop Statement 8-Bit Adder Coding Example
generate
genvar i;

for (i=0; i<=7; i=i+1)
begin : for_name

adder add (a[8*i+7 : 8*i], b[8*i+7 : 8*i], ci[i], sum_for[8*i+7 : 8*i], c0_or[i+1]);
end

endgenerate

XST User Guide for Virtex-6 and Spartan-6 Devices
120 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 5: XST Behavioral Verilog Support

Behavioral Verilog Generate Conditional Statements
Use a generate-if-else statement to conditionally control which objects are
generated.

• The contents of each branch of the if-else statement are enclosed by begin
and end statements.

• The begin statement is named with a unique qualifier.

Behavioral Verilog Generate Conditional Statement Coding Example
The following example instantiates two different implementations of a multiplier based
on the width of data words.

generate
if (IF_WIDTH < 10)

begin : if_name
multiplier_imp1 # (IF_WIDTH) u1 (a, b, sum_if);

end
else

begin : else_name
multiplier_imp2 # (IF_WIDTH) u2 (a, b, sum_if);

end
endgenerate

Behavioral Verilog Generate Case Statements
Use a generate-case statement to conditionally control which objects are generated
under different conditions.

• Each branch in a generate-case is enclosed by begin and end statements.

• The begin statement is named with a unique qualifier.

Behavioral Verilog Generate Case Statements Coding Example
The following coding example instantiates more than two different implementations of
an adder based on the width of data words.

generate
case (WIDTH)

1:
begin : case1_name

adder #(WIDTH*8) x1 (a, b, ci, sum_case, c0_case);
end

2:
begin : case2_name

adder #(WIDTH*4) x2 (a, b, ci, sum_case, c0_case);
end

default:
begin : d_case_name

adder x3 (a, b, ci, sum_case, c0_case);
end

endcase
endgenerate

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 121

XST User Guide for Virtex-6 and Spartan-6 Devices
122 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 6

XST Mixed Language Support
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter discusses XST Mixed Language Support, and includes:

• About XST Mixed Language Support

• VHDL and Verilog Boundary Rules

• Port Mapping

• Generics Support

• Library Search Order (LSO) Files

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 123

Chapter 6: XST Mixed Language Support

About XST Mixed Language Support
XST supports mixed VHDL and Verilog projects.
• Mixing VHDL and Verilog is restricted to design unit (cell) instantiation only.
• A Verilog module can be instantiated from VHDL code.
• A VHDL entity can be instantiated from Verilog code.
• No other mixing between VHDL and Verilog is supported. For example, you cannot

embed Verilog source code directly in VHDL code.
• In a VHDL design, a restricted subset of VHDL types, generics, and ports is allowed

on the boundary to a Verilog module.
• In a Verilog design, a restricted subset of Verilog types, parameters, and ports is

allowed on the boundary to a VHDL entity or configuration.
• XST binds VHDL design units to a Verilog module during HDL Elaboration.
• Component instantiation based on default binding is used for binding Verilog

modules to a VHDL design unit.
• Configuration specification, direct instantiation and component configurations are

not supported for a Verilog module instantiation in VHDL.
• VHDL and Verilog files making up your project are specified in a unique XST

HDL project file. For more information on how to specify an XST HDL project, see
Chapter 2, Creating and Synthesizing an XST Project.

• VHDL and Verilog libraries are logically unified.
• The default work directory for compilation (xsthdpdir) is available for both VHDL

and Verilog.
• The xhdp.ini mechanism for mapping a logical library name to a physical

directory name on the host file system, is available for both VHDL and Verilog.
• Mixed language projects accept a search order used for searching unified logical

libraries in design units (cells). During Elaboration, XST follows this search order
for picking and binding a VHDL entity or a Verilog module to the mixed language
project.

VHDL and Verilog Boundary Rules
This section discusses VHDL and Verilog Boundary Rules, and includes:

• About VHDL and Verilog Boundary Rules
• Instantiating a Verilog Module in VHDL
• Instantiating a VHDL Design Unit in a Verilog Design

About VHDL and Verilog Boundary Rules
The boundary between VHDL and Verilog is enforced at the design unit level. A VHDL
entity or architecture can instantiate a Verilog module. A Verilog module can instantiate
a VHDL entity.

Instantiating a VHDL Design Unit in a Verilog Design
To instantiate a VHDL entity:

1. Declare a module name with the same as name as the VHDL entity that you want to
instantiate (optionally followed by an architecture name).

2. Perform a normal Verilog instantiation.

XST User Guide for Virtex-6 and Spartan-6 Devices
124 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 6: XST Mixed Language Support

The only VHDL construct that can be instantiated in a Verilog design is a VHDL entity.
No other VHDL constructs are visible to Verilog code. When you do so, XST uses the
entity-architecture pair as the Verilog-VHDL boundary.

XST performs the binding during elaboration. During binding, XST searches for a
Verilog module name using the name of the instantiated module in the user-specified
list of unified logical libraries in the user-specified order. XST ignores any architecture
name specified in the module instantiation. For more information, see Library Search
Order (LSO) Files.

If found, XST binds the name. If XST cannot find a Verilog module, it treats the name
of the instantiated module as a VHDL entity, and searches for it using a case sensitive
search for a VHDL entity. XST searches for the VHDL entity in the user-specified list of
unified logical libraries in the user-specified order, assuming that a VHDL design unit
was stored with extended identifier. For more information, see Library Search Order
(LSO) Files. If found, XST binds the name. XST selects the first VHDL entity matching
the name, and binds it.

XST has the following limitations when instantiating a VHDL design unit from a Verilog
module:

• Use explicit port association. Specify formal and effective port names in the port
map.

• All parameters are passed at instantiation, even if they are unchanged.

• The parameter override is named and not ordered. The parameter override occurs
through instantiation, and not through defparams.

Accepted Coding Example
XST DOES accept the following coding example.

ff #(.init(2’b01)) u1 (.sel(sel), .din(din), .dout(dout));

NOT Accepted Coding Example
XST DOES NOT accept the following coding example.

ff u1 (.sel(sel), .din(din), .dout(dout));
defparam u1.init = 2’b01;

Instantiating a Verilog Module in VHDL
To instantiate a Verilog module in a VHDL design:

1. Declare a VHDL component with the same name (observing case sensitivity) as the
Verilog module to be instantiated. If the Verilog module name is not all lower case,
use the case property to preserve the case of the Verilog module.

• ISE® Design Suite

Select Process > Properties > Synthesis Options > Case > Maintain

• Command Line

Set -case to maintain

2. Instantiate the Verilog component as if you were instantiating a VHDL component.

Using a VHDL configuration declaration, you could attempt to bind this component to a
particular design unit from a particular library. Such binding is not supported. Only
default Verilog module binding is supported.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 125

Chapter 6: XST Mixed Language Support

The only Verilog construct that can be instantiated in a VHDL design is a Verilog
module. No other Verilog constructs are visible to VHDL code.

• During elaboration, all components subject to default binding are regarded as design
units with the same name as the corresponding component name.

• During binding, XST treats a component name as a VHDL design unit name and
searches for it in the logical library work.

– If XST finds a VHDL design unit, XST binds it.

– If XST cannot find a VHDL design unit, it treats the component name as a
Verilog module name, and searches for it using a case sensitive search.

XST searches for the Verilog module in the user-specified list of unified logical libraries
in the user-specified search order. For more information, see Library Search Order (LSO)
Files. XST selects the first Verilog module matching the name, and binds it.

Since libraries are unified, a Verilog cell having the same name as that of a VHDL design
unit cannot co-exist in the same logical library. A newly compiled cell or unit overrides a
previously compiled cell or unit.

Port Mapping
This section discusses Port Mapping, and includes:

• VHDL Instantiated in Verilog

• Verilog Instantiated in VHDL

VHDL Instantiated in Verilog
When a VHDL entity is instantiated in a Verilog module, formal ports may have the
following characteristics:

• Allowed directions

– in

– out

– inout

• Unsupported directions

– buffer

– linkage

• Allowed data types

– bit

– bit_vector

– std_logic

– std_ulogic

– std_logic_vector

– std_ulogic_vector

XST User Guide for Virtex-6 and Spartan-6 Devices
126 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 6: XST Mixed Language Support

Verilog Instantiated in VHDL
When a Verilog module is instantiated in a VHDL entity or architecture, formal ports
may have the following characteristics:

• Allowed directions

– input

– output

– inout

• XST does not support connection to bi-directional pass options in Verilog

• XST does not support unnamed Verilog ports for mixed language boundaries

• Allowed data types

– wire

– reg

Use an equivalent component declaration to connect to a case sensitive port in a Verilog
module. XST assumes Verilog ports are in all lower case.

Generics Support
XST supports the following VHDL generic types, and their Verilog equivalents for
mixed language designs:

• integer

• real

• string

• boolean

Library Search Order (LSO) Files
This section discusses Library Search Order (LSO) files, and includes:

• About Library Search Order (LSO) Files

• Specifying Library Search Order (LSO) Files in ISE® Design Suite

• Specifying Library Search Order (LSO) Files in Command Line Mode

• Library Search Order (LSO) Rules

About Library Search Order (LSO) Files
The Library Search Order (LSO) file specifies the search order that XST uses to link the
libraries used in VHDL and Verilog mixed language designs. XST searches the files
specified in the project file in the order in which they appear in that file.

XST uses the default search order when:

• The DEFAULT_SEARCH_ORDER keyword is used in the LSO file, or

• The LSO file is not specified

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 127

Chapter 6: XST Mixed Language Support

Specifying Library Search Order (LSO) Files in ISE Design Suite
In ISE® Design Suite, the default name for the Library Search Order (LSO) file is
project_name.lso. If a project_name.lso file does not exist, ISE Design Suite
creates one. If ISE Design Suite detects an existing project_name.lso file, this file
is preserved and used as is. The name of the project is the name of the top-level block.
When creating a default LSO file, ISE Design Suite places the DEFAULT_SEARCH_ORDER
keyword in the first line of the file.

Specifying Library Search Order (LSO) Files in Command Line Mode
The Library Search Order (LSO) (-lso) option specifies the Library Search Order
(LSO) file when using XST from the command line. If the -lso option is omitted, XST
automatically uses the default library search order without using an LSO file.

Library Search Order (LSO) Rules
When processing a mixed language project, XST obeys the following search order rules,
depending on the contents of the Library Search Order (LSO) file:

• Empty Library Search Order (LSO) File
• DEFAULT_SEARCH_ORDER Keyword Only
• DEFAULT_SEARCH_ORDER Keyword and List of Libraries
• List of Libraries Only
• DEFAULT_SEARCH_ORDER Keyword and Non-Existent Library Name

Empty Library Search Order (LSO) Files
When the Library Search Order (LSO) file is empty, XST:
• Issues a warning stating that the LSO file is empty
• Searches the files specified in the project file using the default library search order
• Updates the LSO file by adding the list of libraries in the order that they appear

in the project file

DEFAULT_SEARCH_ORDER Keyword Only
When the Library Search Order (LSO) file contains only the DEFAULT_SEARCH_ORDER
keyword, XST:
• Searches the specified library files in the order in which they appear in the project file
• Updates the LSO file by:

– Removing the DEFAULT_SEARCH_ORDER keyword
– Adding the list of libraries to the LSO file in the order in which they appear

in the project file

For a project file, my_proj.prj, with the following contents:

vhdl vhlib1 f1.vhd
verilog rtfllib f1.v
vhdl vhlib2 f3.vhd

and an LSO file, my_proj.lso, created by ISE® Design Suite, with the following
contents:

DEFAULT_SEARCH_ORDER

XST User Guide for Virtex-6 and Spartan-6 Devices
128 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 6: XST Mixed Language Support

XST uses the following search order. The same contents appear in the updated
my_proj.lso file after processing.

vhlib1
rtfllib
vhlib2

DEFAULT_SEARCH_ORDER Keyword and List of Libraries
When the Library Search Order (LSO) file contains the DEFAULT_SEARCH_ORDER
keyword, and a list of libraries, XST:

• Searches the specified library files in the order in which they appear in the project file

• Ignores the list of library files in the LSO file

• Leaves the LSO file unchanged

For a project file my_proj.prj with the following contents:

vhdl vhlib1 f1.vhd
verilog rtfllib f1.v
vhdl vhlib2 f3.vhd

and an LSO file my_proj.lso with the following contents:

rtfllib
vhlib2
vhlib1
DEFAULT_SEARCH_ORDER

XST uses the following search order:

vhlib1
rtfllib
vhlib2

After processing, the contents of my_proj.lso remains unchanged:

rtfllib
vhlib2
vhlib1
DEFAULT_SEARCH_ORDER

List of Libraries Only
When the Library Search Order (LSO) file contains a list of the libraries without the
DEFAULT_SEARCH_ORDER keyword, XST:

• Searches the library files in the order in which they appear in the LSO file

• Leaves the LSO file unchanged

For a project file my_proj.prj with the following contents:

vhdl vhlib1 f1.vhd
verilog rtfllib f1.v
vhdl vhlib2 f3.vhd

and an LSO file my_proj.lso with the following contents:

rtfllib
vhlib2
vhlib1

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 129

Chapter 6: XST Mixed Language Support

XST uses the following search order:

rtfllib
vhlib2
vhlib1

After processing, the contents of my_proj.lso is:

rtfllib
vhlib2
vhlib1

DEFAULT_SEARCH_ORDER Keyword and Non-Existent Library Name
When the Library Search Order (LSO) file contains a library name that does not exist in
the project or INI file, and the LSO file does not contain the DEFAULT_SEARCH_ORDER
keyword, XST ignores the library.

For a project file my_proj.prj with the following contents:

vhdl vhlib1 f1.vhd
verilog rtfllib f1.v
vhdl vhlib2 f3.vhd

and an LSO file my_proj.lso created with the following contents:

personal_lib
rtfllib
vhlib2
vhlib1

XST uses the following search order:

rtfllib
vhlib2
vhlib1

After processing, the contents of my_proj.lso is:

rtfllib
vhlib2
vhlib1

XST User Guide for Virtex-6 and Spartan-6 Devices
130 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7

XST Hardware Description Language
(HDL) Coding Techniques

Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter discusses XST Hardware Description Language (HDL) Coding Techniques,
and includes:

• About XST HDL Coding Techniques

• Choosing a Description Language

• Macro Inference Flow Overview

• Flip-Flops and Registers

• Latches

• Tristates

• Counters and Accumulators

• Shift Registers

• Dynamic Shift Registers

• Multiplexers

• Arithmetic Operators

• Comparators

• Dividers

• Adders, Subtractors, and Adders/Subtractors

• Multipliers

• Multiply-Add and Multiply-Accumulate

• Extended DSP Inferencing

• Resource Sharing

• RAMs

• ROMs

• Finite State Machine (FSM) Components

• Black Boxes

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 131

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

About XST Hardware Description Language (HDL) Coding
Techniques

Hardware Description Language (HDL) coding techniques allow you to:
• Describe the most common functionalities found in digital logic circuits
• Take advantage of the architectural features of Virtex®-6 and Spartan®-6 devices

Most sections of this chapter include:
• A general description of the functionality
• Guidelines to model the functionality in the HDL source code
• Information on how XST implements the functionality on Virtex-6 and Spartan-6

devices. For more information, see Chapter 8, XST FPGA Optimization.
• A list of constraints to control how XST processes such functionality
• Reporting examples
• VHDL and Verilog coding examples

For information on accessing the synthesis templates from ISE® Design Suite, see the
ISE Design Suite Help.

Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

Choosing a Description Language
The following table shows the relative advantages and disadvantages of VHDL and
Verilog.

Comparative Advantages and Disadvantages of VHDL and Verilog
VHDL Verilog

Enforces stricter rules, in particular strongly
typed, less permissive and error-prone

Extension to System Verilog (currently not
supported by XST)

Initialization of RAMs in the HDL source
code is easier (Verilog initial blocks are less
convenient)

C-like syntax

Package support Results in more compact code

Custom types Block commenting

Enumerated types No heavy component instantiation as in VHDL

No reg versus wire confusion

Macro Inference Flow Overview
Macro inferences can occur at three stages of the XST synthesis flow:
• Basic macros are inferred during HDL Synthesis.
• Complex macros are inferred during Advanced HDL Synthesis.
• Somemacros can be inferred at an even later stage, during Low-Level Optimizations,

when timing information is available to make better-informed decisions.

XST User Guide for Virtex-6 and Spartan-6 Devices
132 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Macros inferred during Advanced HDL Synthesis are usually the result of an
aggregation of several basic macros previously inferred during HDL Synthesis. In most
cases, the XST inference engine can perform this grouping regardless of hierarchical
boundaries, unless Keep Hierarchy (KEEP_HIERARCHY) has been set to yes in order
to prevent it.

For example, a block RAM can be inferred by combining RAM core functionality
described in one user-defined hierarchical block, with a register described in a different
user-defined hierarchy. This allows you to structure the HDL project in a modular way,
ensuring that XST can recognize relationships among design elements described in
different VHDL entities and Verilog modules.

Do not describe every basic bit-level element in its own separate hierarchy. Doing so
may prevent you from leveraging the RTL inference capabilities of the synthesis tool.
See the design projects in Extended DSP Inferencing for ideas on how to structure the
HDL source code.

Flip-Flops and Registers
This section discusses HDL Coding Techniques for Flip-Flops and Registers, and
includes:
• About Flip-Flops and Registers
• Flip-Flops and Registers Initialization
• Flip-Flops and Registers Control Signals
• Flip-Flops and Registers Related Constraints
• Flip-Flops and Registers Reporting
• Flip-Flops and Registers Coding Examples

About Flip-Flops and Registers
XST recognizes flip-flops and registers with the following control signals:
• Rising or falling-edge clocks
• Asynchronous Set/Reset
• Synchronous Set/Reset
• Clock Enable

Flip-flops and registers are described with a VHDL sequential process, or with a Verilog
always block.

For more information on describing sequential logic in HDL, see:
• Chapter 3, XST VHDL Language Support
• Chapter 4, XST Verilog Support

The process or always block sensitivity list should list the clock signal and all
asynchronous control signals.

Flip-Flops and Registers Initialization
To initialize the contents of a register at circuit power-up, specify a default value for
the signal modelling it.

To do so in VHDL, declare a signal such as:

signal example1 : std_logic := ’1’;
signal example2 : std_logic_vector(3 downto 0) := (others => ’0’);
signal example3 : std_logic_vector(3 downto 0) := "1101";

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 133

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

In Verilog, initial contents is described as follows:

reg example1 = ’b1 ;
reg [15:0] example2 = 16’b1111111011011100;
reg [15:0] example3 = 16’hFEDC;

The synthesized flip-flops are initialized to the specified value on the target device upon
activation of the circuit global reset at circuit power-up.

Flip-Flops and Registers Control Signals
Control signals include:
• Clocks
• Asynchronous and synchronous set and reset signals
• Clock enable

Observe the coding guidelines below to:
• Minimize slice logic utilization
• Maximize circuit performance
• Utilize device resources such as block RAMs and DSP blocks

The coding guidelines are:
• Do not set or reset registers asynchronously. Use synchronous initialization.

Although possible on Xilinx® devices, Xilinx does not recommend this practice for
the following reasons:
– Control set remapping is made impossible
– Sequential functionality in device resources such as block RAMs and DSP blocks

can only be set or reset synchronously. You will either be unable to leverage
those resources, or they will be configured sub-optimally.

• If your coding guidelines require registers to be set or reset asynchronously, try
running XST with Asynchronous to Synchronous (ASYNC_TO_SYNC). This allows
you to assess the benefits of a synchronous set/reset approach.

• Do not describe flip-flops with both a set and a reset. Starting with the Virtex®-6
and Spartan®-6 devices, none of the available flip-flop primitives features both a set
and a reset, whether synchronous or asynchronous. If not rejected by the software,
such combinations can lead to implementations that can adversely affect area and
performance.

• XST rejects flip-flops described with both an asynchronous reset and an
asynchronous set, rather than retargeting them to a costly equivalent model.

• Whenever possible, avoid operational set/reset logic altogether. There may be other,
less expensive, ways to achieve the desired effect, such as taking advantage of the
circuit global reset by defining an initial contents.

• The clock enable, set and reset control inputs of Xilinx flip-flop primitives are always
active high. If described to be active low, such functionality inevitably leads to
inverter logic that penalizes the performance of the circuit.

Flip-Flops and Registers Related Constraints
• Pack I/O Registers Into IOBs (IOB)
• Register Duplication (REGISTER_DUPLICATION)
• Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL)
• Register Balancing (REGISTER_BALANCING)
• Asynchronous to Synchronous (ASYNC_TO_SYNC)

XST User Guide for Virtex-6 and Spartan-6 Devices
134 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

For more ways to control implementation of flip-flops and registers, see Mapping Logic
to LUTs in Chapter 8, XST FPGA Optimization.

Flip-Flops and Registers Reporting
Registers are inferred and reported during HDL Synthesis. After Advanced HDL
Synthesis, they are expanded to individual flip-flops, as reflected by subsequent
reporting.

===
* HDL Synthesis *
===

Synthesizing Unit registers_5>.
Found 4-bit register for signal Q>.
Summary:

inferred 4 D-type flip-flop(s).
Unit registers_5> synthesized.

===
HDL Synthesis Report

Macro Statistics
Registers : 1
4-bit register : 1

===

===
* Advanced HDL Synthesis *
===
(…)

===
Advanced HDL Synthesis Report

Macro Statistics
Registers : 4
Flip-Flops : 4

===

The number of registers inferred during HDL Synthesis may not directly translate into a
precisely matching number of flip-flop primitives in the Design Summary section. The
latter is dependent on the outcome of a number of processing steps during Advanced
HDL Synthesis and Low Level Synthesis. They include:

• Absorption of registers into DSP blocks or block RAMs

• Register duplication

• Removal of constant or equivalent flip-flops

• Register balancing

Flip-Flops and Registers Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 135

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Flip-Flops and Registers VHDL Coding Example
--
-- Flip-Flop with
-- Rising-edge Clock
-- Active-high Synchronous Reset
-- Active-high Clock Enable
-- Initial Value
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/registers/registers_6.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity registers_6 is
port(

clk : in std_logic;
rst : in std_logic;

clken : in std_logic;
D : in std_logic;

Q : out std_logic);
end registers_6;

architecture behavioral of registers_6 is
signal S : std_logic := ’0’;

begin

process (clk)
begin

if rising_edge(clk) then
if rst = ’1’then

S <= ’0’;
elsif clken = ’1’ then

S <= D;
end if;

end if;
end process;

Q <= S;

end behavioral;

Flip-Flops and Registers Verilog Coding Example
//
// 4-bit Register with
// Rising-edge Clock
// Active-high Synchronous Reset
// Active-high Clock Enable
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/registers/registers_6.v
//
module v_registers_6 (clk, rst, clken, D, Q);

input clk, rst, clken;
input [3:0] D;
output reg [3:0] Q;

always @(posedge clk)
begin

if (rst)
Q <= 4’b0011;

else if (clken)
Q <= D;

end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
136 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Latches
This section discusses HDL Coding Techniques for Latches, and includes:

• About Latches

• Describing Latches

• Latches Related Constraints

• Latches Reporting

• Latches Coding Examples

About Latches
Latches inferred by XST have:

• A data input

• An enable input

• A data output

• An optional Set/Reset

Describing Latches
Latches are usually created from a Hardware Description Language (HDL) description
when a signal modelling the latch output is not assigned any new contents in a branch
of an if-else construct. A latch can be described as follows:

• Concurrent signal assignment (VHDL)

Q <= D when G = ’1’;

• Process (VHDL)

process (G, D)
begin
if G = ‘1’ then
Q <= D;

end process;

• Always block (Verilog)

always @ (G or D)
begin
if (G)
Q <= D;

end

In VHDL, XST can infer latches from descriptions based on a wait statement.

Latches Related Constraints
Pack I/O Registers Into IOBs (IOB)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 137

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Latches Reporting
The XST log file reports the type and size of recognized latches during the Macro
Recognition step.

===
* HDL Synthesis *
===

Synthesizing Unit example>.
WARNING:Xst:737 - Found 1-bit latch for signal <Q>.

Latches may be generated from incomplete case or if statements.
We do not recommend the use of latches in FPGA/CPLD designs,
as they may lead to timing problems.

Summary:
inferred 1 Latch(s).
Unit example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Latches : 1
1-bit latch : 1

===

Unlike for other macros, XST issues a warning in this instance. Inferred latches are
often the result of HDL coding mistakes, such as incomplete case or if constructs.
This warning alerts you to potential problems, allowing you to verify that the inferred
latch functionality was intended.

Latches Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

Latch with Positive Gate and Asynchronous Reset VHDL Coding Example
--
-- Latch with Positive Gate and Asynchronous Reset
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/latches/latches_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity latches_2 is
port(G, D, CLR : in std_logic;

Q : out std_logic);
end latches_2;

architecture archi of latches_2 is
begin

process (CLR, D, G)
begin

if (CLR=’1’) then
Q <= ’0’;

elsif (G=’1’) then
Q <= D;

end if;
end process;

end archi;

XST User Guide for Virtex-6 and Spartan-6 Devices
138 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Latch with Positive Gate Verilog Coding Example
//
// Latch with Positive Gate
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/latches/latches_1.v
//
module v_latches_1 (G, D, Q);

input G, D;
output Q;
reg Q;

always @(G or D)
begin

if (G)
Q = D;

end
endmodule

Tristates
This section discusses HDL Coding Techniques for Tristates, and includes:

• About Tristates

• Tristates Implementation

• Tristates Related Constraints

• Tristates Reporting

• Tristates Coding Examples

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 139

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

About Tristates
Whether driving an internal bus, or an external bus on the board where the Xilinx®
device resides, tristate buffers are usually modelled by a signal and an if-else
construct, where the signal is assigned a high impedance value in one branch of the
if-else. This description can be achieved with different coding styles.

• Concurrent signal assignment (VHDL)

<= I when T = ’0’ else (others => ’Z’);

• Concurrent signal assignment (Verilog)

assign O = (~T) ? I : 1’bZ;

• Combinatorial process (VHDL)

process (T, I)
begin
if (T = ’0’) then
O <= I;

else
O <= ’Z’;

end if;
end process;

• Always block (Verilog)

always @(T or I)
begin
if (~T)
O = I;

else
O = 1’bZ;

End

Tristates Implementation
Inferred tristate buffers are implemented with different device primitives when driving
an internal bus (BUFT) or an external pin of the circuit (OBUFT).

Tristates Related Constraints
Convert Tristates to Logic (TRISTATE2LOGIC)

XST User Guide for Virtex-6 and Spartan-6 Devices
140 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Tristates Reporting
Tristate buffers are inferred and reported during HDL Synthesis.

===
* HDL Synthesis *
===

Synthesizing Unit example>.
Found 1-bit tristate buffer for signal S> created at line 22
Summary:

inferred 8 Tristate(s).
Unit example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Tristates : 8
1-bit tristate buffer : 8

===

Tristates Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

Tristate Description Using Combinatorial Process VHDL Coding Example
--
-- Tristate Description Using Combinatorial Process
-- Implemented with an OBUFT (IO buffer)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/tristates/tristates_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity three_st_1 is
port(T : in std_logic;

I : in std_logic;
O : out std_logic);

end three_st_1;

architecture archi of three_st_1 is
begin

process (I, T)
begin

if (T=’0’) then
O <= I;

else
O <= ’Z’;

end if;
end process;

end archi;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 141

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Tristate Description Using Concurrent Assignment VHDL Coding Example
--
-- Tristate Description Using Concurrent Assignment
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/tristates/tristates_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity three_st_2 is
port(T : in std_logic;

I : in std_logic;
O : out std_logic);

end three_st_2;

architecture archi of three_st_2 is
begin

O <= I when (T=’0’) else ’Z’;
end archi;

Tristate Description Using Combinatorial Process VHDL Coding Example
--
-- Tristate Description Using Combinatorial Process
-- Implemented with an OBUF (internal buffer)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/tristates/tristates_3.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity example is

generic (
WIDTH : integer := 8

);
port(

T : in std_logic;
I : in std_logic_vector(WIDTH-1 downto 0);
O : out std_logic_vector(WIDTH-1 downto 0));

end example;

architecture archi of example is

signal S : std_logic_vector(WIDTH-1 downto 0);

begin

process (I, T)
begin

if (T = ’1’) then
S <= I;

else
S <= (others => ’Z’);

end if;
end process;

O <= not(S);

end archi;

XST User Guide for Virtex-6 and Spartan-6 Devices
142 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Tristate Description Using Combinatorial Always Block Verilog Coding
Example

//
// Tristate Description Using Combinatorial Always Block
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/tristates/tristates_1.v
//
module v_three_st_1 (T, I, O);

input T, I;
output O;
reg O;

always @(T or I)
begin

if (~T)
O = I;

else
O = 1’bZ;

end

endmodule

Tristate Description Using Concurrent Assignment Verilog Coding Example
//
// Tristate Description Using Concurrent Assignment
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/tristates/tristates_2.v
//
module v_three_st_2 (T, I, O);

input T, I;
output O;

assign O = (~T) ? I: 1’bZ;

endmodule

Counters and Accumulators
This section discusses HDL Coding Techniques for Counters and Accumulators, and
includes:
• About Counters and Accumulators
• Counters and Accumulators Implementation
• Counters and Accumulators Related Constraints
• Counters and Accumulators Reporting
• Counters and Accumulators Coding Examples

About Counters and Accumulators
XST provides inference capability for counters and accumulators. Besides the core
functionality, you can describe such optional features as:
• Asynchronous set, reset or load
• Synchronous set, reset or load
• Clock enable
• Up, down, or up/down direction

An accumulator differs from a counter (also known as incrementer or decrementer) in the
nature of the operands of the add or subtract operation, or both.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 143

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

In a counter description, the destination and first operand is a signal or variable, and
the other operand is a constant equal to 1.

A <= A + 1;

In an accumulator description, the destination and first operand is a signal or variable,
and the second operand is either:

• A signal or variable

A <= A + B;

• A constant not equal to 1

A <= A + Constant;

Direction of an inferred counter or accumulator can be up, down, or updown. For an
updown accumulator, the accumulated data can differ between the up and downmode.

if updown = ’1’ then
a <= a + b;

else
a <= a - c;

end if;

XST supports description of both unsigned and signed counters and accumulators.

Whether described with a signal of type integer or array of bits, XST determines the
minimal number of bits needed to implement an inferred counter or accumulator.
Unless explicitly otherwise specified in the HDL description, a counter can potentially
take all values allowed by this number during circuit. You can count up to a specific
value using a modulo operator as follows.

VHDL Syntax Example
cnt <= (cnt + 1) mod MAX ;

Verilog Syntax Example
cnt <= (cnt + 1) %MAX;

Counters and Accumulators Implementation
Counters and accumulators can be implemented on:
• Slice logic
• DSP block resources

A DSP block can absorb up to two levels of registers, provided the counter or
accumulator fits in a single DSP block. If a counter or accumulator macro does not fit in
a single DSP block, XST implements the entire macro using slice logic.

Macro implementation on DSP block resources is controlled by Use DSP Block
(USE_DSP48) with a default value of auto.

In automode, XST implements counters and accumulators considering such factors as:
• DSP block resources available on the device
• Contextual information such as the source of the data being accumulated
• Whether implementation in a DSP block allows the leveraging of the

high-performance cascading capabilities of the Xilinx® DSP blocks.

For most standalone counters and accumulators, slice logic is favored by default in auto
mode. Change it to yes in order to force implementation onto DSP blocks.

XST User Guide for Virtex-6 and Spartan-6 Devices
144 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

In automode, DSP Utilization Ratio (DSP_UTILIZATION_RATIO) controls DSP block
resource utilization. XST tries to utilize all DSP block resources available on the targeted
device.

For more information, see Arithmetic Operators DSP Block Resources.

Counters and Accumulators Related Constraints
• Use DSP Block (USE_DSP48)
• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)

Counters and Accumulators Reporting
Counters and accumulators are identified during Advanced HDL Synthesis, by a
combination of a register and an adder/subtractor macro previously inferred during
HDL Synthesis. The following report example shows this sequence of events.

===
* HDL Synthesis *
===

Synthesizing Unit <example>.
Found 4-bit register for signal <cnt>.
Found 4-bit register for signal <acc>.
Found 4-bit adder for signal <n0005> created at line 29.
Found 4-bit adder for signal <n0006> created at line 30.
Summary:

inferred 2 Adder/Subtractor(s).
inferred 8 D-type flip-flop(s).
Unit <example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 2
4-bit adder : 2
Registers : 2
4-bit register : 2

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <example>.
The following registers are absorbed into counter <cnt>: 1 register on signal <cnt>.
The following registers are absorbed into accumulator <acc>: 1 register on signal <acc>.
Unit <example> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
Counters : 1
4-bit up counter : 1
Accumulators : 1
4-bit up accumulator : 1

===

Counters and Accumulators Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 145

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

4-bit Unsigned Up Accumulator with Synchronous Reset VHDL Coding
Example

--
-- 4-bit Unsigned Up Accumulator with synchronous Reset
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/accumulators/accumulators_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity accumulators_2 is
generic (

WIDTH : integer := 4);
port (

clk : in std_logic;
rst : in std_logic;
D : in std_logic_vector(WIDTH-1 downto 0);
Q : out std_logic_vector(WIDTH-1 downto 0));

end accumulators_2;

architecture archi of accumulators_2 is
signal cnt : std_logic_vector(WIDTH-1 downto 0);

begin

process (clk)
begin

if rising_edge(clk) then
if (rst = ’1’) then

cnt <= (others => ’0’);
else

cnt <= cnt + D;
end if;

end if;
end process;

Q <= cnt;

end archi;

4-Bit Unsigned Down Counter With a Synchronous Load Verilog Coding
Example

//
// 4-bit unsigned down counter with a synchronous load.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/counters/counters_31.v
//
module v_counters_31 (clk, load, Q);

parameter WIDTH = 4;
input clk;
input load;
output [WIDTH-1:0] Q;
reg [WIDTH-1:0] cnt;

always @(posedge clk)
begin

if (load)
cnt <= {WIDTH{1’b1}};

else
cnt <= cnt - 1’b1;

end

assign Q = cnt;

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
146 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Shift Registers
This section discusses HDL Coding Techniques for Shift Registers, and includes:
• About Shift Registers
• Describing Shift Registers
• Shift Registers Implementation
• Shift Registers Related Constraints
• Shift Registers Reporting
• Shift Registers Coding Examples

About Shift Registers
A shift register is a chain of flip-flops allowing propagation of data across a fixed (static)
number of latency stages. In Dynamic Shift Registers, the length of the propagation
chain dynamically varies during circuit operation.

A static shift register usually involves:
• A clock
• An optional clock enable
• A serial data input
• A serial data output

You can include additional functionality, such as reset, set, or parallel load logic.
In this case however, XST may not always be able to take advantage of dedicated
SRL-type primitives for reduced device utilization and optimized performance. Xilinx®
recommends removing such logic, and loading the desired contents serially instead.

Describing Shift Registers
The two general approaches to describing the core functionality of a shift register are
shown below.

Concatenation Operator VHDL Coding Example
In a compact way, using a concatenation operator.

shreg <= shreg (6 downto 0) & SI;

For Loop VHDL Coding Example
Using a for loop construct.

for i in 0 to 6 loop
shreg(i+1) <= shreg(i);

end loop;
shreg(0) <= SI;

Shift Registers Implementation
This section discusses Shift Registers Implementation, and includes:
• Shift Registers SRL-Based Implementation
• Implementing Shift Registers on Block RAM
• Implementing Shift Registers on LUT RAM

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 147

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Shift Registers SRL-Based Implementation
XST implements inferred shift registers on SRL-type resources such as SRL16, SRL16E,
SRLC16, SRLC16E, and SRLC32E.

Depending on the length of the shift register, XST implements it on a single SRL-type
primitive, or takes advantage of the cascading capability of SRLC-type primitives. XST
also tries to take advantage of this cascading capability if the rest of the design uses some
intermediate positions of the shift register.

You can also implement delay lines on RAM resources (block RAM or LUT RAM),
instead of SRL-type resources. This technique brings significant benefits, especially with
respect to power savings, when delay lines become relatively long.

However, on block RAM or LUT RAM resources, XST cannot implement a shift register
as outlined in Describing Shift Registers. You must explicitly describe the RAM-based
implementation, as shown in the following coding examples.

Implementing Shift Registers on Block RAM
One of the key block RAM features being leveraged is the read-first synchronization
mode. Another important element of this technique is a counter that sequentially scans
the addressable space, and counts back to zero when reaching the delay line length
minus two. In order to ensure maximal performance, use the block RAM output latch
and optional output register stage. As a result, a 512-deep delay line, for example,
uses 510 addressable data words in the RAM, while the data output latch and optional
output register provide the last two stages.

For more information on RAM functionality, see RAMs.

Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
148 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

512-Deep 8-bit Delay Line Implemented on Block RAM VHDL Coding
Example

--
-- A 512-deep 8-bit delay line implemented on block RAM
-- 510 stages implemented as addressable memory words
-- 2 stages implemented with output latch and optional output register for
-- optimal performance
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/shift_registers/delayline_bram_512.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity srl_512_bram is
generic (
LENGTH : integer := 512;
ADDRWIDTH : integer := 9;
WIDTH : integer := 8);

port (
CLK : in std_logic;
SHIFT_IN : in std_logic_vector(WIDTH-1 downto 0);
SHIFT_OUT : out std_logic_vector(WIDTH-1 downto 0));

end srl_512_bram;

architecture behavioral of srl_512_bram is

signal CNTR : std_logic_vector(ADDRWIDTH-1 downto 0);
signal SHIFT_TMP : std_logic_vector(WIDTH-1 downto 0);
type ram_type is array (0 to LENGTH-3) of std_logic_vector(WIDTH-1 downto 0);
signal RAM : ram_type := (others => (others => ’0’));

begin

counter : process (CLK)
begin
if CLK’event and CLK = ’1’ then
if CNTR = conv_std_logic_vector(LENGTH-3, ADDRWIDTH) then
CNTR <= (others => ’0’);

else
CNTR <= CNTR + ’1’;

end if;
end if;

end process counter;

memory : process (CLK)
begin
if CLK’event and CLK = ’1’ then
RAM(conv_integer(CNTR)) <= SHIFT_IN;
SHIFT_TMP <= RAM(conv_integer(CNTR));
SHIFT_OUT <= SHIFT_TMP;

end if;
end process memory;

end behavioral;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 149

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

514-Deep 8-bit Delay Line Implemented on Block RAM VHDL Coding
Example

--
-- A 514-deep 8-bit delay line implemented on block RAM
-- 512 stages implemented as addressable memory words
-- 2 stages implemented with output latch and optional output register for
-- optimal performance
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/shift_registers/delayline_bram_514.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity srl_514_bram is
generic (
LENGTH : integer := 514;
ADDRWIDTH : integer := 9;
WIDTH : integer := 8);

port (
CLK : in std_logic;
SHIFT_IN : in std_logic_vector(WIDTH-1 downto 0);
SHIFT_OUT : out std_logic_vector(WIDTH-1 downto 0));

end srl_514_bram;

architecture behavioral of srl_514_bram is

signal CNTR : std_logic_vector(ADDRWIDTH-1 downto 0);
signal SHIFT_TMP : std_logic_vector(WIDTH-1 downto 0);
type ram_type is array (0 to LENGTH-3) of std_logic_vector(WIDTH-1 downto 0);
signal RAM : ram_type := (others => (others => ’0’));

begin

counter : process (CLK)
begin
if CLK’event and CLK = ’1’ then
CNTR <= CNTR + ’1’;

end if;
end process counter;

memory : process (CLK)
begin
if CLK’event and CLK = ’1’ then
RAM(conv_integer(CNTR)) <= SHIFT_IN;
SHIFT_TMP <= RAM(conv_integer(CNTR));
SHIFT_OUT <= SHIFT_TMP;

end if;
end process memory;

end behavioral;

Implementing Shift Registers on LUT RAM
You can also implement such a shift register on distributed RAM, with the last stage
implemented with a separate register. For example, a 128-deep delay line uses a LUT
RAM with 127 addressable data words, and a final register stage, as follows.

For more information on RAM functionality, see RAMs.

Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
150 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

128-Deep 8-bit Delay Line Implemented on LUT RAM VHDL Coding Example
--
-- A 128-deep 8-bit delay line implemented on LUT RAM
-- 127 stages implemented as addressable memory words
-- Last stage implemented with an external register
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/shift_registers/delayline_lutram_128.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity srl_128_lutram is
generic (
LENGTH : integer := 128;
ADDRWIDTH : integer := 7;
WIDTH : integer := 8);

port (
CLK : in std_logic;
SHIFT_IN : in std_logic_vector(WIDTH-1 downto 0);
SHIFT_OUT : out std_logic_vector(WIDTH-1 downto 0));

end srl_128_lutram;

architecture behavioral of srl_128_lutram is

signal CNTR : std_logic_vector(ADDRWIDTH-1 downto 0);
type ram_type is array (0 to LENGTH-2) of std_logic_vector(WIDTH-1 downto 0);
signal RAM : ram_type := (others => (others => ’0’));

attribute ram_style : string;
attribute ram_style of RAM : signal is "distributed";

begin

counter : process (CLK)
begin
if CLK’event and CLK = ’1’ then
if CNTR = conv_std_logic_vector(LENGTH-2, ADDRWIDTH) then
CNTR <= (others => ’0’);

else
CNTR <= CNTR + ’1’;

end if;
end if;

end process counter;

memory : process (CLK)
begin
if CLK’event and CLK = ’1’ then
RAM(conv_integer(CNTR)) <= SHIFT_IN;
SHIFT_OUT <= RAM(conv_integer(CNTR));

end if;
end process memory;

end behavioral;

Shift Registers Related Constraints
Shift Register Extraction (SHREG_EXTRACT)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 151

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Shift Registers Reporting
During HDL Synthesis, XST initially identifies individual flip-flops. Actual recognition
of shift registers occurs during Low Level Synthesis. The following report example
shows this sequence of events.

===
* HDL Synthesis *
===
Synthesizing Unit <example>.

Found 8-bit register for signal <tmp>.
Summary:

inferred 8 D-type flip-flop(s).
Unit <example> synthesized.

(…)
===
* Advanced HDL Synthesis *
===
Advanced HDL Synthesis Report
Macro Statistics
Registers : 8
Flip-Flops : 8
===

(…)
===
* Low Level Synthesis *
===
Processing Unit <example> :

Found 8-bit shift register for signal <tmp_7>.
Unit <example> processed.

(…)
===
Final Register Report
Macro Statistics
Shift Registers : 1
8-bit shift register : 1
===

Shift Registers Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
152 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

32-bit Shift Register VHDL Coding Example One
The following coding example uses the concatenation coding style.

--
-- 32-bit Shift Register
-- Rising edge clock
-- Active high clock enable
-- Concatenation-based template
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/shift_registers/shift_registers_0.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity shift_registers_0 is

generic (
DEPTH : integer := 32

);
port (
clk : in std_logic;
clken : in std_logic;
SI : in std_logic;
SO : out std_logic);

end shift_registers_0;

architecture archi of shift_registers_0 is
signal shreg: std_logic_vector(DEPTH-1 downto 0);

begin

process (clk)
begin

if rising_edge(clk) then
if clken = ’1’ then

shreg <= shreg(DEPTH-2 downto 0) & SI;
end if;

end if;
end process;

SO <= shreg(DEPTH-1);

end archi;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 153

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

32-bit Shift Register VHDL Coding Example Two
The same functionality can also be described as follows.

--
-- 32-bit Shift Register
-- Rising edge clock
-- Active high clock enable
-- foor loop-based template
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/shift_registers/shift_registers_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity shift_registers_1 is

generic (
DEPTH : integer := 32

);
port (
clk : in std_logic;
clken : in std_logic;
SI : in std_logic;
SO : out std_logic);

end shift_registers_1;

architecture archi of shift_registers_1 is
signal shreg: std_logic_vector(DEPTH-1 downto 0);

begin

process (clk)
begin

if rising_edge(clk) then
if clken = ’1’ then

for i in 0 to DEPTH-2 loop
shreg(i+1) <= shreg(i);

end loop;
shreg(0) <= SI;

end if;
end if;

end process;

SO <= shreg(DEPTH-1);

end archi;

XST User Guide for Virtex-6 and Spartan-6 Devices
154 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

8-bit Shift Register Verilog Coding Example One
The following coding example uses a concatenation to describe the register chain.

//
// 8-bit Shift Register
// Rising edge clock
// Active high clock enable
// Concatenation-based template
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/shift_registers/shift_registers_0.v
//
module v_shift_registers_0 (clk, clken, SI, SO);

parameter WIDTH = 8;
input clk, clken, SI;
output SO;
reg [WIDTH-1:0] shreg;

always @(posedge clk)
begin

if (clken)
shreg = {shreg[WIDTH-2:0], SI};

end

assign SO = shreg[WIDTH-1];

endmodule

8-bit Shift Register Verilog Coding Example Two
//
// 8-bit Shift Register
// Rising edge clock
// Active high clock enable
// For-loop based template
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/shift_registers/shift_registers_1.v
//
module v_shift_registers_1 (clk, clken, SI, SO);

parameter WIDTH = 8;
input clk, clken, SI;
output SO;
reg [WIDTH-1:0] shreg;

integer i;

always @(posedge clk)
begin

if (clken)
begin

for (i = 0; i < WIDTH-1; i = i+1)
shreg[i+1] <= shreg[i];

shreg[0] <= SI;
end

end

assign SO = shreg[WIDTH-1];

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 155

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Dynamic Shift Registers
This section discusses HDL Coding Techniques for Dynamic Shift Registers, and
includes:

• About Dynamic Shift Registers

• Dynamic Shift Registers Related Constraints

• Dynamic Shift Registers Reporting

• Dynamic Shift Registers Coding Examples

About Dynamic Shift Registers
A dynamic shift register is a shift register the length of which can dynamically vary
during circuit operation. Considering the maximal length that it can take during circuit
operation, a shift register can be seen as a chain of flip-flops of that length, with a
multiplexer selecting, in a given clock cycle, at which stage data is to be extracted from
the propagation chain. The following figure summarizes this concept.

Dynamic Shift Registers

XST can infer dynamic shift registers of any maximal length, and implement them
optimally using the SRL-type primitives available in the targeted device family.

Dynamic Shift Registers Related Constraints
Shift Register Extraction (SHREG_EXTRACT)

XST User Guide for Virtex-6 and Spartan-6 Devices
156 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Dynamic Shift Registers Reporting
During HDL Synthesis, XST initially identifies flip-flops and multiplexers. Actual
recognition of a dynamic shift register happens during Advanced HDL Synthesis, where
XST determines the dependency between those basic macros. The following report
example shows this sequence of events.

===
* HDL Synthesis *
===

Synthesizing Unit <example>.
Found 1-bit 16-to-1 multiplexer for signal <Q>.
Found 16-bit register for signal <SRL_SIG>.
Summary:

inferred 16 D-type flip-flop(s).
inferred 1 Multiplexer(s).

Unit <example> synthesized.

(…)
===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <example>.
Found 16-bit dynamic shift register for signal <Q>.

Unit <example> synthesized (advanced).

===
HDL Synthesis Report
Macro Statistics
Shift Registers : 1
16-bit dynamic shift register : 1
===

Dynamic Shift Registers Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 157

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

32-bit Dynamic Shift Registers VHDL Coding Example
--
-- 32-bit dynamic shift register.
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/dynamic_shift_registers/dynamic_shift_registers_1.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity example is

generic (
DEPTH : integer := 32;
SEL_WIDTH : integer := 5

);
port(

CLK : in std_logic;
SI : in std_logic;
CE : in std_logic;
A : in std_logic_vector(SEL_WIDTH-1 downto 0);
DO : out std_logic

);

end example;

architecture rtl of example is

type SRL_ARRAY is array (0 to DEPTH-1) of std_logic;
-- The type SRL_ARRAY can be array
-- (0 to DEPTH-1) of
-- std_logic_vector(BUS_WIDTH downto 0)
-- or array (DEPTH-1 downto 0) of
-- std_logic_vector(BUS_WIDTH downto 0)
-- (the subtype is forward (see below))
signal SRL_SIG : SRL_ARRAY;

begin
process (CLK)
begin

if rising_edge(CLK) then
if CE = ’1’ then

SRL_SIG <= SI & SRL_SIG(0 to DEPTH-2);
end if;

end if;
end process;

DO <= SRL_SIG(conv_integer(A));

end rtl;

XST User Guide for Virtex-6 and Spartan-6 Devices
158 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

32-bit Dynamic Shift Registers Verilog Coding Example
//
// 32-bit dynamic shift register.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/dynamic_shift_registers/dynamic_shift_registers_1.v
//
module v_dynamic_shift_registers_1 (CLK, CE, SEL, SI, DO);

parameter SELWIDTH = 5;
input CLK, CE, SI;
input [SELWIDTH-1:0] SEL;
output DO;

localparam DATAWIDTH = 2**SELWIDTH;
reg [DATAWIDTH-1:0] data;

assign DO = data[SEL];

always @(posedge CLK)
begin

if (CE == 1’b1)
data <= {data[DATAWIDTH-2:0], SI};

end

endmodule

Multiplexers
This section discusses HDL Coding Techniques for Multiplexers, and includes:
• About Multiplexers
• Multiplexers Implementation
• Multiplexers Verilog Case Implementation Style Parameter
• Multiplexers Related Constraints
• Multiplexers Reporting
• Multiplexers Coding Examples

About Multiplexers
Multiplexer macros can be inferred from different coding styles, involving either
concurrent assignments, description in combinatorial processes or always blocks, or
descriptions within sequential processes or always blocks. Description of multiplexers
usually involve:
• if-elsif constructs
• case constructs

When using a case statement, make sure that all selector values are enumerated, or
that a default statement defines what data is selected for selector values not explicitly
enumerated. Failing to do so creates undesired latches. Similarly, if the multiplexer
is described with an if-elsif construct, a missing else can also create undesired
latches.

When the same data is to be selected for different values of the selector, you can use
don’t care to describe those selector values in a compact way.

Multiplexers Implementation
The decision to explicitly infer a multiplexer macro may depend on the nature of the
multiplexer inputs, especially the amount of common inputs.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 159

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Multiplexers Verilog Case Implementation Style Parameter
You can use a Case Implementation Style Parameter to further characterize a case
statement that you have described.

For more information, see Chapter 9, XST Design Constraints.

Accepted values for a Case Implementation Style Parameter are:
• none (default)

XST implements the behavior of the case statement as written.
• full

XST considers that case statements are complete, and avoids latch creation, even if
not all possible selector values are enumerated.

• parallel

XST considers that the branches cannot occur simultaneously, and does not create
priority encoding logic.

• full-parallel

XST considers that case statements are complete and that the branches cannot
occur simultaneously, and avoids latch creation and priority encoding logic.

XST issues an information message when a Case Implementation Style Parameter is
actually taken advantage of. No message is issued if the statement is not needed given
the characteristics of the case itself (for example, a full case parameter when the case
it relates to enumerates all possible values of the selector).

Specifying full, parallel, or full-parallel can result in an implementation with
a behavior that differs from the behavior of the initial model.

Multiplexers Related Constraints
Enumerated Encoding (ENUM_ENCODING)

Multiplexers Reporting
The XST log file reports the type and size of recognized MUXs during the Macro
Recognition step.

===
* HDL Synthesis *
===

Synthesizing Unit <example>.
Found 1-bit 8-to-1 multiplexer for signal <o> created at line 11.
Summary:

inferred 1 Multiplexer(s).
Unit <example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Multiplexers : 1
1-bit 8-to-1 multiplexer : 1

===

Explicit inference and reporting of multiplexers can vary depending on the targeted
devices and the size of the multiplexer. For example, 4-to-1 multiplexers are not reported
for Virtex®-6 or Spartan®-6 devices. For those devices, they are inferred for sizes of
8-to-1 and above.

XST User Guide for Virtex-6 and Spartan-6 Devices
160 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Multiplexers Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

8-to-1 1-bit MUX Using an If Statement VHDL Coding Example
//
// 8-to-1 1-bit MUX using an If statement.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multiplexers/multiplexers_1.v
//
module v_multiplexers_1 (di, sel, do);

input [7:0] di;
input [2:0] sel;
output reg do;

always @(sel or di)
begin

if (sel == 3’b000) do = di[7];
else if (sel == 3’b001) do = di[6];
else if (sel == 3’b010) do = di[5];
else if (sel == 3’b011) do = di[4];
else if (sel == 3’b100) do = di[3];
else if (sel == 3’b101) do = di[2];
else if (sel == 3’b110) do = di[1];
else do = di[0];

end
endmodule

8-to-1 1-bit MUX Using an If Statement Verilog Coding Example
//
// 8-to-1 1-bit MUX using an If statement.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multiplexers/multiplexers_1.v
//
module v_multiplexers_1 (di, sel, do);

input [7:0] di;
input [2:0] sel;
output reg do;

always @(sel or di)
begin

if (sel == 3’b000) do = di[7];
else if (sel == 3’b001) do = di[6];
else if (sel == 3’b010) do = di[5];
else if (sel == 3’b011) do = di[4];
else if (sel == 3’b100) do = di[3];
else if (sel == 3’b101) do = di[2];
else if (sel == 3’b110) do = di[1];
else do = di[0];

end
endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 161

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

8-to-1 1-bit MUX Using a Case Statement VHDL Coding Example
--
-- 8-to-1 1-bit MUX using a Case statement.
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/multiplexers/multiplexers_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity multiplexers_2 is

port (di : in std_logic_vector(7 downto 0);
sel : in std_logic_vector(2 downto 0);
do : out std_logic);

end multiplexers_2;

architecture archi of multiplexers_2 is
begin

process (sel, di)
begin

case sel is
when "000" => do <= di(7);
when "001" => do <= di(6);
when "010" => do <= di(5);
when "011" => do <= di(4);
when "100" => do <= di(3);
when "101" => do <= di(2);
when "110" => do <= di(1);
when others => do <= di(0);

end case;
end process;

end archi;

8-to-1 1-bit MUX Using a Case Statement Verilog Coding Example
//
// 8-to-1 1-bit MUX using a Case statement.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multiplexers/multiplexers_2.v
//
module v_multiplexers_2 (di, sel, do);

input [7:0] di;
input [2:0] sel;
output reg do;

always @(sel or di)
begin

case (sel)
3’b000 : do = di[7];
3’b001 : do = di[6];
3’b010 : do = di[5];
3’b011 : do = di[4];
3’b100 : do = di[3];
3’b101 : do = di[2];
3’b110 : do = di[1];
default : do = di[0];

endcase
end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
162 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

8-to-1 1-bit MUX Using Tristate Buffers Verilog Coding Example
//
// 8-to-1 1-bit MUX using tristate buffers.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multiplexers/multiplexers_3.v
//
module v_multiplexers_3 (di, sel, do);

input [7:0] di;
input [7:0] sel;
output do;

assign do = sel[0] ? di[0] : 1’bz;
assign do = sel[1] ? di[1] : 1’bz;
assign do = sel[2] ? di[2] : 1’bz;
assign do = sel[3] ? di[3] : 1’bz;
assign do = sel[4] ? di[4] : 1’bz;
assign do = sel[5] ? di[5] : 1’bz;
assign do = sel[6] ? di[6] : 1’bz;
assign do = sel[7] ? di[7] : 1’bz;

endmodule

Arithmetic Operators
This section discusses HDL Coding Techniques for Arithmetic Operators, and includes:
• About Arithmetic Operators
• Arithmetic Operators Signed and Unsigned Support in XST
• Arithmetic Operators Implementation

About Arithmetic Operators
XST supports the following arithmetic operators:
• Adders, Subtractors, and Adders/Subtractors
• Multipliers
• Dividers
• Comparators

These basic arithmetic macros can serve as building blocks to more complex macros
such as accumulators, multiply-add, and DSP filters.

Arithmetic Operators Signed and Unsigned Support in XST
This section discusses Arithmetic Operators Signed and Unsigned Support in XST,
and includes:
• About Arithmetic Operators Signed and Unsigned Support in XST
• Verilog Signed/Unsigned Support
• VHDL Signed/Unsigned Support

About Arithmetic Operators Signed and Unsigned Support in XST
XST supports signed and unsigned representation for the following operators:
• Adders
• Subtractors
• Comparators
• Multipliers

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 163

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

When using Verilog or VHDL in XST, some macros, such as adders or counters, can be
implemented for signed and unsigned values.

Verilog Signed/Unsigned Support
Without explicit specification of the representation, Verilog defines the following
convention:

• Port, wire and reg vector types are treated as unsigned, unless explicitly
declared to be signed.

• Integer variables are treated as signed, unless specified otherwise.
• Decimal numbers are signed.
• Based numbers are unsigned, unless specified otherwise.

Use the unsigned and signed keywords to explicitly force the representation of data
types.

Verilog Signed/Unsigned Support Coding Example One
input signed [31:0] example1;
reg unsigned [15:0] example2;
wire signed [31:0] example3;

Verilog Signed/Unsigned Support Coding Example Two
You can also force a based number to be signed, using the s notation in the base
specifier.

4’sd87

Verilog Signed/Unsigned Support Coding Example Three
In addition, you can ensure proper type casting with the $signed and $unsigned
conversion functions.

wire [7:0] udata;
wire [7:0] sdata;

assign sdata = $signed(udata);

In Verilog, the type of an expression is defined only by its operands. It does not depend
on the type of an assignment left-hand part. An expression type is resolved according to
the following rules:

• Bit-select results are unsigned, regardless of the operands.
• Part-select results are unsigned, regardless of the operands, even if the part-select

specifies the entire vector.
• Concatenate results are unsigned, regardless of the operands.
• Comparison results are unsigned, regardless of the operands.
• The sign and bit length of any self-determined operand is determined by the operand

itself and is independent of the rest of the expression. If you use context-determined
operands, review the additional guidelines in the Verilog LRM.

VHDL Signed/Unsigned Support
For VHDL, depending on the operation and type of the operands, you must include
additional packages in the code. For example, to create an unsigned adder, use the
arithmetic packages and types that operate on unsigned values shown in the following
table.

XST User Guide for Virtex-6 and Spartan-6 Devices
164 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Unsigned Arithmetic
PACKAGE TYPE

numeric_std unsigned

std_logic_arith unsigned

std_logic_unsigned std_logic_vector

To create a signed adder, use the arithmetic packages and types that operate on
signed values shown in the following table.

Signed Arithmetic
PACKAGE TYPE

numeric_std signed

std_logic_arith signed

std_logic_signed std_logic_vector

For more information about available types, see the IEEE VHDL Manual.

Arithmetic Operators Implementation
This section discusses Arithmetic Operators Implementation, and includes:

• Arithmetic Operators Slice Logic

• Arithmetic Operators DSP Block Resources

Arithmetic Operators Slice Logic
When implementing arithmetic macros on slice logic, XST leverages some of the features
of the Xilinx® CLB structure, in particular the dedicated carry logic available to
implement fast, efficient arithmetic functions.

Arithmetic Operators DSP Block Resources
Virtex®-6 and Spartan®-6 devices contain dedicated high-performance arithmetic
blocks (DSP blocks). DSP blocks are available in varying quantities depending on the
targeted device. They can be configured to implement various arithmetic functions.
If leveraged to their full potential, DSP blocks can implement a fully pipelined
preadder-multiply-add or preadder-multiply-accumulate function.

XST tries to leverage those resources as much as possible for high-performance and
power-efficient implementation of arithmetic logic.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 165

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Multipliers and Multiply-Add and Multiply-Accumulate discuss the details of
implementation on DSP blocks.
• Implementation of arithmetic macros on either slice logic or DSP block resources is

controlled by Use DSP Block (USE_DSP48), with a default value of auto.
• In automatic mode, XST takes into account actual availability of DSP block resources,

in order to avoid overmapping the targeted device. XST may use all DSP resources
available on the device. DSP Utilization Ratio (DSP_UTILIZATION_RATIO) forces
XST to leave some of those resources unallocated.

• Some arithmetic macros, such as standalone adders, accumulators, and counters, are
not implemented on DSP blocks by default. To force implementation, apply Use
DSP Block (USE_DSP48) with a value of yes.

• To be taken advantage of for pipelining of arithmetic functions implemented on DSP
blocks, registers can be described with an optional clock enable. Optionally they
may also be synchronously resettable. Asynchronous reset logic prevents such
implementation and should be avoided.

• When describing unsigned arithmetic, keep in mind that DSP block resources
assume signed operands. You cannot map unsigned operands to the full width
of a single DSP block. For example, XST can implement up to a 25x18-bit signed
multiplication on a single Virtex-6 DSP48E1 block. It can implement up to a
24x17-bit unsigned product only on that same single block, with most significant
bits of the DSP block inputs set to 0.

For more information about DSP block resources, and the advantages of proper HDL
coding practices, see also:
• Virtex-6 FPGA DSP48E1 Slice User Guide,

http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
• Spartan-6 FPGA DSP48A1 Slice User Guide,

http://www.xilinx.com/support/documentation/user_guides/ug389.pdf

Comparators
This section discusses HDL Coding Techniques for Comparators, and includes:
• About Comparators
• Comparators Related Constraints
• Comparators Reporting
• Comparators Coding Examples

About Comparators
XST recognizes comparators of all possible types:
• equal

• not equal

• larger than

• larger than or equal

• less than

• less than or equal

Comparators Related Constraints
None

XST User Guide for Virtex-6 and Spartan-6 Devices
166 www.xilinx.com UG687 (v 12.1) April 19, 2010

http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug389.pdf

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Comparators Reporting
Equal or not equal comparison of a signal or a variable to a constant does not lead to
an explicit comparator macro inference, since it is directly optimized to Boolean logic by
XST. For all other comparison situations, comparator macro inference are reported as
shown below.

===
* HDL Synthesis *
===

Synthesizing Unit <example>.
Found 8-bit comparator lessequal for signal <n0000> created at line 8
Found 8-bit comparator greater for signal <cmp2> created at line 15
Summary:

inferred 2 Comparator(s).
Unit <example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Comparators : 2
8-bit comparator greater : 1
8-bit comparator lessequal : 1

===

Comparators Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

Unsigned 8-bit Greater or Equal Comparator VHDL Coding Example
--
-- Unsigned 8-bit Greater or Equal Comparator
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/comparators/comparators_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity comparators_1 is
generic (

WIDTH : integer := 8);
port (

A,B : in std_logic_vector(WIDTH-1 downto 0);
CMP : out std_logic);

end comparators_1;

architecture archi of comparators_1 is
begin

CMP <= ’1’ when A >= B else ’0’;
end archi;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 167

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Unsigned 8-Bit Less Than Comparator Verilog Coding Example
//
// Unsigned 8-bit Less Than Comparator
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/comparators/comparators_1.v
//
module v_comparators_1 (A, B, CMP);

parameter WIDTH = 8;
input [WIDTH-1:0] A;
input [WIDTH-1:0] B;
output CMP;

assign CMP = (A < B) ? 1’b1 : 1’b0;

endmodule

Dividers
This section discusses HDL Coding Techniques for Dividers, and includes:

• About Dividers

• Dividers Related Constraints

• Dividers Reporting

• Dividers Coding Examples

About Dividers
Dividers are supported only when:

• The divisor is constant and a power of 2. Such a description is implemented as
a shifter.

• Both operands are constant.

In all other cases, XST exits with a specific error message.

Dividers Related Constraints
None

Dividers Reporting
None

Dividers Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
168 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Division By Constant 2 VHDL Coding Example
--
-- Division By Constant 2
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/dividers/dividers_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity divider_1 is
port(DI : in unsigned(7 downto 0);

DO : out unsigned(7 downto 0));
end divider_1;

architecture archi of divider_1 is
begin

DO <= DI / 2;

end archi;

Division By Constant 2 Verilog Coding Example
//
// Division By Constant 2
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/dividers/dividers_1.v
//
module v_divider_1 (DI, DO);

input [7:0] DI;
output [7:0] DO;

assign DO = DI / 2;

endmodule

Adders, Subtractors, and Adders/Subtractors
This section discusses HDL Coding Techniques for Adders, Subtractors, and
Adders/Subtractors, and includes:
• About Adders, Subtractors, and Adders/Subtractors
• Describing a Carry Output
• Adders, Subtractors, and Adders/Subtractors Implementation
• Adders, Subtractors, and Adders/Subtractors Related Constraints
• Adders, Subtractors, and Adders/Subtractors Reporting
• Adders, Subtractors, and Adders/Subtractors Coding Examples

About Adders, Subtractors, and Adders/Subtractors
XST recognizes adders, subtractors and adders/subtractors. Adders can be described
with an optional carry input, and an optional carry output. Subtractors can be described
with an optional borrow input.

Describing a Carry Output
A carry output is usually modelled by assigning the result of the described addition to a
signal with an extra bit over the longest operand.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 169

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Describing a Carry Output VHDL Coding Example One
input [7:0] A;
input [7:0] B;
wire [8:0] res;
wire carryout;

assign res = A + B;
assign carryout = res[8];

Describing a Carry Output VHDL Coding Example Two
If you intend to describe an adder with a carry output in VHDL, carefully review the
arithmetic package you plan to use. For example, the method above is not applicable
when using std_logic_unsigned, because the size of the result is necessarily equal
to the size of the longest argument. In this case, you can adjust the size of the operands
as shown in the following example.

signal A : std_logic_unsigned(7 downto 0);
signal B : std_logic_unsigned(7 downto 0);
signal res : std_logic_unsigned(8 downto 0);
signal carryout : std_logic;

res <= ("0" & A) + ("0" & B);
carryout <= res[8];

You can also convert the operands to type integer, and convert the result of the
addition back to std_logic_vector as follows. The conv_std_logic_vector
conversion function is contained in package std_logic_arith. The unsigned +
operation is contained in std_logic_unsigned.

signal A : std_logic_vector(7 downto 0);
signal B : std_logic_vector(7 downto 0);
signal res : std_logic_vector(8 downto 0);
signal carryout : std_logic;

res <= conv_std_logic_vector((conv_integer(A) + conv_integer(B)),9);
carryout <= res[8];

Adders, Subtractors, and Adders/Subtractors Implementation
Standalone adders, subtractors or adder/subtractors are not implemented on DSP block
resources by default. They are instead synthesized using carry logic.

To force the implementation of a simple adder, subtractor, or adder/subtractor to the
DSP block, apply Use DSP Block (USE_DSP48) with a value of yes.

XST supports the one level of output registers into DSP48 blocks. If the Carry In or
Add/Sub operation selectors are registered, XST pushes these registers into the DSP48
as well.

XST can implement an adder/subtractor in a DSP48 block if its implementation requires
only a single DSP48 resource. If an adder/subtractor macro does not fit in a single
DSP48, XST implements the entire macro using slice logic.

Macro implementation on DSP48 blocks is controlled by DSP Utilization Ratio
(DSP_UTILIZATION_RATIO) with a default value of auto. In auto mode, if an
adder/subtractor is a part of a more complex macro such as a filter, XST automatically
places it on the DSP block. Otherwise, XST implements adders/subtractors using LUTs.

XST User Guide for Virtex-6 and Spartan-6 Devices
170 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

To force XST to push these macros into a DSP48, set the value of Use DSP Block
(USE_DSP48) to yes. When placing an Adder/Subtractor on a DSP block, XST checks
to see if it is connected to other DSP chains. If so, XST tries to take advantage of fast
DSP connections, and connects this adder/subtractor to the DSP chain using these fast
connections. When implementing adders/subtractors on DSP48 blocks, XST performs
automatic DSP48 resource control.

To deliver the best performance, XST tries to infer and implement the maximum macro
configuration, including as many registers in the DSP48 as possible. Use Keep (KEEP) to
shape a macro in a specific way. For example, to exclude the first register stage from the
DSP48, Keep (KEEP) on the outputs of these registers.

Adders, Subtractors, and Adders/Subtractors Related Constraints
• Use DSP Block (USE_DSP48)

• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)

• Keep (KEEP)

Adders, Subtractors, and Adders/Subtractors Reporting
===
* HDL Synthesis *
===

Synthesizing Unit <example>.
Found 8-bit adder for signal <sum> created at line 9.
Summary:

inferred 1 Adder/Subtractor(s).
Unit <example> synthesized.

===
HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 1
8-bit adder : 1

===

For adders with a carry input, two separate adder macros are initially inferred and
reported in HDL Synthesis. They are later grouped together into a single adder macro
with carry input during Advanced HDL Synthesis, as reflected in the Advanced HDL
Synthesis Report. Similarly, for descriptions of subtractors with borrow input, two
separate subtractor macros are initially inferred and later grouped together in Advanced
HDL Synthesis. Carry output logic is not explicitly reported.

Adders, Subtractors, and Adders/Subtractors Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 171

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Unsigned 8-Bit Adder VHDL Coding Example
--
-- Unsigned 8-bit Adder
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/adders/adders_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adders_1 is
generic (

WIDTH : integer := 8);
port (

A, B : in std_logic_vector(WIDTH-1 downto 0);
SUM : out std_logic_vector(WIDTH-1 downto 0));

end adders_1;

architecture archi of adders_1 is
begin

SUM <= A + B;
end archi;

Unsigned 8-Bit Adder with Carry In Verilog Coding Example
//
// Unsigned 8-bit Adder with Carry In
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/adders/adders_2.v
//
module v_adders_2 (A, B, CI, SUM);

parameter WIDTH = 8;
input [WIDTH-1:0] A;
input [WIDTH-1:0] B;
input CI;
output [WIDTH-1:0] SUM;

assign SUM = A + B + CI;

endmodule

Multipliers
This section discusses HDL Coding Techniques for Multipliers, and includes:
• About Multipliers
• Multipliers Implementation
• Multipliers Related Constraints
• Multipliers Reporting
• Multipliers Coding Examples

About Multipliers
XST infers multiplier macros from product operators found in the Hardware Description
Language (HDL) source code.

The size of the resulting signal is equal to the sum of the two operand sizes. For
example, multiplying a 16-bit signal by an 8-bit signal produces a result on 24 bits. If
you do not intend to use all most significant bits of a product, consider reducing the
size of operands to the minimum needed, in particular if the multiplier macro will
be implemented on slice logic.

XST User Guide for Virtex-6 and Spartan-6 Devices
172 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Multipliers Implementation
This section discusses Multipliers Implementation, and includes:
• About Multipliers Implementation
• DSP Block Implementation
• Slice Logic Implementation
• Multiplication to a Constant

About Multipliers Implementation
Multiplier macros can be implemented on the following types of device resources:
• Slice logic
• DSP blocks

Implementing a multiplier on either slice logic or with DSP block resources is controlled
by Use DSP Block (USE_DSP48) with a default value of auto.

In auto mode:
• XST seeks to implement a multiplier on DSP block resources, provided that its

operands have a minimal size. The minimal size can vary depending on the targeted
device family. Implementation on DSP block can be forced with a value of yes.

• XST takes into account actual availability of DSP block resources, in order to avoid
overmapping the targeted device. XST may use all DSP resources available on the
device. DSP Utilization Ratio (DSP_UTILIZATION_RATIO) forces XST to leave
some of those resources unallocated.

To specifically force implementation of a multiplier to slice logic or DSP block, set Use
DSP Block (USE_DSP48) to no (slice logic) or yes (DSP block) on the appropriate signal,
entity, or module.

DSP Block Implementation
When implementing a multiplier in a single DSP block, XST seeks to take advantage
of pipelining capabilities of DSP blocks, pulling up to:
• Two levels of registers present on the multiplication operands
• Two levels of registers present behind the multiplication

When a multiplier does not fit in a single DSP block, XST automatically decomposes the
macro to implement it using either several DSP blocks, or a hybrid solution involving
both DSP blocks and slice logic. The implementation choice is driven by the size of
operands, and is aimed at maximizing performance.

The performance of implementations based on multiple DSP blocks can be further
improved if XST is instructed to perform pipelining. For this, apply Multiplier Style
(MULT_STYLE) with a value of pipe_block. XST automatically calculates the ideal
number of register stages needed to maximize performance of a given multiplier. If they
are available, XST moves them in order to achieve the desired goal. If an insufficient
amount of latencies is found, XST issues the following HDL Advisor message during
Advance HDL Synthesis. You can insert the suggested amount of additional register
stages behind the multiplication.

INFO:Xst:2385 - HDL ADVISOR - You can improve the performance of the
multiplier Mmult_n0005 by adding 2 register level(s).

Use Keep (KEEP) to restrict absorption of registers into DSP blocks. For example, to
exclude a register present on an operand of the multiplier from absorption into the DSP
block, place Keep (KEEP) on the output of the register.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 173

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Slice Logic Implementation
When Use DSP Block (USE_DSP48) is set to auto, most multipliers are implemented on
DSP block resources, provided that one or more latency stages is available, and within
the limits of available DSP blocks on the targeted device. To force a multiplier to be
implemented on slice logic, apply Use DSP Block (USE_DSP48) with a value of no.

For a multiplier implemented on slice logic, XST looks for pipelining opportunities
that may be present around the operator, and moves those registers in order to reduce
data path length. Pipelining can therefore greatly increase the performance of large
multipliers. The effect of pipelining is similar to Flip-Flop Retiming.

To insert pipeline stages:

1. Describe the registers

2. Place them after the multiplier

3. Set Multiplier Style (MULT_STYLE) to pipe_lut

Multiplication to a Constant
XST can select between the following dedicated implementation methods when one
argument of the multiplication is a constant. These methods are applicable only if the
multiplication is implemented on slice logic.

• Constant Coefficient Multiplier (CCM) implementation

• Canonical Signed Digit (CSD) implementation

The level of optimization obtained with those approaches depends on the characteristics
of the constant operand. In some cases, the CCM implementation may not be better than
the default slice logic implementation. Therefore XST automatically chooses between
CCM or standard multiplier implementation. The CSD method cannot be automatically
chosen. Use Multiplier Style (MULT_STYLE) to:

• Force CSD implementation

• Force CCM implementation

XST does not use the CCM or CSD implementations if:

• The multiplication is signed

• One of the operands is larger than 32 bits

Multipliers Related Constraints
• Use DSP Block (USE_DSP48)

• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)

• Keep (KEEP)

• Multiplier Style (MULT_STYLE)

XST User Guide for Virtex-6 and Spartan-6 Devices
174 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Multipliers Reporting
Multipliers are inferred during HDL Synthesis. Absorption of registers by a multiplier
macro can occur during Advanced HDL Synthesis, as shown by the following HDL
Synthesis Report.

===
* HDL Synthesis *
===

Synthesizing Unit <v_multipliers_11>.
Found 8-bit register for signal <rB>.
Found 24-bit register for signal <RES>.
Found 16-bit register for signal <rA>.
Found 16x8-bit multiplier for signal <n0005> created at line 20.
Summary:

inferred 1 Multiplier(s).
inferred 48 D-type flip-flop(s).
Unit <v_multipliers_11> synthesized.

===
HDL Synthesis Report

Macro Statistics
Multipliers : 1
16x8-bit multiplier : 1
Registers : 3
16-bit register : 1
24-bit register : 1
8-bit register : 1

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <v_multipliers_11>.
Found pipelined multiplier on signal <n0005>:
- 1 pipeline level(s) found in a register connected to the multiplier

macro output.
Pushing register(s) into the multiplier macro.

- 1 pipeline level(s) found in a register on signal <rA>.
Pushing register(s) into the multiplier macro.

- 1 pipeline level(s) found in a register on signal <rB>.
Pushing register(s) into the multiplier macro.

INFO:Xst:2385 - HDL ADVISOR - You can improve the performance of the
multiplier Mmult_n0005 by adding 1 register level(s).
Unit <v_multipliers_11> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
Multipliers : 1
16x8-bit registered multiplier : 1

===

Multipliers Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 175

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Unsigned 8x4-Bit Multiplier VHDL Coding Example
--
-- Unsigned 8x4-bit Multiplier
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/multipliers/multipliers_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity multipliers_1 is
generic (

WIDTHA : integer := 8;
WIDTHB : integer := 4);

port(
A : in std_logic_vector(WIDTHA-1 downto 0);
B : in std_logic_vector(WIDTHB-1 downto 0);
RES : out std_logic_vector(WIDTHA+WIDTHB-1 downto 0));

end multipliers_1;

architecture beh of multipliers_1 is
begin

RES <= A * B;
end beh;

Unsigned 32x24-Bit Multiplier Verilog Coding Example
//
// Unsigned 32x24-bit Multiplier
// 1 latency stage on operands
// 3 latency stage after the multiplication
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multipliers/multipliers_11.v
//
module v_multipliers_11 (clk, A, B, RES);

parameter WIDTHA = 32;
parameter WIDTHB = 24;
input clk;
input [WIDTHA-1:0] A;
input [WIDTHB-1:0] B;
output [WIDTHA+WIDTHB-1:0] RES;

reg [WIDTHA-1:0] rA;
reg [WIDTHB-1:0] rB;
reg [WIDTHA+WIDTHB-1:0] M [3:0];
integer i;

always @(posedge clk)
begin

rA <= A;
rB <= B;

M[0] <= rA * rB;
for (i = 0; i < 3; i = i+1)
M[i+1] <= M[i];
end
assign RES = M[3];

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
176 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Multiply-Add and Multiply-Accumulate
This section discusses HDL Coding Techniques for Multiply-Add and
Multiply-Accumulate, and includes:

• About Multiply-Add and Multiply-Accumulate

• Multiply-Add and Multiply-Accumulate Implementation

• Multiply-Add and Multiply-Accumulate Related Constraints

• Multiply-Add and Multiply-Accumulate Reporting

• Multiply-Add and Multiply-Accumulate Coding Examples

About Multiply-Add and Multiply-Accumulate
A multiply-add, multiply-sub, multiply-add/sub or multiply-accumulate macro
is inferred during Advanced HDL Synthesis by aggregation of a multiplier, an
adder/subtractor, and registers previously inferred during the HDL Synthesis phase.

Multiply-Add and Multiply-Accumulate Implementation
An inferred multiply-add or multiply-accumulate macro can be implemented on DSP
block resources available on Xilinx® devices. In this case, XST tries to take advantage
pipelining capabilities of DSP blocks, pulling up to:

• Two register stages present on the multiplication operands

• One register stage present behind the multiplication

• One register stage found behind the adder, subtractor, or adder/subtractor

• One register stage on the add/sub selection signal

• One register stage on the adder optional carry input

XST can implement a multiply accumulate in a DSP48 block if its implementation
requires only a single DSP48 resource. If the macro exceeds the limits of a single
DSP48, XST processes it as two separate Multiplier and Accumulate macros, making
independent decisions on each macro.

Macro implementation on Xilinx DSP block resources is controlled by Use DSP
Block (USE_DSP48) with a default value of auto. In auto mode, XST implements
multiply-add and multiply-accumulate macros taking into account DSP block resources
availability in the targeted device. XST may use up to all available DSP resources.
DSP Utilization Ratio (DSP_UTILIZATION_RATIO) forces XST to leave some of those
resources unallocated.

XST tries to maximize circuit performance by leveraging all pipelining capabilities of
DSP blocks, looking for all opportunities to absorb registers into a multiply-add or
multiply-accumulate macro. Use Keep (KEEP) to restrict absorption of registers into
DSP blocks. For example, to exclude a register present on an operand of the multiplier
from absorption into the DSP block, apply Keep (KEEP) on the output of this register.

Multiply-Add and Multiply-Accumulate Related Constraints
• Use DSP Block (USE_DSP48)

• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)

• Keep (KEEP)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 177

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Multiply-Add and Multiply-Accumulate Reporting
XST reports the details of inferred multipliers, accumulators and registers at HDL
Synthesis. Information about the composition of those macros into a multiply-add or
multiply-accumulate macro can be found in the Advanced HDL Synthesis section. Both
types of functionalities are accounted for under the unified MAC denomination.

===
* HDL Synthesis *
===

Synthesizing Unit <v_multipliers_7a>.
Found 16-bit register for signal <accum>.
Found 16-bit register for signal <mult>.
Found 16-bit adder for signal <n0058> created at line 26.
Found 8x8-bit multiplier for signal <n0005> created at line 18.
Summary:

inferred 1 Multiplier(s).
inferred 1 Adder/Subtractor(s).
inferred 32 D-type flip-flop(s).
Unit <v_multipliers_7a> synthesized.

===
HDL Synthesis Report

Macro Statistics
Multipliers : 1
8x8-bit multiplier : 1
Adders/Subtractors : 1
16-bit adder : 1
Registers : 2
16-bit register : 2

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <v_multipliers_7a>.
The following registers are absorbed into accumulator <accum>: 1 register
on signal <accum>.
Multiplier <Mmult_n0005> in block <v_multipliers_7a> and accumulator
<accum> in block <v_multipliers_7a> are combined into a MAC<Mmac_n0005>.
The following registers are also absorbed by the MAC: <mult> in block
<v_multipliers_7a>.
Unit <v_multipliers_7a> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
MACs : 1
8x8-to-16-bit MAC : 1

===

Multiply-Add and Multiply-Accumulate Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
178 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Multiplier Up Accumulate with Register After Multiplication VHDL Coding
Example

--
-- Multiplier Up Accumulate with Register After Multiplication
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/multipliers/multipliers_7a.vhd
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity multipliers_7a is
generic (p_width: integer:=8);
port (clk, reset: in std_logic;

A, B: in std_logic_vector(p_width-1 downto 0);
RES: out std_logic_vector(p_width*2-1 downto 0));

end multipliers_7a;

architecture beh of multipliers_7a is
signal mult, accum: std_logic_vector(p_width*2-1 downto 0);

begin

process (clk)
begin

if (clk’event and clk=’1’) then
if (reset = ’1’) then

accum <= (others => ’0’);
mult <= (others => ’0’);

else
accum <= accum + mult;
mult <= A * B;

end if;
end if;

end process;

RES <= accum;

end beh;

Multiplier Up Accumulate Verilog Coding Example
//
// Multiplier Up Accumulate with:
// Registered operands
// Registered multiplication
// Accumulation
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/multipliers/multiply_accum_2.v
//
module v_multiply_accum_2 (clk, rst, A, B, RES);

parameter WIDTH = 8;
input clk;
input rst;
input [WIDTH-1:0] A, B;
output [2*WIDTH-1:0] RES;

reg [WIDTH-1:0] rA, rB;
reg [2*WIDTH-1:0] mult, accum;

always @(posedge clk)
begin

if (rst) begin
rA <= {WIDTH{1’b0}};
rB <= {WIDTH{1’b0}};

mult <= {2*WIDTH{1’b0}};
accum <= {2*WIDTH{1’b0}};

end
else begin

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 179

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

rA <= A;
rB <= B;

mult <= rA * rB;
accum <= accum + mult;

end
end
assign RES = accum;

endmodule

Extended DSP Inferencing
This section discusses Extended DSP Inferencing, and includes:

• About Extended DSP Inferencing

• Symmetric Filters

• Extended DSP Inferencing Coding Examples

About Extended DSP Inferencing
In addition to finer grained inferencing capabilities of such basic functionalities as latency
stages (registers), multiply, multiply-add/subtract, accumulate, multiply-accumulate,
and ROM, XST offers extended inferencing capabilities for describing filters with
portable behavioral source code.

XST attempts to understand the existence of any contextual relationship between basic
functional elements, and to leverage the powerful features of the DSP block resources
available on Xilinx® devices (pipelining stages, cascade paths, pre-adder stage, time
multiplexing), for high performance implementation and power reduction.

To optimally leverage DSP block capabilities, use an adder chain instead of an adder
tree as the backbone of the filter description. Some HDL language features, such as
for generate in VHDL, facilitate describing a filter in this way, and ensure maximal
readability and scalability of the code.

For more information on DSP block resources and how to leverage them, see:

• Virtex®-6 FPGA DSP48E1 Slice User Guide,
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf

• Spartan®-6 FPGA DSP48A1 Slice User Guide,
http://www.xilinx.com/support/documentation/user_guides/ug389.pdf

Symmetric Filters
The optional pre-adder capability in Xilinx® DSP Blocks was designed for symmetric
filters. If you describe a symmetric coefficients filter, leverage the pre-adder to reduce
the number of required DSP blocks by half.

Since XST does not automatically identify and factor symmetric coefficients, Xilinx does
not recommend that you describe the filter in a generic manner, and assume that XST
will be able to determine the symmetry. You must manually code the factorized form in
order for XST to see the pre-adder opportunity and configure DSP blocks accordingly.
The SymSystolicFilter and SymTransposeConvFilter coding examples below
show how to do so.

XST User Guide for Virtex-6 and Spartan-6 Devices
180 www.xilinx.com UG687 (v 12.1) April 19, 2010

http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug389.pdf

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Extended DSP Inferencing Coding Examples
For Extended DSP Inferencing Coding Examples,
go to the directory HDL_Coding_Techniques/dsp in
ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip, where each design is
stored in its own subdirectory.

DSP Reference Designs
Design Language Description Devices

PolyDecFilter VHDL A polyphase decimating
filter

Spartan®-6

Virtex®-6

PolyIntrpFilter VHDL A polyphase interpolator
filter

Spartan-6

Virtex-6

EvenSymSystFIR VHDL A symmetric systolic filter
with an even number of
taps. Symmetric coefficients
have been factorized to take
advantage of pre-adder
capabilities of DSP blocks.

Virtex-6

OddSymSystFIR VHDL A symmetric systolic filter
with an odd number of
taps. Symmetric coefficients
have been factorized to take
advantage of pre-adder
capabilities of DSP blocks.

Virtex-6

EvenSymTranspConvFIR VHDL A symmetric transpose
convolution filter with
an even number of taps.
Symmetric coefficients have
been factorized to take
advantage of pre-adder
capabilities of DSP blocks.

Virtex-6

OddSymTranspConvFIR VHDL A symmetric transpose
convolution filter with
an odd number of taps.
Symmetric coefficients have
been factorized to take
advantage of pre-adder
capabilities of DSP blocks.

Virtex-6

AlphaBlender VHDL

Verilog

Implements an alpha
blending function,
commonly used in image
composition, on a single
DSP block, taking advantage
of the pre-adder, multiplier
and post-adder features.

Spartan-6

Virtex-6

Resource Sharing
This section discusses Resource Sharing, and includes:
• About Resource Sharing
• Resource Sharing Related Constraints
• Resource Sharing Reporting
• Resource Sharing Coding Examples

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 181

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

About Resource Sharing
XST implements high-level optimizations known as resource sharing. Resource sharing
minimizes the number of arithmetic operators, resulting in reduced device utilization.
Resource sharing is based on the principle that two similar arithmetic operators can be
implemented with common resources on the device, provided their respective outputs
are never used simultaneously. Resource sharing usually involves creating additional
multiplexing logic to select between factorized inputs. Factorization is performed in a
way that minimizes this logic.

XST supports resource sharing for:
• Adders
• Subtractors
• Adders/Subtractors
• Multipliers

Resource sharing is enabled by default, no matter which overall optimization strategy
you have selected. If circuit performance is your primary optimization goal, and you are
unable to meet timing goals, disabling resource sharing may help. An HDL Advisor
message informs you when resource sharing has taken place.

Resource Sharing Related Constraints
Resource Sharing (RESOURCE_SHARING)

Resource Sharing Reporting
Arithmetic resource sharing is performed during HDL Synthesis, and is reflected by
arithmetic macro statistics, and by a specific HDL Advisor message, as shown below.

===
* HDL Synthesis *
===

Synthesizing Unit <resource_sharing_1>.
Found 8-bit adder for signal <n0017> created at line 18.
Found 8-bit subtractor for signal <n0004> created at line 18.
Found 8-bit 2-to-1 multiplexer for signal <RES> created at line 18.
Summary:

inferred 1 Adder/Subtractor(s).
inferred 1 Multiplexer(s).
Unit <resource_sharing_1> synthesized.

===
HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 1
8-bit addsub : 1
Multiplexers : 1
8-bit 2-to-1 multiplexer : 1

===
INFO:Xst:1767 - HDL ADVISOR - Resource sharing has identified that some
arithmetic operations in this design can share the same physical
resources for reduced device utilization.
For improved clock frequency you may try to disable resource sharing.

Resource Sharing Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
182 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

For the VHDL and Verilog examples shown below, XST gives the following solution.

Resource Sharing Diagram

Resource Sharing VHDL Coding Example
--
-- Resource Sharing
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/resource_sharing/resource_sharing_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity resource_sharing_1 is
port(A, B, C : in std_logic_vector(7 downto 0);

OPER : in std_logic;
RES : out std_logic_vector(7 downto 0));

end resource_sharing_1;

architecture archi of resource_sharing_1 is
begin

RES <= A + B when OPER=’0’ else A - C;

end archi;

Resource Sharing Verilog Coding Example
//
// Resource Sharing
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/resource_sharing/resource_sharing_1.v
//
module v_resource_sharing_1 (A, B, C, OPER, RES);

input [7:0] A, B, C;
input OPER;
output [7:0] RES;
wire [7:0] RES;

assign RES = !OPER ? A + B : A - C;

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 183

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

RAMs
This section discusses HDL Coding Techniques for RAMs, and includes:
• About RAMs
• Distributed RAMs vs. Block RAMs
• RAMS Supported Features
• RAMs HDL Coding Guidelines
• Block RAMs Optimization Strategies
• Distributed RAMs Pipelining
• RAMs Related Constraints
• RAMs Reporting
• RAMs Coding Examples

About RAMs
XST features extended RAM inferencing capabilities that can spare you from having to
manually instantiate Xilinx® RAM primitives. Those capabilities save time and keep
Hardware Description Language (HDL) source code portable and scalable.

Distributed RAMs vs. Block RAMs
RAM resources on Virtex®-6 and Spartan®-6 devices are of two types:
• Distributed RAMs, implemented on properly configured slice logic
• Dedicated block RAM resources

For both types, data is synchronously written into the RAM. The key difference between
distributed and block RAMs lies in the way data is read from the RAM:

• Asynchronously in the case of distributed RAM
• Synchronously in the case of block RAM

XST can take advantage of both types of resources. The implementation choice may
depend on:

• The exact characteristics of the RAM you have described in HDL
• Whether you have forced a specific implementation style
• Availability of block RAM resources on the targeted device.

However, considering the key difference mentioned above:

• RAM descriptions with asynchronous read will necessarily be implemented with
distributed RAM resources. They cannot be implemented in block RAM.

• RAM descriptions with synchronous read generally go into block RAM. However, if
you have so requested, or for device resource utilization considerations, they can
also be implemented using distributed RAM plus additional registers. Use RAM
Style (RAM_STYLE) to control RAM implementation.

For more information about RAM resources on Virtex-6 and Spartan-6 devices , see:

• Virtex-6 FPGA Memory Resources User Guide
• Distributed RAM topics in the Virtex-6 FPGA Configurable Logic Block User Guide
• Spartan-6 FPGA Block RAM Resources User Guide
• Distributed RAM topics in the Spartan-6 FPGA Configurable Logic Block User Guide

XST User Guide for Virtex-6 and Spartan-6 Devices
184 www.xilinx.com UG687 (v 12.1) April 19, 2010

http://www.xilinx.com/support/documentation/user_guides/ug363.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug383.pdf
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

RAMs Supported Features
XST RAM inferencing capabilities include:

• Support for any size and data width. XST automatically handles mapping the RAM
description to one or several RAM primitives.

• Single-port, simple-dual port, true dual port
• Up to two write ports
• Multiple read ports

Provided that only one write port is described, XST can identify RAM descriptions
with two or more read ports that access the RAM contents at addresses different
from the write address.

• Simple-dual port and true dual-port RAM with asymmetric ports. This version of
XST introduces inference support for such capability for the first time. For more
information, see Asymmetric Ports Support (Block RAM) in Chapter 7, XST HDL
Coding Techniques.

• Write enable
• RAM enable (block RAM)
• Data output reset (block RAM)
• Optional output register (block RAM)
• Byte-Wide Write Enable (block RAM)
• Each RAM port can be controlled by its distinct clock, RAM enable, write enable,

and data output reset.
• Initial contents specification

Parity bits are not supported.

XST can use parity bits, available on certain block RAM primitives, as regular data bits,
in order to accommodate the described data widths. However, XST does not provide
any capability to automatically generate parity control logic, and use those parity bit
positions for their intended purpose.

RAMs HDL Coding Guidelines
This section discusses RAMs HDL Coding Guidelines, and includes:
• Modelling
• Describing Read Access
• Block RAM Read/Write Synchronization
• Re-Settable Data Outputs (Block RAM)
• Byte-Write Enable Support (Block RAM)
• Asymmetric Ports Support
• RAM Initial Contents

Modelling
RAM is usually modelled with an array of array object.

Modelling a RAM in VHDL
To describe a RAM with a single write port, use a VHDL signal as follows:

type ram_type is array (0 to 255) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 185

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

To describe a RAMwith twowrite ports in VHDL, use a shared variable instead of a signal.

type ram_type is array (0 to 255) of std_logic_vector (15 downto 0);
shared variable RAM : ram_type;

XST rejects an attempt to use a signal to model a RAM with two write ports. Such a
model does not behave correctly in simulation tools.

Caution! Shared variables are an extension of variables, allowing inter-process
communication. Use them with even greater caution than variables, from which they
inherit all basic characteristics. Be aware that:

• The order in which items in a sequential process are described can condition the
functionality being modelled.

• Two or more processes making assignments to a shared variable in the same
simulation cycle can lead to unpredictable results.

Although shared variables are valid and accepted by XST, Xilinx® does not recommend
using a shared variable if the RAM has only one write port. Use a signal instead.

Modelling a RAM in Verilog
reg [15:0] RAM [0:255];

Describing Write Access
This section discusses Describing Write Access, and includes:

• Describing Write Access in VHDL

• Describing Write Access in Verilog

Describing Write Access in VHDL
For a RAM modelled with a VHDL signal, write into the RAM is typically described
as follows:

process (clk)
begin
if rising_edge(clk) then
if we = ‘1’ then
RAM(conv_integer(addr)) <= di;

end if;
end if;

end process;

The address signal is typically declared as follows:

signal addr : std_logic_vector(ADDR_WIDTH-1 downto 0);

Caution! In VHDL, you must include std_logic_unsigned in order to use the
conv_integer conversion function. Although std_logic_signed also includes a
conv_integer function, Xilinx® does not recommend using it in this instance. If you
do so, XST assumes that address signals have a signed representation, and ignores all
negative values. This can result in an inferred RAM of half the desired size. If you
need signed data representation in some parts of the design, describe them in units
separate from the RAMs.

XST User Guide for Virtex-6 and Spartan-6 Devices
186 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

If the RAM has two write ports and is instead modelled with a VHDL shared variable, a
typical write description should look instead as follows:

process (clk)
begin
if rising_edge(clk) then
if we = ‘1’ then
RAM(conv_integer(addr)) := di;

end if;
end if;

end process;

Describing Write Access in Verilog
Write access is described as follows:

always @ (posedge clk)
begin
if (we)
do <= RAM[addr];

end

Describing Read Access
This section discusses Describing Read Access, and includes:

• Describing Read Access in VHDL

• Describing Read Access in Verilog

Describing Read Access in VHDL
A RAM is typically read-accessed at a given address location as follows:

do <= RAM(conv_integer(addr));

Whether this statement is a simple concurrent statement, or is described in a sequential
process, determines

• Whether the read is asynchronous or synchronous

• Whether the RAM can be implemented using block RAM resources, or distributed
RAM resources on Xilinx® devices.

Following is a coding example for a RAM to be implemented on block resources:

process (clk)
begin
do <= RAM(conv_integer(addr));

end process;

For more information, see Block RAM Read/Write Synchronization below.

Describing Read Access in Verilog
An asynchronous read is described with an assign statement:

assign do = RAM[addr];

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 187

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

A synchronous read is described with a sequential always block:

always @ (posedge clk)
begin
do <= RAM[addr];

end

For more information, see Block RAM Read/Write Synchronization below.

Block RAM Read/Write Synchronization
Block RAM resources can be configured to provide the following synchronization
modes for a given read-and-write port:

• Read-first

Old contents are read before new contents are loaded.

• Write-first (also known as read-through):

New contents are immediately made available for reading.

• No-change

Data output does not change while new contents are loaded into RAM.

XST provides inference support for all of these synchronization modes. You can describe
a different synchronization mode for each port of the RAM.

VHDL Block RAM Read/Write Synchronization Coding Example One
process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(addr)) <= di;
end if;
do <= RAM(conv_integer(addr));

end if;
end process;

VHDL Block RAM Read/Write Synchronization Coding Example Two
The following VHDL coding example describes a write-first synchronized port.

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(addr)) <= di;
do <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end process;

XST User Guide for Virtex-6 and Spartan-6 Devices
188 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

VHDL Block RAM Read/Write Synchronization Coding Example Three
The following VHDL coding example describes a no-change synchronization.

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(addr)) <= di;
else

do <= RAM(conv_integer(addr));
end if;

end if;
end process;

VHDL Block RAM Read/Write Synchronization Coding Example Four
Caution! If you model a dual-write RAM with a VHDL shared variable, be aware that
the synchronization described below is not read-first, but write-first.

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(addr)) := di;
end if;
do <= RAM(conv_integer(addr));

end if;
end process;

VHDL Block RAM Read/Write Synchronization Coding Example Five
To describe a read-first synchronization, reorder the process body.

process (clk)
begin

if (clk’event and clk = ’1’) then
do <= RAM(conv_integer(addr));
if (we = ’1’) then

RAM(conv_integer(addr)) := di;
end if;

end if;
end process;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 189

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Re-Settable Data Outputs (Block RAM)
Optionally, you can describe a reset to any constant value of synchronously read data.
XST recognizes it and takes advantage of the synchronous set/reset feature of block
RAMs. For a RAM port with read-first synchronization, describe the reset functionality
as follows.

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then -- optional RAM enable

if we = ’1’ then -- write enable
ram(conv_integer(addr)) <= di;

end if;
if rst = ’1’ then -- optional dataout reset

do <= "00011101";
else

do <= ram(conv_integer(addr));
end if;

end if;
end if;

end process;

Byte-Write Enable Support (Block RAM)
The byte-wide write enable feature available with block RAM resources offers advanced
control for writing data into RAM. It allows you to separately control which portions of
8 bits of an addressed memory location can be written to.

From an HDL modelling and inference standpoint, the concept can be further described
as a column-based write. The RAM is seen as a collection of equal size columns. During
a write cycle, you separately control writing into each of these columns.

XST provides inference capabilities that allow you to take advantage of the block RAM
byte write enable feature. XST now supports two description styles:

• Two-process description style

The two-process description style has been available since byte-write enable
inference support was introduced in XST. This description style continues to be
supported in this release, but is no longer the recommended way to describe
byte-write enable functionality.

• Single-process description style

The single-process description style is new in this release.

Caution! Xilinx® recommends that you use the single-process description style. If
currently using the two-process description style, consider adjusting your HDL code
to the single-process approach. For new designs, do not try using the two-process
description style at all.

Caution! The two-process description style does not allow you to properly describe
byte-write enable functionality in conjunction with the no-change synchronization
mode. Use the single-process description style instead.

XST User Guide for Virtex-6 and Spartan-6 Devices
190 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Process Description Style
The single-process description style is more intuitive and less error-prone than the
two-process description style. Xilinx® recommends that you use the single-process
description style, provided that the following requirements are met.

• Columns of equal widths

• Number of write columns: 2 or 4.

• Supported data widths: 2x8-bit (two columns of 8 bits each), 2x9-bit, 2x16-bit,
2x18-bit, 4x8-bit, 4x9-bit.

Note XST does not support other data widths, such as 2x12-bit, 4x5-bit, or 8x8-bit.
XST cannot implement these data widths on block RAM resources. Instead, XST
uses distributed RAM resources and creates additional multiplexing logic on the
data input.

• RAM depth: any.

XST implements the RAM using one or several block RAM primitives as needed.

• Supported read-write synchronizations: read-first, write-first, no-change.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 191

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Process Description Style VHDL Coding Example
The following recommended VHDL coding example uses generics and a for-loop
construct for a compact and easily changeable configuration of the desired number and
width of write columns.

--
-- Single-Port BRAM with Byte-wide Write Enable
-- 2x8-bit write
-- Read-First mode
-- Single-process description
-- Compact description of the write with a for-loop statement
-- Column width and number of columns easily configurable
--
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/bytewrite_ram_1b.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bytewrite_ram_1b is

generic (
SIZE : integer := 1024;
ADDR_WIDTH : integer := 10;
COL_WIDTH : integer := 8;
NB_COL : integer := 2);

port (
clk : in std_logic;
we : in std_logic_vector(NB_COL-1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(NB_COL*COL_WIDTH-1 downto 0);
do : out std_logic_vector(NB_COL*COL_WIDTH-1 downto 0));

end bytewrite_ram_1b;

architecture behavioral of bytewrite_ram_1b is

type ram_type is array (SIZE-1 downto 0)
of std_logic_vector (NB_COL*COL_WIDTH-1 downto 0);

signal RAM : ram_type := (others => (others => ’0’));

begin

process (clk)
begin
if rising_edge(clk) then
do <= RAM(conv_integer(addr));
for i in 0 to NB_COL-1 loop
if we(i) = ’1’ then

RAM(conv_integer(addr))((i+1)*COL_WIDTH-1 downto i*COL_WIDTH)
<= di((i+1)*COL_WIDTH-1 downto i*COL_WIDTH);

end if;
end loop;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6 and Spartan-6 Devices
192 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Process Description Style Verilog Coding Example
The following recommended Verilog coding example uses parameters and a
generate-for construct.

//
// Single-Port BRAM with Byte-wide Write Enable
// 4x9-bit write
// Read-First mode
// Single-process description
// Compact description of the write with a generate-for statement
// Column width and number of columns easily configurable
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/bytewrite_ram_1b.v
//
module v_bytewrite_ram_1b (clk, we, addr, di, do);

parameter SIZE = 1024;
parameter ADDR_WIDTH = 10;
parameter COL_WIDTH = 9;
parameter NB_COL = 4;

input clk;
input [NB_COL-1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [NB_COL*COL_WIDTH-1:0] di;
output reg [NB_COL*COL_WIDTH-1:0] do;

reg [NB_COL*COL_WIDTH-1:0] RAM [SIZE-1:0];

always @(posedge clk)
begin
do <= RAM[addr];

end

generate
genvar i;
for (i = 0; i < NB_COL; i = i+1)
begin
always @(posedge clk)
begin
if (we[i])
RAM[addr][(i+1)*COL_WIDTH-1:i*COL_WIDTH] <= di[(i+1)*COL_WIDTH-1:i*COL_WIDTH];

end
end

endgenerate

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 193

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Process Description Style for No-Change VHDL Coding Example
The single-process description style is the only way to correctly model byte-write
enable functionality in conjunction with no-change read-write synchronization. This is
typically done as follows:

--
-- Single-Port BRAM with Byte-wide Write Enable
-- 2x8-bit write
-- No-Change mode
-- Single-process description
-- Compact description of the write with a for-loop statement
-- Column width and number of columns easily configurable
--
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/bytewrite_nochange.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bytewrite_nochange is

generic (
SIZE : integer := 1024;
ADDR_WIDTH : integer := 10;
COL_WIDTH : integer := 8;
NB_COL : integer := 2);

port (
clk : in std_logic;
we : in std_logic_vector(NB_COL-1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(NB_COL*COL_WIDTH-1 downto 0);
do : out std_logic_vector(NB_COL*COL_WIDTH-1 downto 0));

end bytewrite_nochange;

architecture behavioral of bytewrite_nochange is

type ram_type is array (SIZE-1 downto 0) of std_logic_vector (NB_COL*COL_WIDTH-1 downto 0);
signal RAM : ram_type := (others => (others => ’0’));

begin

process (clk)
begin
if rising_edge(clk) then
if (we = (we’range => ’0’)) then
do <= RAM(conv_integer(addr));

end if;
for i in 0 to NB_COL-1 loop
if we(i) = ’1’ then

RAM(conv_integer(addr))((i+1)*COL_WIDTH-1 downto i*COL_WIDTH)
<= di((i+1)*COL_WIDTH-1 downto i*COL_WIDTH);

end if;
end loop;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6 and Spartan-6 Devices
194 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Process Description Style for No-Change Verilog Coding Example
//
// Single-Port BRAM with Byte-wide Write Enable
// 4x9-bit write
// No-Change mode
// Single-process description
// Compact description of the write with a generate-for statement
// Column width and number of columns easily configurable
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/bytewrite_nochange.v
//
module v_bytewrite_nochange (clk, we, addr, di, do);

parameter SIZE = 1024;
parameter ADDR_WIDTH = 10;
parameter COL_WIDTH = 9;
parameter NB_COL = 4;

input clk;
input [NB_COL-1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [NB_COL*COL_WIDTH-1:0] di;
output reg [NB_COL*COL_WIDTH-1:0] do;

reg [NB_COL*COL_WIDTH-1:0] RAM [SIZE-1:0];

always @(posedge clk)
begin
if (~|we)
do <= RAM[addr];

end

generate
genvar i;
for (i = 0; i < NB_COL; i = i+1)
begin
always @(posedge clk)
begin
if (we[i])
RAM[addr][(i+1)*COL_WIDTH-1:i*COL_WIDTH]

<= di[(i+1)*COL_WIDTH-1:i*COL_WIDTH];
end

end
endgenerate

endmodule

Two-Process Description Style
Caution! In order to take advantage of block RAM byte-write enable capabilities, you
must provide adequate data read synchronization. If you do not do so, XST implements
the described functionality sub-optimally, using distributed RAM resources instead.

Although Xilinx now recommends the single-process description style, XST still
provides legacy support for the two-process description style, if you are unable
to migrate your Hardware Description Language (HDL) code to the improved
single-process description style.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 195

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

With the two-process description style:

• A combinatorial process describes which data is loaded and read for each byte. In
particular, the write enable functionality is described there, and not in the main
sequential process.

• A sequential process describes the write and read synchronization.

• Data widths are more restrictive than with the single-process method:

– Number of write columns: 2 or 4

– Write column widths: 8-bit or 9-bit

– Supported data widths: 2x8-bit (two columns of 8 bits each), 2x9-bit, 4x8-bit,
4x9-bit

Caution! The two-process description style does not allow you to properly describe
no-change read-write synchronization. Use the single-process approach in this case.

XST User Guide for Virtex-6 and Spartan-6 Devices
196 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Two-Process Description Style VHDL Coding Example
--
-- Single-Port BRAM with Byte-wide Write Enable
-- 2x8-bit write
-- Read-First Mode
-- Two-process description
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_24.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_24 is

generic (
SIZE : integer := 512;
ADDR_WIDTH : integer := 9;
COL_WIDTH : integer := 16;
NB_COL : integer := 2);

port (
clk : in std_logic;
we : in std_logic_vector(NB_COL-1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(NB_COL*COL_WIDTH-1 downto 0);
do : out std_logic_vector(NB_COL*COL_WIDTH-1 downto 0));

end rams_24;

architecture syn of rams_24 is

type ram_type is array (SIZE-1 downto 0) of std_logic_vector (NB_COL*COL_WIDTH-1 downto 0);
signal RAM : ram_type := (others => (others => ’0’));

signal di0, di1 : std_logic_vector (COL_WIDTH-1 downto 0);
begin

process(we, di)
begin

if we(1) = ’1’ then
di1 <= di(2*COL_WIDTH-1 downto 1*COL_WIDTH);

else
di1 <= RAM(conv_integer(addr))(2*COL_WIDTH-1 downto 1*COL_WIDTH);

end if;

if we(0) = ’1’ then
di0 <= di(COL_WIDTH-1 downto 0);

else
di0 <= RAM(conv_integer(addr))(COL_WIDTH-1 downto 0);

end if;
end process;

process(clk)
begin

if (clk’event and clk = ’1’) then
do <= RAM(conv_integer(addr));
RAM(conv_integer(addr)) <= di1 & di0;

end if;
end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 197

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Two-Process Description Style Verilog Coding Example
//
// Single-Port BRAM with Byte-wide Write Enable (2 bytes) in Read-First Mode
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_24.v
//
module v_rams_24 (clk, we, addr, di, do);

parameter SIZE = 512;
parameter ADDR_WIDTH = 9;
parameter DI_WIDTH = 8;

input clk;
input [1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [2*DI_WIDTH-1:0] di;
output [2*DI_WIDTH-1:0] do;
reg [2*DI_WIDTH-1:0] RAM [SIZE-1:0];
reg [2*DI_WIDTH-1:0] do;

reg [DI_WIDTH-1:0] di0, di1;

always @(we or di)
begin

if (we[1])
di1 = di[2*DI_WIDTH-1:1*DI_WIDTH];

else
di1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];

if (we[0])
di0 = di[DI_WIDTH-1:0];

else
di0 = RAM[addr][DI_WIDTH-1:0];

end

always @(posedge clk)
begin

do <= RAM[addr];
RAM[addr]<={di1,di0};

end

endmodule

Asymmetric Ports Support (Block RAM)
This section discusses Asymmetric Ports Support (Block RAM), and includes:

• About Port Asymmetry

• Modelling

• Shared Variable (VHDL)

• Read-Write Synchronization

• Parity Bits

• Limitations

• Reporting

XST User Guide for Virtex-6 and Spartan-6 Devices
198 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

About Port Asymmetry
Xilinx® Block RAM resources can be configured with two asymmetric ports. One port
accesses the physical memory with a given data width. The other port accesses the same
physical memory, but with a different data width. Both ports have physical access to
the same memory resources, but see a different logical organization of the RAM. For
example, the same 2048 bits of physical memory may be seen as:
• 256x8-bit by port A
• 64x16-bit by port B

Such an asymmetrically configured block RAM is also said to have ports with different
aspect ratios.

A typical use of port asymmetry is to create storage and buffering between two flows of
data with different data width characteristics, and operating at asymmetric speeds.

Modelling
Like RAMs with no port asymmetry, block RAMs with asymmetric ports are modelled
with a single array of array object. The key concept is that the depth and width
characteristics of the modelling signal or shared variable, match the RAM port with the
lower data width (subsequently the larger depth).

As a result of this modelling requirement, describing a read or write access for the port
with the larger data width no longer implies one assignment, but several assignments
instead. The number of assignments equals the ratio between the two asymmetric data
widths.

Each of these assignments may be explicitly described as illustrated in the following
coding examples.

Asymmetric Port RAM VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 256x8-bit write-only
-- Port B is 64x32-bit read-only
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_1a.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_1a is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
weA : in std_logic;
enA : in std_logic;
enB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 199

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

end asymmetric_ram_1a;

architecture behavioral of asymmetric_ram_1a is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
signal ram : ramType := (others => (others => ’0’));

signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if enA = ’1’ then
if weA = ’1’ then
ram(conv_integer(addrA)) <= diA;

end if;
end if;

end if;
end process;

process (clkB)
begin
if rising_edge(clkB) then
if enB = ’1’ then
readB(minWIDTH-1 downto 0)

<= ram(conv_integer(addrB&conv_std_logic_vector(0,2)));
readB(2*minWIDTH-1 downto minWIDTH)

<= ram(conv_integer(addrB&conv_std_logic_vector(1,2)));
readB(3*minWIDTH-1 downto 2*minWIDTH)

<= ram(conv_integer(addrB&conv_std_logic_vector(2,2)));
readB(4*minWIDTH-1 downto 3*minWIDTH)

<= ram(conv_integer(addrB&conv_std_logic_vector(3,2)));
end if;
regB <= readB;

end if;
end process;

doB <= regB;

end behavioral;

XST User Guide for Virtex-6 and Spartan-6 Devices
200 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Asymmetric Port RAM Verilog Coding Example
//
// Asymmetric port RAM
// Port A is 256x8-bit write-only
// Port B is 64x32-bit read-only
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/asymmetric_ram_1a.v
//
module v_asymmetric_ram_1a (clkA, clkB, weA, reB, addrA, addrB, diA, doB);

parameter WIDTHA = 8;
parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;
parameter WIDTHB = 32;
parameter SIZEB = 64;
parameter ADDRWIDTHB = 6;

input clkA;
input clkB;
input weA;
input reB;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
output reg [WIDTHB-1:0] doB;

‘define max(a,b) {(a) > (b) ? (a) : (b)}
‘define min(a,b) {(a) < (b) ? (a) : (b)}

localparam maxSIZE = ‘max(SIZEA, SIZEB);
localparam maxWIDTH = ‘max(WIDTHA, WIDTHB);
localparam minWIDTH = ‘min(WIDTHA, WIDTHB);
localparam RATIO = maxWIDTH / minWIDTH;

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];

reg [WIDTHB-1:0] readB;

always @(posedge clkA)
begin
if (weA)
RAM[addrA] <= diA;

end

always @(posedge clkB)
begin
if (reB)
begin
doB <= readB;
readB[4*minWIDTH-1:3*minWIDTH] <= RAM[{addrB, 2’d3}];
readB[3*minWIDTH-1:2*minWIDTH] <= RAM[{addrB, 2’d2}];
readB[2*minWIDTH-1:minWIDTH] <= RAM[{addrB, 2’d1}];
readB[minWIDTH-1:0] <= RAM[{addrB, 2’d0}];

end
end

endmodule

VHDL Coding Example Using For-Loop Statement
To make your VHDL code more compact, easier to maintain, and easier to scale, use a
for-loop statement as shown in the following coding example.

--
-- Asymmetric port RAM
-- Port A is 256x8-bit write-only
-- Port B is 64x32-bit read-only
-- Compact description with a for-loop statement
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 201

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

-- File: HDL_Coding_Techniques/rams/asymmetric_ram_1b.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_1b is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
weA : in std_logic;
enA : in std_logic;
enB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_1b;

architecture behavioral of asymmetric_ram_1b is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
signal ram : ramType := (others => (others => ’0’));

XST User Guide for Virtex-6 and Spartan-6 Devices
202 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if enA = ’1’ then
if weA = ’1’ then
ram(conv_integer(addrA)) <= diA;

end if;
end if;

end if;

end process;

process (clkB)
begin
if rising_edge(clkB) then
if enB = ’1’ then
for i in 0 to RATIO-1 loop
readB((i+1)*minWIDTH-1 downto i*minWIDTH)

<= ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))));
end loop;

end if;
regB <= readB;

end if;
end process;

doB <= regB;

end behavioral;

Verilog Coding Example Using Parameters and Generate-For Statement
To make your Verilog code more compact and easier to modify, use parameters and a
generate-for statement as shown in the following coding example.

//
// Asymmetric port RAM
// Port A is 256x8-bit write-only
// Port B is 64x32-bit read-only
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/v_asymmetric_ram_1b.v
//
module v_asymmetric_ram_1b (clkA, clkB, weA, reB, addrA, addrB, diA, doB);

parameter WIDTHA = 8;
parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;
parameter WIDTHB = 32;
parameter SIZEB = 64;
parameter ADDRWIDTHB = 6;

input clkA;
input clkB;
input weA;
input reB;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
output reg [WIDTHB-1:0] doB;

‘define max(a,b) {(a) > (b) ? (a) : (b)}
‘define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;
input integer value;
reg [31:0] shifted;
integer res;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 203

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

begin
if (value < 2)
log2 = value;

else
begin
shifted = value-1;
for (res=0; shifted>0; res=res+1)
shifted = shifted>>1;

log2 = res;
end

end
endfunction

localparam maxSIZE = ‘max(SIZEA, SIZEB);
localparam maxWIDTH = ‘max(WIDTHA, WIDTHB);
localparam minWIDTH = ‘min(WIDTHA, WIDTHB);
localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];

reg [WIDTHB-1:0] readB;

genvar i;

always @(posedge clkA)
begin
if (weA)
RAM[addrA] <= diA;

end

always @(posedge clkB)
begin
if (reB)
doB <= readB;

end

generate for (i = 0; i < RATIO; i = i+1)
begin: ramread
localparam [log2RATIO-1:0] lsbaddr = i;
always @(posedge clkB)
begin
readB[(i+1)*minWIDTH-1:i*minWIDTH] <= RAM[{addrB, lsbaddr}];

end
end

endgenerate

endmodule

Note These coding examples use min, max, and log2 functions to make the code as
generic and clean as possible. Those functions can be defined anywhere in the design,
typically in a package.

Shared Variable (VHDL)
When you describe a symmetric port RAM in VHDL, a shared variable is required only if
you describe two ports writing into the RAM. Otherwise, a signal is preferred.

When you describe an asymmetric port RAM in VHDL, a shared variable may be
required even if only one write port is described. If the write port has the larger data
width, several write assignments are needed to describe it, and a shared variable is
therefore required as shown in the following coding example.

Shared Variable Required VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 256x8-bit read-only
-- Port B is 64x32-bit write-only
-- Compact description with a for-loop statement

XST User Guide for Virtex-6 and Spartan-6 Devices
204 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

-- A shared variable is necessary because of the multiple write assignments
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_4.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_4 is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
reA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0)
);

end asymmetric_ram_4;

architecture behavioral of asymmetric_ram_4 is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 205

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

shared variable ram : ramType := (others => (others => ’0’));

signal readA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal regA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if reA = ’1’ then
readA <= ram(conv_integer(addrA));

end if;
regA <= readA;

end if;
end process;

process (clkB)
begin
if rising_edge(clkB) then
if weB = ’1’ then
for i in 0 to RATIO-1 loop
ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))))

:= diB((i+1)*minWIDTH-1 downto i*minWIDTH);
end loop;

end if;
end if;

end process;

doA <= regA;

end behavioral;

Caution! Shared variables are an extension of variables, from which they inherit all
basic characteristics, allowing inter-process communication. Use them with great
caution.

• The order in which items in a sequential process are described can condition the
functionality being modelled.

• Two or more processes making assignments to a shared variable in the same
simulation cycle can lead to unpredictable results.

Read-Write Synchronization
Read-Write synchronization is controlled in a similar manner, whether describing a
symmetric or asymmetric RAM. The following coding examples describe a RAM with
two asymmetric read-write ports, and illustrate how to respectively model write-first,
read-first, and no-change synchronization.

Asymmetric Port RAM (Write-First) VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 256x8-bit read-and-write (write-first synchronization)
-- Port B is 64x32-bit read-and-write (write-first synchronization)
-- Compact description with a for-loop statement
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_2b.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_2b is

XST User Guide for Virtex-6 and Spartan-6 Devices
206 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_2b;

architecture behavioral of asymmetric_ram_2b is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => ’0’));

signal readA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 207

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

process (clkA)
begin
if rising_edge(clkA) then
if enA = ’1’ then
if weA = ’1’ then
ram(conv_integer(addrA)) := diA;

end if;
readA <= ram(conv_integer(addrA));

end if;
regA <= readA;

end if;
end process;

process (clkB)
begin
if rising_edge(clkB) then
if enB = ’1’ then
if weB = ’1’ then
for i in 0 to RATIO-1 loop
ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))))

:= diB((i+1)*minWIDTH-1 downto i*minWIDTH);
end loop;

end if;
for i in 0 to RATIO-1 loop
readB((i+1)*minWIDTH-1 downto i*minWIDTH)

<= ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))));
end loop;

end if;
regB <= readB;

end if;
end process;

doA <= regA;
doB <= regB;

end behavioral;

Asymmetric Port RAM (Read-First) VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 256x8-bit read-and-write (read-first synchronization)
-- Port B is 64x32-bit read-and-write (read-first synchronization)
-- Compact description with a for-loop statement
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_2c.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_2c is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weA : in std_logic;
weB : in std_logic;

XST User Guide for Virtex-6 and Spartan-6 Devices
208 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_2c;

architecture behavioral of asymmetric_ram_2c is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => ’0’));

signal readA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if enA = ’1’ then
readA <= ram(conv_integer(addrA));
if weA = ’1’ then
ram(conv_integer(addrA)) := diA;

end if;
end if;
regA <= readA;

end if;
end process;

process (clkB)
begin

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 209

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

if rising_edge(clkB) then
if enB = ’1’ then
for i in 0 to RATIO-1 loop
readB((i+1)*minWIDTH-1 downto i*minWIDTH)

<= ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))));
end loop;
if weB = ’1’ then
for i in 0 to RATIO-1 loop
ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))))

:= diB((i+1)*minWIDTH-1 downto i*minWIDTH);
end loop;

end if;
end if;
regB <= readB;

end if;
end process;

doA <= regA;
doB <= regB;

end behavioral;

Asymmetric Port RAM (No-Change) VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 256x8-bit read-and-write (no-change synchronization)
-- Port B is 64x32-bit read-and-write (no-change synchronization)
-- Compact description with a for-loop statement
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_2d.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_2d is

generic (
WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_2d;

architecture behavioral of asymmetric_ram_2d is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

XST User Guide for Virtex-6 and Spartan-6 Devices
210 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => ’0’));

signal readA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regA : std_logic_vector(WIDTHA-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if enA = ’1’ then
if weA = ’1’ then
ram(conv_integer(addrA)) := diA;

else
readA <= ram(conv_integer(addrA));

end if;
end if;
regA <= readA;

end if;
end process;

process (clkB)
begin
if rising_edge(clkB) then
if enB = ’1’ then
for i in 0 to RATIO-1 loop
if weB = ’1’ then
ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))))

:= diB((i+1)*minWIDTH-1 downto i*minWIDTH);
else
readB((i+1)*minWIDTH-1 downto i*minWIDTH)

<= ram(conv_integer(addrB & conv_std_logic_vector(i,log2(RATIO))));
end if;

end loop;
end if;
regB <= readB;

end if;
end process;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 211

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

doA <= regA;
doB <= regB;

end behavioral;

Parity Bits
For symmetric port RAMs, XST can take advantage of the available block RAM parity
bits to implement extra data bits for word sizes of 9, 18 and 36 bits, as shown in the
following coding example.

Asymmetric Port RAM (Parity Bits) VHDL Coding Example
--
-- Asymmetric port RAM
-- Port A is 2048x18-bit write-only
-- Port B is 4096x9-bit read-only
-- XST uses parity bits to accomodate data widths
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/asymmetric_ram_3.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_3 is

generic (
WIDTHA : integer := 18;
SIZEA : integer := 2048;
ADDRWIDTHA : integer := 11;
WIDTHB : integer := 9;
SIZEB : integer := 4096;
ADDRWIDTHB : integer := 12
);

port (
clkA : in std_logic;
clkB : in std_logic;
weA : in std_logic;
reB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram_3;

architecture behavioral of asymmetric_ram_3 is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;

XST User Guide for Virtex-6 and Spartan-6 Devices
212 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => ’0’));

signal readB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);
signal regB : std_logic_vector(WIDTHB-1 downto 0):= (others => ’0’);

begin

process (clkA)
begin
if rising_edge(clkA) then
if weA = ’1’ then
for i in 0 to RATIO-1 loop
ram(conv_integer(addrA & conv_std_logic_vector(i,log2(RATIO))))

:= diA((i+1)*minWIDTH-1 downto i*minWIDTH);
end loop;

end if;
end if;

end process;

process (clkB)
begin
if rising_edge(clkB) then
regB <= readB;
if reB = ’1’ then
readB <= ram(conv_integer(addrB));

end if;
end if;

end process;

doB <= regB;

end behavioral;

Limitations
Follow these guidelines to ensure that the synthesized solution is implemented
optimally on dedicated block RAM resources.

Caution! Support for port asymmetry is available only if the described RAM can
be implemented on block RAM resources. Be sure to provide adequate data read
synchronization.

Caution! In this release, port asymmetry is supported only if the described RAM fits in
a single block RAM primitive.

If the described asymmetric port RAM does not fit in a single block RAM primitive, you
must manually instantiate the desired device primitives.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 213

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

If XST cannot use asymmetrically-configured block RAM resources, the described RAM
is implemented on LUT resources, giving suboptimal results and a significant increase
in runtime.

Caution! The amount of memory accessible from both ports must match exactly. For
example, do not try to describe a port seeing the RAM as a 256x8-bit (2048 bits of
memory), while the other port sees it as a 64x12-bit (768 bits of memory).

The ratio between both data widths should be a power of two. The ratio between both
port depths should also be a power of two.

XST User Guide for Virtex-6 and Spartan-6 Devices
214 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Reporting
===
* HDL Synthesis *
===

Synthesizing Unit <asymmetric_ram_1a>.
Found 256x8:64x32-bit dual-port RAM <Mram_ram> for signal <ram>.
Found 32-bit register for signal <doB>.
Found 32-bit register for signal <readB>.
Summary:
inferred 1 RAM(s).
inferred 64 D-type flip-flop(s).

Unit <asymmetric_ram_1a> synthesized.

===
HDL Synthesis Report

Macro Statistics
RAMs : 1
256x8:64x32-bit dual-port RAM : 1
Registers : 2
32-bit register : 2

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <asymmetric_ram_1a>.
INFO:Xst - The RAM <Mram_ram> will be implemented as a BLOCK RAM,
absorbing the following register(s): <readB> <doB>

| ram_type | Block | |

| Port A |
aspect ratio	256-word x 8-bit	
mode	read-first	
clkA	connected to signal <clkA>	rise
weA	connected to signal <weA_0>	high
addrA	connected to signal <addrA>	
diA	connected to signal <diA>	

| optimization | speed | |

| Port B |
aspect ratio	64-word x 32-bit	
mode	write-first	
clkB	connected to signal <clkB>	rise
enB	connected to signal <enB>	high
addrB	connected to signal <addrB>	
doB	connected to signal <doB>	

| optimization | speed | |

Unit <asymmetric_ram_1a> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
RAMs : 1
256x8:64x32-bit dual-port block RAM : 1

===

…

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 215

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

RAM Initial Contents
This section discusses RAM Initial Contents, and includes:

• Specifying Initial Contents in the HDL Source Code

• Specifying Initial Contents in an External Data File

Specifying Initial Contents in the HDL Source Code
In VHDL, use the signal default value mechanism to describe initial contents of the RAM
VHDL directly in the Hardware Description Language (HDL) source code.

VHDL Coding Example One
type ram_type is array (0 to 31) of std_logic_vector(19 downto 0);
signal RAM : ram_type :=
(

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
X"00340", X"00241", X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021", X"0030D", X"08201"

);

If all addressable words are to be initialized to the same value, you can write:

type ram_type is array (0 to 127) of std_logic_vector (15 downto 0);
signal RAM : ram_type := (others => "0000111100110101");

If all bit positions in the RAM initialize to the same value, you can write:

type ram_type is array (0 to 127) of std_logic_vector (15 downto 0);
signal RAM : ram_type := (others => (others => ’1’));

VHDL Coding Example Two
You can also selectively define particular values for specific address positions or ranges.

type ram_type is array (255 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type:= (

196 downto 110 => X"B8B8",
100 => X"FEFC"
99 downto 0 => X"8282",
others => X"3344");

Verilog Coding Example One
In Verilog, use an initial block.

reg [19:0] ram [31:0];

initial begin
ram[31] = 20’h0200A; ram[30] = 20’h00300; ram[39] = 20’h08101;
(...)
ram[2] = 20’h02341; ram[1] = 20’h08201; ram[0] = 20’h0400D;

end

Verilog Coding Example Two
If all addressable words initialize to the same value, you can also write:

Reg [DATA_WIDTH-1:0] ram [DEPTH-1:0];

integer i;
initial for (i=0; i<DEPTH; i=i+1) ram[i] = 0;

XST User Guide for Virtex-6 and Spartan-6 Devices
216 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Verilog Coding Example Three
You can also initialize specific address positions or address ranges.

reg [15:0] ram [255:0];

integer index;
initial begin

for (index = 0 ; index <= 97 ; index = index + 1)
ram[index] = 16’h8282;

ram[98] <= 16’h1111;
ram[99] <= 16’h7778;
for (index = 100 ; index <= 255 ; index = index + 1)

ram[index] = 16’hB8B8;
end

Specifying Initial Contents in an External Data File
Use the file read function in the HDL source code to load the initial contents from an
external data file.

• The external data file is an ASCII text file with any name.

• Each line in the data file describes the initial contents at an address position in the
RAM.

• There must be as many lines in the file as there are rows in the RAM array. An
insufficient number of lines is flagged.

• The addressable position related to a given line is defined by the direction of the
primary range of the signal modelling the RAM.

• RAM contents can be represented in either binary or hexadecimal. You cannot
mix both.

• The file cannot contain any other contents, such as comments.

Following is an example of the contents of a file initializing an 8 x 32-bit RAM with
binary values:

00001111000011110000111100001111
01001010001000001100000010000100
00000000001111100000000001000001
11111101010000011100010000100100
00001111000011110000111100001111
01001010001000001100000010000100
00000000001111100000000001000001
11111101010000011100010000100100

VHDL Coding Example
Load this data as follows in VHDL:

type RamType is array(0 to 127) of bit_vector(31 downto 0);

impure function InitRamFromFile (RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;

begin
for I in RamType’range loop

readline (RamFile, RamFileLine);
read (RamFileLine, RAM(I));

end loop;
return RAM;

end function;

signal RAM : RamType := InitRamFromFile("rams_20c.data");

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 217

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Verilog Coding Example
In Verilog, use a $readmemb or $readmemh system task to load respectively
binary-formatted or hexadecimal data.

reg [31:0] ram [0:63];

initial begin
$readmemb("rams_20c.data", ram, 0, 63);

end

For more information, see:

• VHDL File Type Support in Chapter 3, XST VHDL Language Support

• Chapter 5, XST Behavioral Verilog Support

Block RAM Optimization Strategies
This section discusses Block RAM Optimization Strategies, and includes:

• About Block RAM Optimization Strategies

• Block RAM Performance

• Block RAM Device Utilization

• Block RAM Power

• Rules for Small RAMs

• Mapping Logic and Finite State Machine (FSM) Components to Block RAM

• Block RAM Resource Management

• Block RAM Packing

About Block RAM Optimization Strategies
When an inferred RAM macro does not fit in a single block RAM, you may consider
various strategies to partition it onto several block RAMs. Depending on your choice,
the number of involved block RAM primitives and the amount of surrounding logic
will vary, leading to different optimization trade-offs between performance, device
utilization, and power.

Block RAM Performance
The default block RAM implementation strategy is aimed at maximizing performance.
As a result, for a given RAM size requiring multiple block RAM primitives, XST does
not seek to achieve the minimal theoretical number of block RAM primitives.

Implementing small RAMs on block resources often does not lead to optimal
performance. Furthermore, block RAM resources can be used for those small RAMs
at the expense of much larger macros. In order to achieve better design performance,
XST implements small RAMs on distributed resources. For more information, see
Rules for Small RAMs.

Block RAM Device Utilization
XST does not support area-oriented block RAM implementation. Xilinx® recommends
the CORE Generator™ software for area-oriented implementation. For more information
on RAM implementation, see Chapter 8, XST FPGA Optimization.

XST User Guide for Virtex-6 and Spartan-6 Devices
218 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Block RAM Power
XST can reduce RAM power dissipation. The techniques it uses are part of a larger
set of optimizations enabled by the Power Reduction (POWER) synthesis option.
When enabled, power reduction is sought in conjunction with both Area and Speed
optimization goals. If your primary concern is power reduction, and you are willing
to give up some degree of speed or area optimization, manually apply RAM Style
(RAM_STYLE) with a value of BLOCK_POWER2.

Rules for Small RAMs
In order to save block RAM resources, XST does not implement small memories on block
RAM. The threshold can vary depending on:

• The targeted device family

• The number of addressable data words (memory depth)

• The total number of memory bits (number of addressable data words * data word
width)

Inferred RAMs are implemented on block RAM resources when the criteria in the
following table are met.

Criteria for Implementing Inferred RAMs on Block RAM Resources
Devices Depth Depth * Width

Spartan®-6 >= 127 words > 512 bits

Virtex®-6 >= 127 words > 512 bits

Use RAM Style (RAM_STYLE) to override these criteria and force implementation of
small RAMs and ROMs on block resources.

Mapping Logic and Finite State Machine (FSM) Components to Block
RAM

In addition to RAM inference capabilities, XST can also be instructed to implement
the following to block RAM resources:

• Finite State Machine (FSM) components

For more information, see Finite State Machine (FSM) Components in Chapter 7,
XST HDL Coding Techniques.

• General logic

For more information, see Mapping Logic to Block RAM in Chapter 8, XST FPGA
Optimization.

Block RAM Resource Management
XST takes into account actual availability of block RAM resources in order to avoid
overmapping the targeted device. XST may use all block RAM resources available on
the device. BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO) forces XST to
leave some of those resources unallocated.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 219

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

XST determines the actual amount of block RAM resources available for inferred RAM
macros after subtracting the following amounts from the overall pool theoretically
defined by BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)
• Block RAMs that you have instantiated.
• RAMs and ROMs that you forced to block RAM implementation with RAM Style

(RAM_STYLE) or ROM Style (ROM_STYLE). XST honors those constraints before
attempting to implement other inferred RAMs to block resources.

• Block RAMs resulting from the mapping of logic or Finite State Machine (FSM)
components to Map Logic on BRAM (BRAM_MAP).

The XST block RAM allocation strategy also favors the largest inferred RAMs for block
implementation, allowing smaller RAMs to go to block resources if there are any left
on the device.

Although XST avoids it in most cases, block RAM over-utilization can happen if the sum
of block RAMs created from the three cases listed above exceeds available resources.

Block RAM Packing
XST can attempt to implement more RAMs on block resources by trying to pack
small single-port RAMs together. XST can implement two single-port RAMs in a
single dual-port block RAM primitive, where each port manages a physically distinct
part of the block RAM. This optimization is controlled by Automatic BRAM Packing
(AUTO_BRAM_PACKING). It is disabled by default.

Distributed RAM Pipelining
With an adequate number of latency stages, XST can pipeline RAMs implemented on
distributed resources for increased performance. The effect of pipelining is similar to
Flip-Flop Retiming. To insert pipeline stages:

1. Describe the necessary amount of registers in the HDL source code.
2. Place them after the RAM.
3. Set RAM Style (RAM_STYLE) to pipe_distributed.

XST automatically calculates the ideal number of register stages needed to maximize
operating frequency. If the amount of registers available is less, XST issues an HDL
Advisor message during Advanced HDL Synthesis reporting the number of additional
stages needed to achieve the optimum.

XST cannot pipeline distributed RAMs if the registers you describe have asynchronous
set/reset logic. XST can pipeline RAMs if registers contain synchronous reset signals.

RAMs Related Constraints
• RAM Extraction (RAM_EXTRACT)
• RAM Style (RAM_STYLE)
• ROM Extraction (ROM_EXTRACT)
• ROM Style (ROM_STYLE)
• BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)
• Automatic BRAM Packing (AUTO_BRAM_PACKING)

XST accepts LOC and RLOC on inferred RAMs that can be implemented in a single
block RAM primitive. LOC and RLOC are propagated to the NGC netlist.

XST User Guide for Virtex-6 and Spartan-6 Devices
220 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

RAM Reporting
XST provides detailed information on inferred RAM, including size, synchronization
and control signals. As shown in the following log example, RAM recognition consists
of two steps:

• During HDL Synthesis, XST recognizes the presence of the memory structure in
the HDL source code.

• During Advanced HDL Synthesis, XST acquires a more accurate picture of each
RAM situation, and decides to implement them on distributed or block RAM
resources, taking into account resource availability.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 221

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

An inferred block RAM is generally reported as follows.

===
* HDL Synthesis *
===

Synthesizing Unit <rams_27>.
Found 16-bit register for signal <do>.
Found 128x16-bit dual-port <RAM Mram_RAM> for signal <RAM>.
Summary:

inferred 1 RAM(s).
inferred 16 D-type flip-flop(s).
Unit <rams_27> synthesized.

===
HDL Synthesis Report

Macro Statistics
RAMs : 1
128x16-bit dual-port RAM : 1
Registers : 1
16-bit register : 1

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <rams_27>.
INFO:Xst - The <RAM Mram_RAM> will be implemented as a BLOCK RAM,
absorbing the following register(s): <do>

| ram_type | Block | |

| Port A |
aspect ratio	128-word x 16-bit	
mode	read-first	
clkA	connected to signal <clk>	rise
weA	connected to signal <we>	high
addrA	connected to signal <waddr>	
diA	connected to signal <di>	

| optimization | speed | |

| Port B |
aspect ratio	128-word x 16-bit	
mode	write-first	
clkB	connected to signal <clk>	rise
enB	connected to signal <re>	high
addrB	connected to signal <raddr>	
doB	connected to signal <do>	

| optimization | speed | |

Unit <rams_27> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
RAMs : 1
128x16-bit dual-port block RAM : 1

===

XST User Guide for Virtex-6 and Spartan-6 Devices
222 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Pipelining of a distributed RAM results in the following specific reporting in the
Advanced HDL Synthesis section.

Synthesizing (advanced) Unit <v_rams_22>.
Found pipelined ram on signal <n0006>:
- 1 pipeline level(s) found in a register on signal <n0006>.
Pushing register(s) into the ram macro.

INFO:Xst:2390 - HDL ADVISOR - You can improve the performance of the ram Mram_RAM
by adding 1 register level(s) on output signal n0006.
Unit <v_rams_22> synthesized (advanced).

RAMs Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

Single-Port RAM with Asynchronous Read (Distributed RAM) VHDL Coding
Example

--
-- Single-Port RAM with Asynchronous Read (Distributed RAM)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_04.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_04 is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_04;

architecture syn of rams_04 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;

end if;
end process;

do <= RAM(conv_integer(a));

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 223

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Dual-Port RAM with Asynchronous Read (Distributed RAM) Verilog Coding
Example

//
// Dual-Port RAM with Asynchronous Read (Distributed RAM)
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_09.v
//
module v_rams_09 (clk, we, a, dpra, di, spo, dpo);

input clk;
input we;
input [5:0] a;
input [5:0] dpra;
input [15:0] di;
output [15:0] spo;
output [15:0] dpo;
reg [15:0] ram [63:0];

always @(posedge clk) begin
if (we)

ram[a] <= di;
end

assign spo = ram[a];
assign dpo = ram[dpra];

endmodule

Single-Port Block RAM Read-First Mode VHDL Coding Example
--
-- Single-Port Block RAM Read-First Mode
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_01.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_01 is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_01;

architecture syn of rams_01 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM: ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then

if we = ’1’ then
RAM(conv_integer(addr)) <= di;

end if;
do <= RAM(conv_integer(addr)) ;

end if;
end if;

end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
224 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM Read-First Mode Verilog Coding Example
//
// Single-Port Block RAM Read-First Mode
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_01.v
//
module v_rams_01 (clk, en, we, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
RAM[addr]<=di;

do <= RAM[addr];
end

end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 225

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM Write-First Mode VHDL Coding Example
--
-- Single-Port Block RAM Write-First Mode (recommended template)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_02a.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_02a is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_02a;

architecture syn of rams_02a is
type ram_type is array (63 downto 0)

of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then

if we = ’1’ then
RAM(conv_integer(addr)) <= di;
do <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end if;
end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
226 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM Write-First Mode Verilog Coding Example
//
// Single-Port Block RAM Write-First Mode (recommended template)
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_02a.v
//
module v_rams_02a (clk, we, en, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
begin

RAM[addr] <= di;
do <= di;

end
else

do <= RAM[addr];
end

end
endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 227

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM No-Change Mode VHDL Coding Example
--
-- Single-Port Block RAM No-Change Mode
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_03.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_03 is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_03;

architecture syn of rams_03 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then

if we = ’1’ then
RAM(conv_integer(addr)) <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end if;
end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
228 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM No-Change Mode Verilog Coding Example
//
// Single-Port Block RAM No-Change Mode
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_03.v
//
module v_rams_03 (clk, we, en, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
RAM[addr] <= di;

else
do <= RAM[addr];

end
end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 229

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Dual-Port Block RAM with Two Write Ports VHDL Coding Example
--
-- Dual-Port Block RAM with Two Write Ports
-- Correct Modelization with a Shared Variable
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_16b.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity rams_16b is
port(clka : in std_logic;

clkb : in std_logic;
ena : in std_logic;
enb : in std_logic;
wea : in std_logic;
web : in std_logic;
addra : in std_logic_vector(6 downto 0);
addrb : in std_logic_vector(6 downto 0);
dia : in std_logic_vector(15 downto 0);
dib : in std_logic_vector(15 downto 0);
doa : out std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0));

end rams_16b;

architecture syn of rams_16b is
type ram_type is array (127 downto 0) of std_logic_vector(15 downto 0);
shared variable RAM : ram_type;

begin

process (CLKA)
begin

if CLKA’event and CLKA = ’1’ then
if ENA = ’1’ then

DOA <= RAM(conv_integer(ADDRA));
if WEA = ’1’ then

RAM(conv_integer(ADDRA)) := DIA;
end if;

end if;
end if;

end process;

process (CLKB)
begin

if CLKB’event and CLKB = ’1’ then
if ENB = ’1’ then

DOB <= RAM(conv_integer(ADDRB));
if WEB = ’1’ then

RAM(conv_integer(ADDRB)) := DIB;
end if;

end if;
end if;

end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
230 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Dual-Port Block RAM with Two Write Ports Verilog Coding Example
//
// Dual-Port Block RAM with Two Write Ports
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_16.v
//
module v_rams_16 (clka,clkb,ena,enb,wea,web,addra,addrb,dia,dib,doa,dob);

input clka,clkb,ena,enb,wea,web;
input [5:0] addra,addrb;
input [15:0] dia,dib;
output [15:0] doa,dob;
reg [15:0] ram [63:0];
reg [15:0] doa,dob;

always @(posedge clka) begin
if (ena)
begin

if (wea)
ram[addra] <= dia;

doa <= ram[addra];
end

end

always @(posedge clkb) begin
if (enb)
begin

if (web)
ram[addrb] <= dib;

dob <= ram[addrb];
end

end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 231

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM with Byte-Wide Write Enable (2 Bytes) in Read-First
Mode VHDL Coding Example

--
-- Single-Port Block RAM with Byte-wide Write Enable (2 bytes) in Read-First Mode
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_24.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_24 is
generic (SIZE : integer := 512;

ADDR_WIDTH : integer := 9;
DI_WIDTH : integer := 8);

port (clk : in std_logic;
we : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(2*DI_WIDTH-1 downto 0);
do : out std_logic_vector(2*DI_WIDTH-1 downto 0));

end rams_24;

architecture syn of rams_24 is

type ram_type is array (SIZE-1 downto 0) of std_logic_vector (2*DI_WIDTH-1 downto 0);
signal RAM : ram_type;

signal di0, di1 : std_logic_vector (DI_WIDTH-1 downto 0);
begin

process(we, di)
begin

if we(1) = ’1’ then
di1 <= di(2*DI_WIDTH-1 downto 1*DI_WIDTH);

else
di1 <= RAM(conv_integer(addr))(2*DI_WIDTH-1 downto 1*DI_WIDTH);

end if;

if we(0) = ’1’ then
di0 <= di(DI_WIDTH-1 downto 0);

else
di0 <= RAM(conv_integer(addr))(DI_WIDTH-1 downto 0);

end if;
end process;

process(clk)
begin

if (clk’event and clk = ’1’) then
do <= RAM(conv_integer(addr));
RAM(conv_integer(addr)) <= di1 & di0;

end if;
end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
232 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM with Byte-Wide Write Enable (2 Bytes) in Read-First
Mode Verilog Coding Example

//
// Single-Port Block RAM with Byte-wide Write Enable (2 bytes) in Read-First Mode
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_24.v
//
module v_rams_24 (clk, we, addr, di, do);

parameter SIZE = 512;
parameter ADDR_WIDTH = 9;
parameter DI_WIDTH = 8;

input clk;
input [1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [2*DI_WIDTH-1:0] di;
output [2*DI_WIDTH-1:0] do;
reg [2*DI_WIDTH-1:0] RAM [SIZE-1:0];
reg [2*DI_WIDTH-1:0] do;

reg [DI_WIDTH-1:0] di0, di1;

always @(we or di)
begin

if (we[1])
di1 = di[2*DI_WIDTH-1:1*DI_WIDTH];

else
di1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];

if (we[0])
di0 = di[DI_WIDTH-1:0];

else
di0 = RAM[addr][DI_WIDTH-1:0];

end

always @(posedge clk)
begin

do <= RAM[addr];
RAM[addr]<={di1,di0};

end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 233

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM with Byte-Wide Write Enable (2 Bytes) in Write-First
Mode VHDL Coding Example

--
-- Single-Port Block RAM with Byte-wide Write Enable (2 bytes) in Write-First Mode
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_25.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_25 is
generic (SIZE : integer := 512;

ADDR_WIDTH : integer := 9;
DI_WIDTH : integer := 8);

port (clk : in std_logic;
we : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(2*DI_WIDTH-1 downto 0);
do : out std_logic_vector(2*DI_WIDTH-1 downto 0));

end rams_25;

architecture syn of rams_25 is
type ram_type is array (SIZE-1 downto 0) of std_logic_vector (2*DI_WIDTH-1 downto 0);
signal RAM : ram_type;

signal di0, di1 : std_logic_vector (DI_WIDTH-1 downto 0);
signal do0, do1 : std_logic_vector (DI_WIDTH-1 downto 0);

begin

process(we, di, addr, RAM)
begin

if we(1) = ’1’ then
di1 <= di(2*DI_WIDTH-1 downto 1*DI_WIDTH);
do1 <= di(2*DI_WIDTH-1 downto 1*DI_WIDTH);

else
di1 <= RAM(conv_integer(addr))(2*DI_WIDTH-1 downto 1*DI_WIDTH);
do1 <= RAM(conv_integer(addr))(2*DI_WIDTH-1 downto 1*DI_WIDTH);

end if;

if we(0) = ’1’ then
di0 <= di(DI_WIDTH-1 downto 0);
do0 <= di(DI_WIDTH-1 downto 0);

else
di0 <= RAM(conv_integer(addr))(DI_WIDTH-1 downto 0);
do0 <= RAM(conv_integer(addr))(DI_WIDTH-1 downto 0);

end if;
end process;

process(clk)
begin

if (clk’event and clk = ’1’) then
do <= do1 & do0;
RAM(conv_integer(addr)) <= di1 & di0;

end if;
end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
234 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM with Byte-Wide Write Enable (2 Bytes) in Write-First
Mode Verilog Coding Example

//
// Single-Port Block RAM with Byte-wide Write Enable (2 bytes) in Write-First Mode
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_25.v
//
module v_rams_25 (clk, we, addr, di, do);

parameter SIZE = 512;
parameter ADDR_WIDTH = 9;
parameter DI_WIDTH = 8;

input clk;
input [1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [2*DI_WIDTH-1:0] di;
output [2*DI_WIDTH-1:0] do;
reg [2*DI_WIDTH-1:0] RAM [SIZE-1:0];
reg [2*DI_WIDTH-1:0] do;

reg [DI_WIDTH-1:0] di0, di1;
reg [DI_WIDTH-1:0] do0, do1;

always @(we or di or addr or RAM)
begin

if (we[1])
begin

di1 = di[2*DI_WIDTH-1:1*DI_WIDTH];
do1 = di[2*DI_WIDTH-1:1*DI_WIDTH];

end
else

begin
di1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];
do1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];

end

if (we[0])
begin

di0 <= di[DI_WIDTH-1:0];
do0 <= di[DI_WIDTH-1:0];

end
else

begin
di0 <= RAM[addr][DI_WIDTH-1:0];
do0 <= RAM[addr][DI_WIDTH-1:0];

end

end

always @(posedge clk)
begin

do <= {do1,do0};
RAM[addr]<={di1,di0};

end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 235

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM with Byte-Wide Write Enable (2 Bytes) in No-Change
Mode VHDL Coding Example)
XST infers latches for signals do1 and do0 during HDL Synthesis. These latches are
absorbed into the block RAM during Advanced HDL Synthesis.

--
-- Single-Port Block RAM with Byte-wide Write Enable (2 bytes) in No-Change Mode
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_26.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_26 is
generic (SIZE : integer := 512;

ADDR_WIDTH : integer := 9;
DI_WIDTH : integer := 8);

port (clk : in std_logic;
we : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
di : in std_logic_vector(2*DI_WIDTH-1 downto 0);
do : out std_logic_vector(2*DI_WIDTH-1 downto 0));

end rams_26;

architecture syn of rams_26 is
type ram_type is array (SIZE-1 downto 0) of std_logic_vector (2*DI_WIDTH-1 downto 0);
signal RAM : ram_type;

signal di0, di1 : std_logic_vector (DI_WIDTH-1 downto 0);
signal do0, do1 : std_logic_vector (DI_WIDTH-1 downto 0);

begin

process(we, di, addr, RAM)
begin

if we(1) = ’1’ then
di1 <= di(2*DI_WIDTH-1 downto 1*DI_WIDTH);

else
di1 <= RAM(conv_integer(addr))(2*DI_WIDTH-1 downto 1*DI_WIDTH);
do1 <= RAM(conv_integer(addr))(2*DI_WIDTH-1 downto 1*DI_WIDTH);

end if;

if we(0) = ’1’ then
di0 <= di(DI_WIDTH-1 downto 0);

else
di0 <= RAM(conv_integer(addr))(DI_WIDTH-1 downto 0);
do0 <= RAM(conv_integer(addr))(DI_WIDTH-1 downto 0);

end if;
end process;

process(clk)
begin

if (clk’event and clk = ’1’) then
RAM(conv_integer(addr)) <= di1 & di0;
do <= do1 & do0;

end if;
end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
236 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Single-Port Block RAM with Byte-Wide Write Enable (2 Bytes) in No-Change
Mode Verilog Coding Example
XST infers latches for signals do1 and do0 during HDL Synthesis. These latches are
absorbed into the block RAM during Advanced HDL Synthesis.

//
// Single-Port Block RAM with Byte-wide Write Enable (2 bytes) in No-Change Mode
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_26.v
//
module v_rams_26 (clk, we, addr, di, do);

parameter SIZE = 512;
parameter ADDR_WIDTH = 9;
parameter DI_WIDTH = 8;

input clk;
input [1:0] we;
input [ADDR_WIDTH-1:0] addr;
input [2*DI_WIDTH-1:0] di;
output [2*DI_WIDTH-1:0] do;
reg [2*DI_WIDTH-1:0] RAM [SIZE-1:0];
reg [2*DI_WIDTH-1:0] do;

reg [DI_WIDTH-1:0] di0, di1;
reg [DI_WIDTH-1:0] do0, do1;

always @(we or di or addr or RAM)
begin

if (we[1])
di1 = di[2*DI_WIDTH-1:1*DI_WIDTH];

else
begin

di1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];
do1 = RAM[addr][2*DI_WIDTH-1:1*DI_WIDTH];

end

if (we[0])
di0 <= di[DI_WIDTH-1:0];

else
begin

di0 <= RAM[addr][DI_WIDTH-1:0];
do0 <= RAM[addr][DI_WIDTH-1:0];

end

end

always @(posedge clk)
begin

do <= {do1,do0};
RAM[addr]<={di1,di0};

end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 237

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Block RAM with Resettable Data Output VHDL Coding Example
--
-- Block RAM with Resettable Data Output
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_18.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_18 is
port (clk : in std_logic;

en : in std_logic;
we : in std_logic;
rst : in std_logic;
addr : in std_logic_vector(6 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_18;

architecture syn of rams_18 is
type ram_type is array (127 downto 0) of std_logic_vector (15 downto 0);
signal ram : ram_type;

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then -- optional enable

if we = ’1’ then -- write enable
ram(conv_integer(addr)) <= di;

end if;
if rst = ’1’ then -- optional reset

do <= (others => ’0’);
else

do <= ram(conv_integer(addr));
end if;

end if;
end if;

end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
238 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Block RAM with Resettable Data Output Verilog Coding Example
//
// Block RAM with Resettable Data Output
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_18.v
//
module v_rams_18 (clk, en, we, rst, addr, di, do);

input clk;
input en;
input we;
input rst;
input [6:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] ram [127:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en) // optional enable
begin

if (we) // write enable
ram[addr] <= di;

if (rst) // optional reset
do <= 16’b0000111100001101;

else
do <= ram[addr];

end
end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 239

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Block RAM with Optional Output Registers VHDL Coding Example
--
-- Block RAM with Optional Output Registers
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_19.vhd
--
library IEEE;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity rams_19 is
port (clk1, clk2 : in std_logic;

we, en1, en2 : in std_logic;
addr1 : in std_logic_vector(5 downto 0);
addr2 : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
res1 : out std_logic_vector(15 downto 0);
res2 : out std_logic_vector(15 downto 0));

end rams_19;

architecture beh of rams_19 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal ram : ram_type;
signal do1 : std_logic_vector(15 downto 0);
signal do2 : std_logic_vector(15 downto 0);

begin

process (clk1)
begin

if rising_edge(clk1) then
if we = ’1’ then

ram(conv_integer(addr1)) <= di;
end if;
do1 <= ram(conv_integer(addr1));

end if;
end process;

process (clk2)
begin

if rising_edge(clk2) then
do2 <= ram(conv_integer(addr2));

end if;
end process;

process (clk1)
begin

if rising_edge(clk1) then
if en1 = ’1’ then

res1 <= do1;
end if;

end if;
end process;

process (clk2)
begin

if rising_edge(clk2) then
if en2 = ’1’ then

res2 <= do2;
end if;

end if;
end process;

end beh;

XST User Guide for Virtex-6 and Spartan-6 Devices
240 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Block RAM with Optional Output Registers Verilog Coding Example
//
// Block RAM with Optional Output Registers
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_19.v
//
module v_rams_19 (clk1, clk2, we, en1, en2, addr1, addr2, di, res1, res2);

input clk1;
input clk2;
input we, en1, en2;
input [6:0] addr1;
input [6:0] addr2;
input [15:0] di;
output [15:0] res1;
output [15:0] res2;
reg [15:0] res1;
reg [15:0] res2;
reg [15:0] RAM [127:0];
reg [15:0] do1;
reg [15:0] do2;

always @(posedge clk1)
begin

if (we == 1’b1)
RAM[addr1] <= di;

do1 <= RAM[addr1];
end

always @(posedge clk2)
begin

do2 <= RAM[addr2];
end

always @(posedge clk1)
begin

if (en1 == 1’b1)
res1 <= do1;

end

always @(posedge clk2)
begin

if (en2 == 1’b1)
res2 <= do2;

end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 241

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Initializing Block RAM (Single-Port Block RAM) VHDL Coding Example
--
-- Initializing Block RAM (Single-Port Block RAM)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_20a.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_20a is
port (clk : in std_logic;

we : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(19 downto 0);
do : out std_logic_vector(19 downto 0));

end rams_20a;

architecture syn of rams_20a is

type ram_type is array (63 downto 0) of std_logic_vector (19 downto 0);
signal RAM : ram_type:= (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

begin

process (clk)
begin

if rising_edge(clk) then
if we = ’1’ then

RAM(conv_integer(addr)) <= di;
end if;

do <= RAM(conv_integer(addr));
end if;

end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
242 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Initializing Block RAM (Single-Port Block RAM) Verilog Coding Example
//
// Initializing Block RAM (Single-Port Block RAM)
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_20a.v
//
module v_rams_20a (clk, we, addr, di, do);

input clk;
input we;
input [5:0] addr;
input [19:0] di;
output [19:0] do;

reg [19:0] ram [63:0];
reg [19:0] do;

initial begin
ram[63] = 20’h0200A; ram[62] = 20’h00300; ram[61] = 20’h08101;
ram[60] = 20’h04000; ram[59] = 20’h08601; ram[58] = 20’h0233A;
ram[57] = 20’h00300; ram[56] = 20’h08602; ram[55] = 20’h02310;
ram[54] = 20’h0203B; ram[53] = 20’h08300; ram[52] = 20’h04002;
ram[51] = 20’h08201; ram[50] = 20’h00500; ram[49] = 20’h04001;
ram[48] = 20’h02500; ram[47] = 20’h00340; ram[46] = 20’h00241;
ram[45] = 20’h04002; ram[44] = 20’h08300; ram[43] = 20’h08201;
ram[42] = 20’h00500; ram[41] = 20’h08101; ram[40] = 20’h00602;
ram[39] = 20’h04003; ram[38] = 20’h0241E; ram[37] = 20’h00301;
ram[36] = 20’h00102; ram[35] = 20’h02122; ram[34] = 20’h02021;
ram[33] = 20’h00301; ram[32] = 20’h00102; ram[31] = 20’h02222;

ram[30] = 20’h04001; ram[29] = 20’h00342; ram[28] = 20’h0232B;
ram[27] = 20’h00900; ram[26] = 20’h00302; ram[25] = 20’h00102;
ram[24] = 20’h04002; ram[23] = 20’h00900; ram[22] = 20’h08201;
ram[21] = 20’h02023; ram[20] = 20’h00303; ram[19] = 20’h02433;
ram[18] = 20’h00301; ram[17] = 20’h04004; ram[16] = 20’h00301;
ram[15] = 20’h00102; ram[14] = 20’h02137; ram[13] = 20’h02036;
ram[12] = 20’h00301; ram[11] = 20’h00102; ram[10] = 20’h02237;
ram[9] = 20’h04004; ram[8] = 20’h00304; ram[7] = 20’h04040;
ram[6] = 20’h02500; ram[5] = 20’h02500; ram[4] = 20’h02500;
ram[3] = 20’h0030D; ram[2] = 20’h02341; ram[1] = 20’h08201;
ram[0] = 20’h0400D;

end

always @(posedge clk)
begin

if (we)
ram[addr] <= di;

do <= ram[addr];
end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 243

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Initializing Block RAM From an External Data File VHDL Coding Example
--
-- Initializing Block RAM from external data file
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_20c.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use std.textio.all;

entity rams_20c is
port(clk : in std_logic;

we : in std_logic;
addr : in std_logic_vector(5 downto 0);
din : in std_logic_vector(31 downto 0);
dout : out std_logic_vector(31 downto 0));

end rams_20c;

architecture syn of rams_20c is

type RamType is array(0 to 63) of bit_vector(31 downto 0);

impure function InitRamFromFile (RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;

begin
for I in RamType’range loop

readline (RamFile, RamFileLine);
read (RamFileLine, RAM(I));

end loop;
return RAM;

end function;

signal RAM : RamType := InitRamFromFile("rams_20c.data");

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if we = ’1’ then

RAM(conv_integer(addr)) <= to_bitvector(din);
end if;
dout <= to_stdlogicvector(RAM(conv_integer(addr)));

end if;
end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
244 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Initializing Block RAM From an External Data File Verilog Coding Example
//
// Initializing Block RAM from external data file
// Binary data
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_20c.v
//
module v_rams_20c (clk, we, addr, din, dout);

input clk;
input we;
input [5:0] addr;
input [31:0] din;
output [31:0] dout;

reg [31:0] ram [0:63];
reg [31:0] dout;

initial
begin

// $readmemb("rams_20c.data",ram, 0, 63);
$readmemb("rams_20c.data",ram);

end

always @(posedge clk)
begin

if (we)
ram[addr] <= din;

dout <= ram[addr];
end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 245

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Pipelined Distributed RAM VHDL Coding Example
--
-- Pipeline distributed RAM
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_22.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_22 is
port (clk : in std_logic;

we : in std_logic;
addr : in std_logic_vector(8 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0));

end rams_22;

architecture syn of rams_22 is
type ram_type is array (511 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;

signal pipe_reg: std_logic_vector(3 downto 0);

attribute ram_style: string;
attribute ram_style of RAM: signal is "pipe_distributed";

begin

process (clk)
begin

if clk’event and clk = ’1’ then
if we = ’1’ then

RAM(conv_integer(addr)) <= di;
else

pipe_reg <= RAM(conv_integer(addr));
end if;
do <= pipe_reg;

end if;
end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
246 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Pipelined Distributed RAM Verilog Coding Example
//
// Pipeline distributed RAM
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_22.v
//
module v_rams_22 (clk, we, addr, di, do);

input clk;
input we;
input [8:0] addr;
input [3:0] di;
output [3:0] do;

(*ram_style="pipe_distributed"*)
reg [3:0] RAM [511:0];
reg [3:0] do;
reg [3:0] pipe_reg;

always @(posedge clk)
begin

if (we)
RAM[addr] <= di;

else
pipe_reg <= RAM[addr];

do <= pipe_reg;
end

endmodule

ROMs
This section discusses HDL Coding Techniques for ROMs, and includes:

• About ROMs

• ROMs Description

• ROMs Implementation

• ROMs Related Constraints

• ROMs Reporting

• ROMs Coding Examples

About Read-Only Memory (ROM)
Read-Only Memory (ROM) has much in common with RAM in terms of HDL modelling
and implementation. If properly registered, a ROM can also be implemented on block
RAM resources by XST.

ROMs Description
This section discusses ROMs Description, and includes:

• ROMs Modelling

• Describing Read Access

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 247

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

ROMs Modelling
ROMs are usually modelled in VHDL with an array of array object. In VHDL, this
object can be either a constant or a signal. Xilinx® recommends using a signal, which
allows you to control implementation of the ROM, either on LUT resources, or on block
RAM resources, by means of a ROM Style (ROM_STYLE) or RAM Style (RAM_STYLE)
constraint attached to the signal.

Constant-Based Declaration VHDL Coding Example
type rom_type is array (0 to 127) of std_logic_vector (19 downto 0);
constant ROM : rom_type:= (

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
(…)
X"04078", X"01110", X"02500", X"02500", X"0030D", X"02341", X"08201", X"0410D"

);

Signal-Based Declaration VHDL Coding Example
type rom_type is array (0 to 127) of std_logic_vector (19 downto 0);
signal ROM : rom_type:= (

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
(…)
X"04078", X"01110", X"02500", X"02500", X"0030D", X"02341", X"08201", X"0410D"

);

ROM Modelled With Initial Block Verilog Coding Example
A ROM can be modelled in Verilog with an initial block. Verilog does not allow
initializing an array with a single statement as allowed by VHDL aggregates. You must
enumerate each address value.

reg [15:0] rom [15:0];

initial begin
rom[0] = 16’b0011111100000010;
rom[1] = 16’b0000000100001001;
rom[2] = 16’b0001000000111000;
rom[3] = 16’b0000000000000000;
rom[4] = 16’b1100001010011000;
rom[5] = 16’b0000000000000000;
rom[6] = 16’b0000000110000000;
rom[7] = 16’b0111111111110000;
rom[8] = 16’b0010000010001001;
rom[9] = 16’b0101010101011000;
rom[10] = 16’b1111111010101010;
rom[11] = 16’b0000000000000000;
rom[12] = 16’b1110000000001000;
rom[13] = 16’b0000000110001010;
rom[14] = 16’b0110011100010000;
rom[15] = 16’b0000100010000000;

end

XST User Guide for Virtex-6 and Spartan-6 Devices
248 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Describing ROM With a Case Statement Coding Example
You can also describe the ROM with a case statement (or equivalent if-elseif
construct).

input [3:0] addr
output reg [15:0] data;

always @(posedge clk) begin
if (en)

case (addr)
4’b0000: data <= 16’h200A;
4’b0001: data <= 16’h0300;
4’b0010: data <= 16’h8101;
4’b0011: data <= 16’h4000;
4’b0100: data <= 16’h8601;
4’b0101: data <= 16’h233A;
4’b0110: data <= 16’h0300;
4’b0111: data <= 16’h8602;
4’b1000: data <= 16’h2222;
4’b1001: data <= 16’h4001;
4’b1010: data <= 16’h0342;
4’b1011: data <= 16’h232B;
4’b1100: data <= 16’h0900;
4’b1101: data <= 16’h0302;
4’b1110: data <= 16’h0102;
4’b1111: data <= 16’h4002;

endcase
end

Loading the contents of the ROM from an external data file:

• Results in more compact and readable HDL source code

• Allows more flexibility in generating or altering the ROM data

For more information, see Specifying Initial Contents in an External Data File in Chapter
7, XST HDL Coding Techniques.

Describing Read Access
Describing access to ROM is similar to describing access to RAM.

Describing Read Access VHDL Coding Example
Provided that you have included the IEEE std_logic_unsigned package defining the
conv_integer conversion function, the VHDL syntax is:

signal addr : std_logic_vector(ADDR_WIDTH-1 downto 0);
do <= ROM(conv_integer(addr));

Describing Read Access Verilog Coding Example
If you have modelled the ROM in an initial block (with data described in the Verilog
source code or loaded from an external data file), the Verilog syntax is:

do <= ROM[addr];

Alternatively in Verilog, use a case construct as shown in Describing ROM With a
Case Statement Coding Example below.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 249

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

ROMs Implementation
When XST detects that a properly synchronized ROM can be implemented on block
RAM resources, the principles discussed in Block RAM Optimization Strategies apply.
To override any default XST decision criteria, use ROM Style (ROM_STYLE) instead of
RAM Style (RAM_STYLE).

• For more information about ROM Style (ROM_STYLE), see Chapter 9, XST Design
Constraints.

• For more information about ROM implementation, see Chapter 8, XST FPGA
Optimization.

ROMs Related Constraints
ROM Style (ROM_STYLE)

XST User Guide for Virtex-6 and Spartan-6 Devices
250 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

ROM Reporting
The following report shows how the ROM is identified during HDL Synthesis. Based on
the availability of proper synchronization, the decision to implement a ROM on block
RAM resources in made during Advanced HDL Synthesis.

===
* HDL Synthesis *
===

Synthesizing Unit <roms_signal>.
Found 20-bit register for signal <data>.
Found 128x20-bit ROM for signal <n0024>.
Summary:

inferred 1 ROM(s).
inferred 20 D-type flip-flop(s).
Unit <roms_signal> synthesized.

===
HDL Synthesis Report

Macro Statistics
ROMs : 1
128x20-bit ROM : 1
Registers : 1
20-bit register : 1

===

===
* Advanced HDL Synthesis *
===

Synthesizing (advanced) Unit <roms_signal>.
INFO:Xst - The ROM <Mrom_ROM> will be implemented as a read-only BLOCK RAM, absorbing the register: <data>.
INFO:Xst - The RAM <Mrom_ROM> will be implemented as BLOCK RAM

| ram_type | Block | |

| Port A |
aspect ratio	128-word x 20-bit	
mode	write-first	
clkA	connected to signal <clk>	rise
enA	connected to signal <en>	high
weA	connected to internal node	high
addrA	connected to signal <addr>	
diA	connected to internal node	
doA	connected to signal <data>	

| optimization | speed | |

Unit <roms_signal> synthesized (advanced).

===
Advanced HDL Synthesis Report

Macro Statistics
RAMs : 1
128x20-bit single-port block RAM : 1

===

ROMs Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 251

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Description of a ROM with a VHDL Constant Coding Example
--
-- Description of a ROM with a VHDL constant
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/roms_constant.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity roms_constant is
port (clk : in std_logic;

en : in std_logic;
addr : in std_logic_vector(6 downto 0);
data : out std_logic_vector(19 downto 0));

end roms_constant;

architecture syn of roms_constant is

type rom_type is array (0 to 127) of std_logic_vector (19 downto 0);
constant ROM : rom_type:= (

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
X"00340", X"00241", X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",

X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021", X"00301", X"00102",
X"02222", X"04001", X"00342", X"0232B", X"00900", X"00302", X"00102", X"04002",
X"00900", X"08201", X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",

X"00102", X"02137", X"02036", X"00301", X"00102", X"02237", X"04004", X"00304",
X"04040", X"02500", X"02500", X"02500", X"0030D", X"02341", X"08201", X"0400D",

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
X"00340", X"00241", X"04112", X"08300", X"08201", X"00500", X"08101", X"00602",

X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021", X"00301", X"00102",
X"02222", X"04001", X"00342", X"0232B", X"00870", X"00302", X"00102", X"04002",
X"00900", X"08201", X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",

X"00102", X"02137", X"FF036", X"00301", X"00102", X"10237", X"04934", X"00304",
X"04078", X"01110", X"02500", X"02500", X"0030D", X"02341", X"08201", X"0410D"
);

begin

process (clk)
begin

if (clk’event and clk = ’1’) then
if (en = ’1’) then

data <= ROM(conv_integer(addr));
end if;

end if;
end process;

end syn;

XST User Guide for Virtex-6 and Spartan-6 Devices
252 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

ROMs Using Block RAM Resources Verilog Coding Example
//
// ROMs Using Block RAM Resources.
// Verilog code for a ROM with registered output (template 1)
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/rams_21a.v
//
module v_rams_21a (clk, en, addr, data);

input clk;
input en;
input [5:0] addr;
output reg [19:0] data;

always @(posedge clk) begin
if (en)

case(addr)
6’b000000: data <= 20’h0200A; 6’b100000: data <= 20’h02222;
6’b000001: data <= 20’h00300; 6’b100001: data <= 20’h04001;
6’b000010: data <= 20’h08101; 6’b100010: data <= 20’h00342;
6’b000011: data <= 20’h04000; 6’b100011: data <= 20’h0232B;
6’b000100: data <= 20’h08601; 6’b100100: data <= 20’h00900;
6’b000101: data <= 20’h0233A; 6’b100101: data <= 20’h00302;
6’b000110: data <= 20’h00300; 6’b100110: data <= 20’h00102;
6’b000111: data <= 20’h08602; 6’b100111: data <= 20’h04002;
6’b001000: data <= 20’h02310; 6’b101000: data <= 20’h00900;
6’b001001: data <= 20’h0203B; 6’b101001: data <= 20’h08201;
6’b001010: data <= 20’h08300; 6’b101010: data <= 20’h02023;
6’b001011: data <= 20’h04002; 6’b101011: data <= 20’h00303;
6’b001100: data <= 20’h08201; 6’b101100: data <= 20’h02433;
6’b001101: data <= 20’h00500; 6’b101101: data <= 20’h00301;
6’b001110: data <= 20’h04001; 6’b101110: data <= 20’h04004;
6’b001111: data <= 20’h02500; 6’b101111: data <= 20’h00301;
6’b010000: data <= 20’h00340; 6’b110000: data <= 20’h00102;
6’b010001: data <= 20’h00241; 6’b110001: data <= 20’h02137;
6’b010010: data <= 20’h04002; 6’b110010: data <= 20’h02036;
6’b010011: data <= 20’h08300; 6’b110011: data <= 20’h00301;
6’b010100: data <= 20’h08201; 6’b110100: data <= 20’h00102;
6’b010101: data <= 20’h00500; 6’b110101: data <= 20’h02237;
6’b010110: data <= 20’h08101; 6’b110110: data <= 20’h04004;
6’b010111: data <= 20’h00602; 6’b110111: data <= 20’h00304;
6’b011000: data <= 20’h04003; 6’b111000: data <= 20’h04040;
6’b011001: data <= 20’h0241E; 6’b111001: data <= 20’h02500;
6’b011010: data <= 20’h00301; 6’b111010: data <= 20’h02500;
6’b011011: data <= 20’h00102; 6’b111011: data <= 20’h02500;
6’b011100: data <= 20’h02122; 6’b111100: data <= 20’h0030D;
6’b011101: data <= 20’h02021; 6’b111101: data <= 20’h02341;
6’b011110: data <= 20’h00301; 6’b111110: data <= 20’h08201;
6’b011111: data <= 20’h00102; 6’b111111: data <= 20’h0400D;

endcase
end

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 253

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Dual-Port ROM VHDL Coding Example
--
-- A dual-port ROM
-- Implementation on LUT or BRAM controlled with a ram_style constraint
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/roms_dualport.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity roms_dualport is
port (clk : in std_logic;

ena, enb : in std_logic;
addra, addrb : in std_logic_vector(5 downto 0);
dataa, datab : out std_logic_vector(19 downto 0));

end roms_dualport;

architecture behavioral of roms_dualport is

type rom_type is array (63 downto 0) of std_logic_vector (19 downto 0);
signal ROM : rom_type:= (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

-- attribute ram_style : string;
-- attribute ram_style of ROM : signal is "distributed";

begin

process (clk)
begin

if rising_edge(clk) then
if (ena = ’1’) then

dataa <= ROM(conv_integer(addra));
end if;

end if;
end process;

process (clk)
begin

if rising_edge(clk) then
if (enb = ’1’) then

datab <= ROM(conv_integer(addrb));
end if;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6 and Spartan-6 Devices
254 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Finite State Machine (FSM) Components
This section discusses HDL Coding Techniques for Finite State Machine (FSM)
components, and includes:

• About Finite State Machine (FSM) Components

• Finite State Machine (FSM) Components Description

• Implementing Finite State Machine (FSM) Components on block RAM Resources

• Finite State Machine (FSM) Safe Implementation

• Finite State Machine (FSM) Related Constraints

• Finite State Machine (FSM) Reporting

• Finite State Machine (FSM) Coding Examples

About Finite State Machine (FSM) Components
XST features specific inference capabilities for synchronous Finite State Machine (FSM)
components, as well as several built-in FSM encoding strategies to accommodate your
optimization goals. XST may also be instructed to abide by your own encoding scheme.

FSM extraction is enabled by default. To disable it, use Automatic FSM Extraction
(FSM_EXTRACT).

Finite State Machine (FSM) Description
This section discusses Finite State Machine (FSM) Description, and includes:

• About Finite State Machine (FSM) Description

• State Register

• Next State Equation

• Unreachable States

• Finite State Machine (FSM) Outputs

• Finite State Machine (FSM) Inputs

• State Encoding Techniques

About Finite State Machine (FSM) Description
XST supports specification of Finite State Machine (FSM) in both Moore and Mealy form.

There are many coding variations, but the following guidelines ensure maximum
readability and maximize the ability of XST to identify the FSM.

A Finite State Machine (FSM) consists of:

• State register

• Next state function

• Outputs function

The following figure shows a Mealy-type FSM.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 255

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

FSM Representation Incorporating Mealy and Moore Machines
Diagram

You can choose among the following Hardware Description Language (HDL) coding
approaches, depending on your goals with respect to code compactness and readability.

• Describing all three components of the FSM in a single sequential process or always
block.

• Describing the state register and next state function together in a sequential process
or always block, and describing the outputs function in a separate combinatorial
process or always block.

• Describing the state register in a sequential process or always block, and describing
the next state and outputs functions together in a separate combinatorial process
or always block.

• Describing the state register in a sequential process or always block, describing the
next state function in a first combinatorial process or always block, and describing
the outputs function in a second separate combinatorial process or always block.

FSM With Three Processes Diagram

State Register
Specify a reset or power-up state for XST to identify a Finite State Machine (FSM). The
state register can be asynchronously or synchronously reset to a particular state. For
an FSM, as for any type of sequential logic, Xilinx® recommends synchronous reset
logic over asynchronous.

State Register VHDL Coding Example
The state register can be specified in VHDL with a standard type such as integer,
bit_vector, or std_logic_vector. Another common coding practice is to define an
enumerated type containing all possible state values and to declare the state register
with that type.

type state_type is (state1, state2, state3, state4);
signal state : state_type;

XST User Guide for Virtex-6 and Spartan-6 Devices
256 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

State Register Verilog Coding Example
The type of a state register in Verilog can be an integer or a set of defined parameters.

parameter [3:0]
s1 = 4’b0001,
s2 = 4’b0010,
s3 = 4’b0100,
s4 = 4’b1000;

reg [3:0] state;

These parameters can be modified to represent different state encoding schemes.

Next State Equation
Next state equations can be described directly in the sequential process or in a distinct
combinatorial process. The simplest coding example is based on a case statement,
whose selector is the current state signal. If using a separate combinatorial process, its
sensitivity list should contain the state signal and all Finite State Machine (FSM) inputs.

Unreachable States
XST detects and reports unreachable states.

Finite State Machine (FSM) Outputs
Non-registered outputs are described either in the combinatorial process or in concurrent
assignments. Registered outputs must be assigned within the sequential process.

Finite State Machine (FSM) Inputs
Registered inputs are described using internal signals, which are assigned in the
sequential process.

State Encoding Techniques
XST features several encoding techniques that can accommodate different optimization
goals, and different Finite State Machine (FSM) patterns. Select the desired encoding
technique with FSM Encoding Algorithm (FSM_ENCODING).

Auto State Encoding
In automatic mode, XST tries to select the best suited encoding method for a given FSM.

One-Hot State Encoding
One-Hot State Encoding is the default encoding scheme. It assigns a distinct bit of code to
each FSM state. As a result, the state register is implemented with one flip-flop for each
state. In a given clock cycle during operation, one and only one bit of the state register is
asserted. Only two bits toggle during a transition between two states. One-Hot State
Encoding is usually a good choice for optimizing speed or reducing power dissipation.

Gray State Encoding
Gray State Encoding:
• Guarantees that only one bit switches between two consecutive states. It is

appropriate for controllers exhibiting long paths without branching.
• Minimizes hazards and glitches. Good results can be obtained when implementing

the state register with T flip-flops.
• Can be used to minimize power dissipation.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 257

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Compact State Encoding
Compact State Encoding consists of minimizing the number of bits in the state variables
and flip-flops. This technique is based on hypercube immersion. Compact State
Encoding is appropriate when trying to optimize area.

Johnson State Encoding
Like Gray State Encoding, Johnson State Encoding is beneficial when using state
machines containing long paths with no branching.

Sequential State Encoding
Sequential State Encoding consists of identifying long paths and applying successive
radix two codes to the states on these paths. Next state equations are minimized.

Speed1 State Encoding
Speed1 State Encoding is oriented for speed optimization. The number of bits for a
state register depends on the specific FSM, but is generally greater than the number
of FSM states.

User State Encoding
In User State Encoding, XST uses the original encoding specified in the Hardware
Description Language (HDL) file. For example, if the state register is described based
on an enumerated type, use Enumerated Encoding (ENUM_ENCODING) to assign
a specific binary value to each state, and select User State Encoding to instruct XST
to follow your coding scheme. For more information, see Chapter 9, XST Design
Constraints.

Implementing Finite State Machine (FSM) Components on block RAM
Resources

Finite State Machine (FSM) components are implemented on slice logic. In order to save
slice logic resources on the targeted device, you can instruct XST to implement FSM
components in block RAM. Such implementation can also favorably impact performance
of large FSM components. Use FSM Style (FSM_STYLE) to chose between the default
implementation on slice logic and block RAM implementation. Allowed values are:
• lut (default)
• bram

If XST cannot honor a request to implement an FSM in block RAM, XST:
• Automatically implements the state machine in slice logic
• Issues a warning during Advanced HDL Synthesis

Such failure usually occurs if the FSM has an asynchronous reset.

Finite State Machine (FSM) Safe Implementation
XST can implement a Finite State Machine (FSM) with added logic that allows it to
recover from an invalid state situation. If a state machine enters an invalid state, the
logic added by XST returns it to a known state, called a recovery state. This process is
known as Safe Implementation mode. To activate Safe FSM implementation, use Safe
Implementation (SAFE_IMPLEMENTATION).

XST automatically selects the reset state as the recovery state. If none is available, XST
selects the power-up state instead. To manually define a specific recovery state, apply
Safe Recovery State (SAFE_RECOVERY_STATE).

XST User Guide for Virtex-6 and Spartan-6 Devices
258 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Finite State Machine (FSM) Related Constraints
• Automatic FSM Extraction (FSM_EXTRACT)

• FSM Style (FSM_STYLE)

• FSM Encoding Algorithm (FSM_ENCODING)

• Enumerated Encoding (ENUM_ENCODING)

• Safe Implementation (SAFE_IMPLEMENTATION)

• Safe Recovery State (SAFE_RECOVERY_STATE)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 259

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Finite State Machine (FSM) Reporting
The XST log provides detailed information about identified Finite State Machine (FSM)
components, and how each of them is encoded.

===
* HDL Synthesis *
===

Synthesizing Unit <fsm_1>.
Found 1-bit register for signal <outp>.
Found 2-bit register for signal <state>.
Found finite state machine <FSM_0> for signal <state>.

States	4
Transitions	5
Inputs	1
Outputs	2
Clock	clk (rising_edge)
Reset	reset (positive)
Reset type	asynchronous
Reset State	s1
Power Up State	s1
Encoding	gray
Implementation	LUT

Summary:

inferred 1 D-type flip-flop(s).
inferred 1 Finite State Machine(s).
Unit <fsm_1> synthesized.

===
HDL Synthesis Report

Macro Statistics
Registers : 1
1-bit register : 1
FSMs : 1

===

===
* Advanced HDL Synthesis *
===

===
Advanced HDL Synthesis Report

Macro Statistics
FSMs : 1
Registers : 1
Flip-Flops : 1
FSMs : 1

===

===
* Low Level Synthesis *
===
Optimizing FSM <state> on signal <state[1:2]> with gray encoding.

State | Encoding

s1 | 00
s2 | 11
s3 | 01
s4 | 10

XST User Guide for Virtex-6 and Spartan-6 Devices
260 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Finite State Machine (FSM) Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

State Machine Described with a Single Process VHDL Coding Example
--
-- State Machine described with a single process
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/state_machines/state_machines_1.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;

entity fsm_1 is
port (clk, reset, x1 : IN std_logic;

outp : OUT std_logic);
end entity;

architecture behavioral of fsm_1 is
type state_type is (s1,s2,s3,s4);
signal state : state_type ;

begin

process (clk)
begin

if rising_edge(clk) then
if (reset =’1’) then

state <= s1;
outp <= ’1’;

else
case state is

when s1 => if x1=’1’ then
state <= s2;
outp <= ’1’;

else
state <= s3;
outp <= ’0’;

end if;
when s2 => state <= s4; outp <= ’0’;
when s3 => state <= s4; outp <= ’0’;
when s4 => state <= s1; outp <= ’1’;

end case;
end if;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 261

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

State Machine with Three Always Blocks Verilog Coding Example
//
// State Machine with three always blocks.
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/state_machines/state_machines_3.v
//
module v_fsm_3 (clk, reset, x1, outp);

input clk, reset, x1;
output outp;
reg outp;
reg [1:0] state;
reg [1:0] next_state;

parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

initial begin
state = 2’b00;

end

always @(posedge clk or posedge reset)
begin

if (reset) state <= s1;
else state <= next_state;

end

always @(state or x1)
begin

case (state)
s1: if (x1==1’b1)

next_state = s2;
else

next_state = s3;
s2: next_state = s4;
s3: next_state = s4;
s4: next_state = s1;

endcase
end

always @(state)
begin

case (state)
s1: outp = 1’b1;
s2: outp = 1’b1;
s3: outp = 1’b0;
s4: outp = 1’b0;

endcase
end

endmodule

Black Boxes
This section discusses HDL Coding Techniques for Black Boxes, and includes:

• About Black Boxes

• Black Boxes Related Constraints

• Black Boxes Reporting

• Black Boxes Coding Examples

XST User Guide for Virtex-6 and Spartan-6 Devices
262 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

About Black Boxes
A design can contain EDIF or NGC files generated by:

• Synthesis tools

• Schematic text editors

• Any other design entry mechanism

These modules must be instantiated in the code in order to be connected to the rest of
the design. To do so in XST, use Black Box instantiation in the Hardware Description
Language (HDL) source code. The netlist is propagated to the final top-level netlist
without being processed by XST. Moreover, XST enables you to apply specific constraints
to these Black Box instantiations, which are passed to the NGC file.

In addition, you may have a design block for which you have an RTL model, as well as
your own implementation of this block in the form of an EDIF netlist. The RTL model
is valid for simulation purposes only. Use BoxType (BOX_TYPE) to instruct XST to
skip synthesis of this RTL model and create a Black Box. The EDIF netlist is linked to
the synthesized design during NGDBuild.

For more information, see:

• Chapter 10, XST General Constraints

• Constraints Guide

Once you make a design a Black Box, each instance of that design is a Black Box. While
you can apply constraints to the instance, XST ignores any constraint applied to the
original design.

For more information on component instantiation, see the VHDL and Verilog language
reference manuals.

Black Boxes Related Constraints
BoxType (BOX_TYPE)

BoxType was introduced for device primitive instantiation in XST. Before using BoxType,
see Device Primitive Support in Chapter 8, XST FPGA Primitive Optimization.

Black Boxes Reporting
XST acknowledges a Black Box instantiation as follows during VHDL elaboration:

WARNING:HDLCompiler:89 - "example.vhd" Line 15. <my_bbox>
remains a black-box since it has no binding entity.

Verilog elaboration issues the following message:

WARNING:HDLCompiler:1498 – "example.v" Line 27: Empty module
<v_my_block> remains a black box.

Black Boxes Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 263

Chapter 7: XST Hardware Description Language (HDL) Coding Techniques

Black Box VHDL Coding Example
--
-- Black Box
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/black_box/black_box_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity black_box_1 is
port(DI_1, DI_2 : in std_logic;

DOUT : out std_logic);
end black_box_1;

architecture archi of black_box_1 is

component my_block
port (I1 : in std_logic;

I2 : in std_logic;
O : out std_logic);

end component;

begin

inst: my_block port map (I1=>DI_1,I2=>DI_2,O=>DOUT);

end archi;

Black Box Verilog Coding Example
//
// Black Box
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/black_box/black_box_1.v
//
module v_my_block (in1, in2, dout);

input in1, in2;
output dout;

endmodule

module v_black_box_1 (DI_1, DI_2, DOUT);
input DI_1, DI_2;
output DOUT;

v_my_block inst (
.in1(DI_1),
.in2(DI_2),
.dout(DOUT));

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
264 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 8

XST FPGA Optimization
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter discusses XST FPGA Optimization, and includes:

• Low Level Synthesis

• Mapping Logic to Block RAM

• Flip-Flop Implementation Guidelines

• Flip-Flop Retiming

• Speed Optimization Under Area Constraint

• Implementation Constraints

• Xilinx Device Primitive Support

• Using the UniMacro Library

• Cores Processing

• Mapping Logic to LUTs

• Controlling Placement on the Device

• Inserting Buffers

• Using the PCI™ Flow With XST

Low Level Synthesis
During Low Level Synthesis, there are several ways to control XST implementation in
order to achieve your design goals. During Low Level Synthesis, XST:

1. Separately maps and optimizes each VHDL entity or Verilog module to the targeted
device family resources

2. Globally optimizes the complete design

The output of Low Level Synthesis is an NGC netlist file.

Several options and constraints are available to alter XST’s default implementation
choices. For more information, see Chapter 12, XST FPGA Constraints (Non-Timing).

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 265

Chapter 8: XST FPGA Optimization

Mapping Logic to Block RAM
If you cannot fit the design onto the targeted device, place some of the design logic in
unused block RAM. Since XST does not automatically decide which logic can be placed
in block RAM, you must instruct XST to do so.

1. Isolate the part of the RTL description to be placed into block RAM in a separate
hierarchical block.

2. Apply Map Logic on BRAM (BRAM_MAP) to the separate hierarchical block, either
directly in the HDL source code, or in the XST Constraint File (XCF).

The logic implemented in block RAM must satisfy the following criteria:

• All outputs are registered.

• The block contains only one level of registers, which are output registers.

• All output registers have the same control signals.

• The output registers have a synchronous reset signal.

• The block does not contain multi-source situations or tristate buffers.

• Keep (KEEP) is not allowed on intermediate signals.

XST attempts to map the designated logic onto block RAM during Low Level Synthesis.
When successful, XST issues the following message:

Entity <logic_bram_1> mapped on BRAM.

If any of the listed requirements is not satisfied, XST does not map the designated logic
onto block RAM, and issues a warning.

INFO:Xst:1789 - Unable to map block <no_logic_bram> on BRAM.Output FF <RES> must have a synchronous reset.

If the logic cannot be placed in a single block RAM primitive, XST spreads it over several
block RAMs.

Flip-Flop Implementation Guidelines
Starting with the Virtex®-6 and Spartan®-6 and device families, CLB flip-flops and
latches can no longer natively implement both a set and reset. XST enforces the
following rules if it finds a flip-flop with both a set and reset, whether the flip-flop is
inferred, or retargeted from an older device family primitive instantiation:

• A simultaneous synchronous set and reset is retargeted and additional logic is
created.

• A simultaneous asynchronous set and reset is rejected with the following error
message.

ERROR:Xst:#### - This design infers one or more latches or registers
with both an active asynchronous set and reset. In the Virtex6 and
Spartan6 architectures this behaviour creates a sub-optimal circuit in
area, power and performance. To synthesis an optimal implementation
it is highly recommended to either remove one set or reset or make the
function synchronous. To override this error set
–retarget_active_async_set_reset option to yes.

XST User Guide for Virtex-6 and Spartan-6 Devices
266 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 8: XST FPGA Optimization

Follow these additional guidelines:
• Do not set or reset registers asynchronously. Use synchronous initialization instead.

Although supported on Xilinx® devices, Xilinx does not recommend this practice
for the following reasons:
– Control set remapping is no longer possible
– Sequential functionality in several device resources, such as block RAMs and

DSP blocks, can only be set or reset synchronously. You will either be unable to
leverage those resources, or they will be configured in a suboptimal way.

• If your coding guidelines call for registers to be set or reset asynchronously, consider
running XST with Asynchronous to Synchronous (ASYNC_TO_SYNC) . This allows
you to assess the potential benefits of moving to a synchronous set/reset approach.
Asynchronous to Synchronous (ASYNC_TO_SYNC) affects only inferred registers.
It does not affect instantiated flip-flops.

• Do not describe flip-flops with both a set and a reset. Starting with the Virtex-6 and
Spartan-6 device families, none of the available flip-flop primitives natively features
both a set and a reset, whether synchronous or asynchronous. XST. rejects flip-flops
described with both an asynchronous reset and an asynchronous set.

• Avoid operational set/reset logic whenever possible. There may be other, less
expensive, ways to achieve the desired result, such as taking advantage of the circuit
global reset by defining an initial contents.

• The clock enable, set and reset control inputs of Xilinx flip-flop primitives are always
active high. If described to be active low, such functionality inevitably leads to
inverter logic that penalizes circuit performance.

Flip-Flop Retiming
This section discusses Flip-Flop Retiming, and includes:

• About Flip-Flop Retiming
• Limitations of Flip-Flop Retiming
• Controlling Flip-Flop Retiming

About Flip-Flop Retiming
Flip-flop retiming consists of moving flip-flops and latches across logic in order to
reduce synchronous paths, thereby increasing clock frequency. This optimization is
disabled by default.

Flip-flop retiming can be either forward or backward:
• Forward retiming moves a set of flip-flops that are the input of a LUT to a single

flip-flop at its output.
• Backward retiming moves a flip-flop that is at the output of a LUT to a set of

flip-flops at its input.
• Backward flip-flop retiming generally increases the number of flip-flop, sometimes

significantly.
• Forward flip-flop retiming generally reduces the number of flip-flops.

In either case, the behavior of the design is not changed. Only timing delays are
modified.

Flip-flop retiming is part of global optimization. It respects the same constraints as all
other optimization techniques. Since retiming is iterative, a flip-flop that is the result of a
retiming can be moved again in the same direction (forward or backward) if it results in
better timing. Retiming iterations stop when specified timing constraints are satisfied, or
if no more timing improvement can be obtained.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 267

Chapter 8: XST FPGA Optimization

For each flip-flop moved, a message specifies:

• The original and new flip-flop names
• Whether it is a forward or backward retiming

Limitations of Flip-Flop Retiming
Flip-flop retiming does not take place under the following circumstances:
• Flip-flop retiming is not applied to flip-flops with an IOB=TRUE property.
• Forward retiming does not take place if a flip-flop or the signal on its output has a

Keep (KEEP) property.
• Backward retiming does not take place if the signal on the input of a flip-flop has a

Keep (KEEP) property.
• Instantiated flip-flops are moved only if Optimize Instantiated Primitives

(OPTIMIZE_PRIMITIVES) is set to yes.
• Flip-Flops are moved across instantiated primitives only if Optimize Instantiated

Primitives (OPTIMIZE_PRIMITIVES) is set to yes.
• Flip-flops with both a set and a reset are not moved.

Controlling Flip-Flop Retiming
Use the following constraints to control flip-flop retiming:
• Register Balancing (REGISTER_BALANCING)
• Move First Stage (MOVE_FIRST_STAGE)
• Move Last Stage (MOVE_LAST_STAGE)

Speed Optimization Under Area Constraint
Even when instructing XST to target area reduction as its main goal, Slice (LUT-FF Pairs)
Utilization Ratio (SLICE_UTILIZATION_RATIO) can be used to achieve some degree of
control over circuit performance. This constraint is set by default to 100% of the selected
device size. This constraint influences low level optimization as follows:
• As long as the estimated area is higher than the constraint requirement, XST tries

to further reduce area.
• When the estimated area falls within the constraint requirement, XST starts to look

for timing optimization opportunities, making sure that the solution stays within
the area constraint requirement.

This constraint does not control macro inference.

Low Level Synthesis Report Example
In the following example, the area constraint was specified as 100% and initial area
estimation find an actual device utilization of 102%. XST begins optimization and
reaches 95%.

===
* Low Level Synthesis
===
Found area constraint ratio of 100 (+ 5) on block tge,
actual ratio is 102.
Optimizing block tge> to meet ratio 100 (+ 5) of 1536 slices
Area constraint is met for block tge>, final ratio is 95.

XST User Guide for Virtex-6 and Spartan-6 Devices
268 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 8: XST FPGA Optimization

If the area constraint cannot be met, XST ignores it during timing optimization and
runs low level synthesis to achieve the best frequency. In the following example, the
target area constraint is set to 70%. Because XST is unable to satisfy it, the tool issues
the following warning:

===
* Low Level Synthesis *
===

Found area constraint ratio of 70 (+ 5) on block fpga_hm, actual ratio is 64.
Optimizing block fpga_hm> to meet ratio 70 (+ 5) of 1536 slices :
WARNING:Xst - Area constraint could not be met for block tge>, final ratio is 94

(+5) represents the max margin of the area constraint. If the area constraint is not
met, but the difference between the requested area and actual area, achieved during
area optimization, is less or equal then 5%, then XST runs timing optimization taking
into account the achieved area, and making sure that the final area solution does not
exceed that figure.

In the following example, the area target was specified as 55%. XST achieved only 60%.
But taking into account that the difference between requested and achieved area is
not more than 5%, XST considers that the area constraint was met, and ensures that it
is not broken by further optimizations.

===
* Low Level Synthesis *
===

Found area constraint ratio of 55 (+ 5) on block fpga_hm, actual ratio is 64.
Optimizing block fpga_hm> to meet ratio 55 (+ 5) of 1536 slices :
Area constraint is met for block fpga_hm>, final ratio is 60.

In some situations, it is important to disable automatic resource management. To do
so, specify -1 as the value for SLICE_UTILIZATION_RATIO. Slice (LUT-FF Pairs)
Utilization Ratio (SLICE_UTILIZATION_RATIO) can be applied to a specific block of the
design. You can specify an absolute number of slices (or FF-LUT pairs), or a percentage
of the total number available on the device.

Implementation Constraints
XST writes all implementation constraints found in the Hardware Description Language
(HDL) source code or in an XCF constraints file to the output NGC file. Keep (KEEP)
properties are generated during buffer insertion for maximum fanout control or for
optimization.

Xilinx Device Primitive Support
This section discusses Xilinx® Device Primitive Support, and includes:

• About Xilinx Device Primitive Support

• Generating Primitives Through Attributes

• Primitives and Black Boxes

• VHDL and Verilog Xilinx Device Primitives Libraries

• Specifying Primitive Properties

• Reporting of Instantiated Device Primitives

• Primitives Related Constraints

• Primitives Coding Examples

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 269

Chapter 8: XST FPGA Optimization

About Device Primitive Support
XST allows you to instantiate any Xilinx® device primitive directly in the Hardware
Description Language (HDL) source code. These primitives are:

• Pre-compiled in the UNISIM library

• Not optimized or changed by XST by default

• Preserved by XST and made available in the final NGC netlist

Use Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES) to let XST try to
optimize instantiated primitives with the rest of the design. Timing information is
available for most of the primitives, allowing XST to perform efficient timing-driven
optimizations.

In order to simplify instantiation of complex primitives such as RAMs, XST supports an
additional library called UniMacro. For more information, see the Libraries Guides.

Generating Primitives Through Attributes
Some primitives can be generated through attributes:

• Buffer Type (BUFFER_TYPE) can be assigned to the circuit primary I/Os or to
internal signals to force the use of a specific buffer type. The same constraints can be
used to disable buffer insertion.

• I/O Standard (IOSTANDARD) can be used to assign an I/O standard to an I/O
primitive. For example, the following assigns PCI33_5 I/O standard to the I/O
port:

// synthesis attribute IOSTANDARD of in1 is PCI33_5

Primitives and Black Boxes
Primitive support is based on the concept of the black box. For information on the basics
of black box support, see Finite State Machine (FSM) Safe Implementation

There is a significant difference between black box and primitive support. Assume
a design with a submodule called MUXF5. In general, the MUXF5 can be your own
functional block or a Xilinx® device primitive. To avoid confusion about how XST
interprets this module, attach BoxType (BOX_TYPE) to the component declaration
of MUXF5.

If BoxType (BOX_TYPE) is applied to the MUXF5 with a value of:

• primitive or black_box

XST tries to interpret this module as a Xilinx device primitive and use its parameters,
for instance, in critical path estimation.

• user_black_box

XST processes it as a regular user black box.

If the name of the user_black_box is the same as that of a Xilinx device primitive,
XST renames it to a unique name and issues a warning. For example, MUX5 could be
renamed to MUX51.

WARNING:Xst:79 - Model ’muxf5’ has different characteristics in destination library
WARNING:Xst:80 - Model name has been changed to ’muxf51’

If BoxType (BOX_TYPE) is not applied to the MUXF5, XST processes this block as a user
hierarchical block. If the name of the user_black_box is the same as that of a Xilinx
device primitive, XST renames it to a unique name and issues a warning.

XST User Guide for Virtex-6 and Spartan-6 Devices
270 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 8: XST FPGA Optimization

VHDL and Verilog Xilinx Device Primitives Libraries
This section discusses VHDL and Verilog Xilinx® Device Primitives Libraries, and
includes:

• About VHDL and Verilog Xilinx Device Primitives Libraries
• VHDL Xilinx Device Primitives Device Libraries
• Verilog Device Primitives Device Libraries
• Primitive Instantiation Guidelines

About VHDL and Verilog Xilinx Device Primitives Libraries
About VHDL and Verilog Xilinx Device Primitives Libraries
XST provides dedicated VHDL and Verilog libraries to simplify instantiation of Xilinx®
device primitives in the Hardware Description Language (HDL) source code. These
libraries contain the complete set of Xilinx device primitives declarations with BoxType
(BOX_TYPE) applied to each component. If you have properly included those libraries,
you need not apply BoxType (BOX_TYPE) itself.

VHDL Xilinx® Device Primitives Device Libraries
In VHDL, declare library UNISIM with its package vcomponents in the HDL source
code.

library unisim;
use unisim.vcomponents.all;

The HDL source code for this package is located in the following file of the XST
installation:

vhdl\src\ unisims\unisims_vcomp.vhd

Verilog Device Primitives Device Libraries
In Verilog, the UNISIM library is precompiled. XST automatically links it with your
design.

Primitive Instantiation Guidelines
Use UPPER CASE for generic (VHDL) and parameter (Verilog) values when instantiating
primitives. For examplem the ODDR element has the following component declaration
in the UNISIM library:

component ODDR
generic (

DDR_CLK_EDGE : string := "OPPOSITE_EDGE";
INIT : bit := ’0’;
SRTYPE : string := "SYNC");

port(
Q : out std_ulogic;
C : in std_ulogic;
CE : in std_ulogic;
D1 : in std_ulogic;
D2 : in std_ulogic;
R : in std_ulogic;
S : in std_ulogic);

end component;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 271

Chapter 8: XST FPGA Optimization

When you instantiate this primitive, the values of DDR_CLK_EDGE and SRTYPE generics
must be in UPPER CASE. If not, XST issues a warning stating that unknown values are
used. Some primitives, such as LUT1, enable you to use an INIT during instantiation.
The two ways to pass an INIT to the final netlist are:

• Apply INIT to the instantiated primitive.

• Pass INIT with the generics mechanism (VHDL) or the parameters mechanism
(Verilog). This allows you to use the same code for synthesis and simulation.

Specifying Primitive Properties
Use VHDL generics or Verilog parameters to specify properties on instantiated
primitives, such as the INIT of an instantiated LUT.

Caution! In order to avoid potential simulation mismatches, XST prevents you from
doing so by means of attributes specified in the Hardware Description Language (HDL)
source code, or through XST Constraint File (XCF) constraints. In previous releases, a
simple warning was advising you against this practice. This warning has now become
an error, as illustrated below. Overriding default values of instantiated primitives
properties can now only be done through a VHDL generic or Verilog parameter.

ERROR:Xst:3003 - “example.vhd". Line 77. Unable to set
attribute "A_INPUT" with value "CASCADE" on instance <idsp> of
block <DSP48E1>. This property is already defined with value
“DIRECT" on the block definition by a VHDL generic or a Verilog
parameter. Apply the desired value by overriding the default
VHDL generic or Verilog parameter. Using an attribute is not
allowed.

Simulation tools recognize generics and parameters, simplifying the circuit validation
process.

Configuring a LUT2 Primitive INIT Property VHDL Coding Example
--
-- Instantiating a LUT2 primitive
-- Configured via the generics mechanism (recommended)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: FPGA_Optimization/primitive_support/primitive_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;

library unisim;
use unisim.vcomponents.all;

entity primitive_2 is
port(I0,I1 : in std_logic;

O : out std_logic);
end primitive_2;

architecture beh of primitive_2 is
begin

inst : LUT2
generic map (INIT=>"1")
port map (I0=>I0, I1=>I1, O=>O);

end beh;

XST User Guide for Virtex-6 and Spartan-6 Devices
272 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 8: XST FPGA Optimization

Configuring a LUT2 Primitive INIT Property Verilog Coding Example
//
// Instantiating a LUT2 primitive
// Configured via the parameter mechanism
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: FPGA_Optimization/primitive_support/primitive_2.v
//
module v_primitive_2 (I0,I1,O);

input I0,I1;
output O;

LUT2 #(4’h1) inst (.I0(I0), .I1(I1), .O(O));

endmodule

Reporting of Instantiated Device Primitives
XST processes instantiated device primitives silently, because BoxType (BOX_TYPE)
with its value, primitive, is applied to each primitive in the UNISIM library.

XST issues a warning if:

• You instantiate a block (non primitive), and

• The block has no contents (no logic description)

OR

• The block has a logic description

AND

• You apply BoxType (BOX_TYPE) to it with a value of user_black_box

Elaborating entity <example> (architecture <archi>) from library <work>.
WARNING:HDLCompiler:89 - "example.vhd" Line 15: <my_block> remains a
black-box since it has no binding entity.

Primitives Related Constraints
• BoxType (BOX_TYPE)

• Constraints for placement and routing that can be passed from HDL to NGC
without any specific XST processing

Primitives Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 273

Chapter 8: XST FPGA Optimization

Instantiating and Configuring a LUT2 Primitive with a Generic VHDL
Coding Example

--
-- Instantiating a LUT2 primitive
-- Configured via the generics mechanism (recommended)
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: FPGA_Optimization/primitive_support/primitive_2.vhd
--
library ieee;
use ieee.std_logic_1164.all;

library unisim;
use unisim.vcomponents.all;

entity primitive_2 is
port(I0,I1 : in std_logic;

O : out std_logic);
end primitive_2;

architecture beh of primitive_2 is
begin

inst : LUT2
generic map (INIT=>"1")
port map (I0=>I0, I1=>I1, O=>O);

end beh;

Instantiating and Configuring a LUT2 Primitive with a Parameter Verilog
Coding Example

//
// Instantiating a LUT2 primitive
// Configured via the parameter mechanism
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: FPGA_Optimization/primitive_support/primitive_2.v
//
module v_primitive_2 (I0,I1,O);

input I0,I1;
output O;

LUT2 #(4’h1) inst (.I0(I0), .I1(I1), .O(O));

endmodule

Instantiating and Configuring a LUT2 Primitive with a Defparam Verilog
Coding Example

//
// Instantiating a LUT2 primitive
// Configured via the defparam mechanism
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: FPGA_Optimization/primitive_support/primitive_3.v
//
module v_primitive_3 (I0,I1,O);

input I0,I1;
output O;

LUT2 inst (.I0(I0), .I1(I1), .O(O));
defparam inst.INIT = 4’h1;

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
274 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 8: XST FPGA Optimization

Using the UniMacro Library
In order to simplify instantiation of such complex primitives as RAMs, XST supports an
additional library called UniMacro. For more information, see the Libraries Guides.

In VHDL, declare library unimacro with its package vcomponents.

library unimacro;
use unimacro.vcomponents.all;

The HDL source code of this package can be found in the
vhdl\src\unisims\unisims_vcomp.vhd file in the Xilinx® software installation.

In Verilog, the UniMacro library is precompiled. XST automatically links it with your
design.

Cores Processing
This section discusses Cores Processing and includes:

• Loading Cores

• Finding Cores

• Cores Reporting

Loading Cores
If a design contains cores in the form of EDIF or NGC netlist files, XST can automatically
read them for more accurate timing estimation and resource utilization control.

To enable or disable this feature:

• In ISE® Design Suite, select Process > Properties > Synthesis Options > Read Cores.

• In command line mode, use -read_cores.

In this case, an additional optimize value is available to allow XST to integrate the core
netlist into the overall design, and try to optimize it.

XST reads cores by default.

Finding Cores
XST automatically finds cores in the ISE® Design Suite project directory. If the cores are
located elsewhere, specify the path as follows:

• In ISE Design Suite, select Process > Properties > Synthesis Options > Core Search
Directories.

• In command line mode, use -sd.

Xilinx® recommends that you systematically specify the directories where the cores
reside, and that you keep this information up to date. In addition to better timing
and resource estimation, doing so can protect you against unexpected behaviors and
hard-to-debug situations.

For example, without knowing the contents of an unloaded core (seen as a black box),
XST may have difficulty determining adequate buffer insertions on paths leading to that
core. This can negatively impact timing closure.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 275

Chapter 8: XST FPGA Optimization

Cores Reporting
===
* Low Level Synthesis *
===
Launcher: Executing edif2ngd -noa "my_add.edn" "my_add.ngo"
INFO:NgdBuild - Release 11.2 - edif2ngd
INFO:NgdBuild - Copyright (c) 1995-2010 Xilinx, Inc. All rights reserved.
Writing the design to "my_add.ngo"...
Loading core <my_add> for timing and area information for instance <inst>.
===

Mapping Logic to LUTs
Use the UNISIM library to directly instantiate LUT components in the Hardware
Description Language (HDL) source code. To specify a function that a LUTmust execute,
apply INIT to the instance of the LUT. To place an instantiated LUT or register in a
particular slice of the chip, attach RLOC to the same instance.

It is not always convenient to calculate INIT functions. Other methods can be used.
Alternatively, you can describe the function that you want to map onto a single LUT
in the HDL source code in a separate block. Attaching Map Entity on a Single LUT
(LUT_MAP) to this block tells XST that this block must be mapped on a single LUT.
XST automatically calculates the INIT value for the LUT and preserves this LUTduring
optimization. For more information, see Map Entity on a Single LUT (LUT_MAP).

XST automatically recognizes the Synplicity XC_MAP constraint.

If a function cannot be mapped on a single LUT, XST errors out as follows.

ERROR:Xst:1349 - Failed to map xcmap entity <v_and_one> in one lut.

Mapping Logic to LUTs Verilog Coding Example
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
276 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 8: XST FPGA Optimization

In the following example, the top block instantiates two AND gates, respectively described
in blocks and_one and and_two. XST generates two LUT2s and does not merge them.

//
// Mapping of Logic to LUTs with the LUT_MAP constraint
// Mapped to 2 distinct LUT2s
// Mapped to 1 single LUT3 if LUT_MAP constraints are removed
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: FPGA_Optimization/lut_mapping/lut_map_1.v
//

(* LUT_MAP="yes" *)
module v_and_one (A, B, REZ);

input A, B;
output REZ;

and and_inst(REZ, A, B);

endmodule

// --

(* LUT_MAP="yes" *)
module v_and_two (A, B, REZ);

input A, B;
output REZ;

or or_inst(REZ, A, B);

endmodule

// --

module v_lut_map_1 (A, B, C, REZ);
input A, B, C;
output REZ;

wire tmp;

v_and_one inst_and_one (A, B, tmp);
v_and_two inst_and_two (tmp, C, REZ);

endmodule

Controlling Placement on the Device
You can control placement of the following inferred macros to a specific location on
the targeted device:

• Registers

• Block RAMs

To do so, apply RLOC to the signal modelling the register or the RAM, as shown in the
following coding examples. When applied on a register, XST distributes the constraint to
each flip-flop, and propagates RLOC constraints to the final netlist. RLOC is supported
for inferred RAMs that can be implemented with a single block RAM primitive.

RLOC Constraint on a 4-Bit Register VHDL Coding Example
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 277

Chapter 8: XST FPGA Optimization

The following coding example specifies an RLOC constraint on a 4-bit register:

--
-- Specification of INIT and RLOC values for a flip-flop, described at RTL level
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: FPGA_Optimization/inits_and_rlocs/inits_rlocs_3.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity inits_rlocs_3 is
port (CLK : in std_logic;

DI : in std_logic_vector(3 downto 0);
DO : out std_logic_vector(3 downto 0));

end inits_rlocs_3;

architecture beh of inits_rlocs_3 is
signal tmp: std_logic_vector(3 downto 0):="1011";

attribute RLOC: string;
attribute RLOC of tmp: signal is "X3Y0 X2Y0 X1Y0 X0Y0";

begin

process (CLK)
begin

if (clk’event and clk=’1’) then
tmp <= DI;

end if;
end process;

DO <= tmp;

end beh;

Inserting Buffers
XST automatically inserts clock and I/O buffers. Insertion of I/O buffers can be enabled
or disabled with Add I/O Buffers (–iobuf) It is enabled by default.

You can also manually instantiate clock and I/O buffers. XST does not change
instantiated device primitives, but propagates them to the final netlist.

Using the PCI Flow With XST
This section discusses Using the PCI™ Flow With XST, and includes:

• About Using the PCI Flow With XST

• Preventing Logic and Flip-Flop Replication

• Disabling Read Cores

XST User Guide for Virtex-6 and Spartan-6 Devices
278 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 8: XST FPGA Optimization

About Using the PCI Flow With XST
To satisfy placement constraints and meet timing requirements when using the PCI™
flow with XST:

• For VHDL, ensure that the names in the generated netlist are all in UPPER case. The
default case is lower. Specify the case in ISE® Design Suite in:

Process > Properties > Synthesis Options > Case

• For Verilog, ensure that the case is set tomaintain. The default ismaintain. Specify
the case in ISE Design Suite in:

Process > Properties > Synthesis Options > Case

• Preserve the hierarchy of the design. Specify the Keep Hierarchy
(KEEP_HIERARCHY) setting in ISE Design Suite in:

Process > Properties > Synthesis Options > Keep Hierarchy

• Preserve equivalent flip-flops. XST removes equivalent flip-flops by default. Specify
the Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL) setting
in ISE Design Suite in:

Process > Properties > Xilinx Specific Options > Equivalent Register Removal

Preventing Logic and Flip-Flop Replication
To prevent logic and flip-flop replication caused by a high fanout flip-flop set/reset
signal:

• Set a high maximum fanout value for the entire design in ISE® Design Suite in
Process > Properties > Xilinx Specific Options > Max Fanout

OR

• Use Max Fanout (MAX_FANOUT) to set a high maximum fanout value for
the initialization signal connected to the RST port of PCI™ core (for example,
max_fanout=2048).

Disabling Read Cores
Disabling Read Cores (READ_CORES) prevents XST from automatically loading the
PCI™ cores for timing and area estimation. When reading PCI cores, XST may perform
logic optimizations that do not allow the design to meet timing requirements, or which
might lead to errors during MAP. To disable Read Cores (READ_CORES), uncheck it in
ISE® Design Suite in Process > Properties > Synthesis Options > Read Cores.

By default, XST reads cores for timing and area estimation.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 279

XST User Guide for Virtex-6 and Spartan-6 Devices
280 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 9

XST Design Constraints
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter provides general information about XST Design Constraints, and includes:
• About Constraints
• Specifying Constraints
• Constraints Precedence Rules
• Synthesis Options in ISE® Design Suite
• VHDL Attributes
• Verilog-2001 Attributes
• XST Constraint File (XCF)

For information about specific XST design constraints, see the following chapters:
• Chapter 10, XST General Constraints
• Chapter 11, XST HDL Constraints
• Chapter 12, XST FPGA Constraints (Non-Timing)
• Chapter 13, XST Timing Constraints
• Chapter 14, XST-Supported Third Party Constraints

About Constraints
Constraints can help you meet design goals and obtain the best circuit implementation.
Constraints control various aspects of synthesis, as well as placement and routing.
Default synthesis algorithms and heuristics have been tuned to provide the best possible
results for a large variety of designs. However, if synthesis initially fails to deliver
satisfying results, use those constraints to try other, non-default, synthesis alternatives.

Specifying Constraints
The following mechanisms are available to specify constraints:

• Options provide global control on most synthesis aspects. They can be set either in
ISE® Design Suite, or through the run command in command line mode. For more
information, see Running XST in Command Line Mode in Chapter 2, Creating and
Synthesizing an XST Project.

• VHDL attributes can be directly inserted in VHDL code, and applied to individual
elements of the design to control, not only synthesis, but also placement and routing.

• Constraints can be added as Verilog attributes (preferred) or Verilog meta comments.
• Constraints can be specified in a separate constraint file.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 281

Chapter 9: XST Design Constraints

Caution! VHDL attributes, Verilog attributes, and XST Constraint File (XCF) constraints
are not allowed mechanisms for defining the properties of instantiated device primitives.
You must use VHDL generics or Verilog parameters to do so. For more information, see
Specifying Primitive Properties in Chapter 8: XST FPGA Optimization.

Global synthesis settings are typically defined in ISE Design Suite, or from the XST
command line. VHDL and Verilog attributes and Verilog meta comments can be inserted
into the Hardware Description Language (HDL) source code to specify different choices
for individual parts or elements of the design. See Constraints Precedence Rules to
understand how the tool determines which constraint applies when set from different
sources, and on different HDL objects.

Constraints Precedence Rules
As a general rule, the local specification of a constraint overrides any other specification
that applies more globally. For example, if a constraint is set both on a signal (or an
instance) and on the design unit that contains it, the former takes precedence for that
signal (or instance). Similarly, a constraint applied to a signal (or an instance, or even
an entity or module), takes precedence over its specification on the XST command line,
or through ISE® Design Suite.

If a constraint is applied to the same object using different entry methods, the following
precedence applies, from the highest to the lowest priority:

1. XST Constraint File (XCF)
2. Hardware Description Language (HDL) attribute
3. ISE Design Suite in Process > Properties, or the command line

Synthesis Options in ISE Design Suite
This section discusses Synthesis Options in ISE® Design Suite, and includes:

• Setting XST Options in ISE Design Suite
• Setting Other XST Command Line Options
• Design Goals and Strategies

Setting XST Options in ISE Design Suite
To set XST options in ISE® Design Suite:

1. Select a Hardware Description Language (HDL) source file from the Hierarchy
panel of the Design window.
a. Right-click Synthesize-XST in the Processes panel.
b. Select Process > Properties.
c. Select a category:

• Synthesis Options
• HDL Options
• Xilinx Specific Options

2. Set the Property display level to:
a. Standard to see the most common options
b. Advanced to see all available options

3. Check Display switch names to see the corresponding command-line switch name
for each option.

XST User Guide for Virtex-6 and Spartan-6 Devices
282 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 9: XST Design Constraints

To revert to the XST default options, click Default.

Setting Other XST Command Line Options
In addition to the default options listed in the Process > Properties window, you can
specify any other unlisted XST command line options.

1. Go to Process > Properties.

2. Select Synthesis Options.

3. In Other XST Command Line Options, add the desired command line options in
the corresponding Value field. Separate multiple options with a space. Follow the
syntax described in XST Commands in Chapter 2, Creating and Synthesizing an
XST Project.

Design Goals and Strategies
ISE® Design Suite features predefined goals and strategies that allow you to run the
software, including XST, with specific options settings that have been tuned for particular
optimization goals. This approach may be a good alternative for trying non-default
constraints settings, without having to go too much into the details of all XST constraints.

To create and save your own design goals and strategies, select Project > Design Goals
& Strategies.

VHDL Attributes
Use VHDL attributes to describe constraints directly in the Hardware Description
Language (HDL) source code. Before it can be used, you must declare an attribute
as follows:

attribute AttributeName : Type ;

VHDL Attribute Syntax Example

attribute RLOC : string ;

The attribute type defines the type of the attribute value. The only allowed type for
XST is string.

An attribute can be declared in an entity or architecture.

• If the attribute is declared in the architecture, it cannot be used in the entity
declaration.

• Once declared, a VHDL attribute can be specified as follows:

attribute AttributeName of ObjectList : ObjectType is
AttributeValue ;

VHDL Attribute Example
attribute RLOC of u123 : label is “R11C1.S0” ;
attribute bufg of my_signal : signal is “sr”;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 283

Chapter 9: XST Design Constraints

The object list is a comma separated list of identifiers. Accepted object types are:

• entity

• architecture

• component

• label

• signal

• variable

• type

If a constraint can be applied on a VHDL entity, it can also be applied on the component
declaration.

Verilog-2001 Attributes
This section discusses Verilog-2001 Attributes, and includes:

• About Verilog-2001 Attributes
• Verilog-2001 Syntax
• Verilog-2001 Limitations
• Verilog Meta Comments

About Verilog-2001 Attributes
XST supports Verilog-2001 attribute statements. Attributes pass specific information to
applications such as synthesis tools. Verilog-2001 attributes can be specified anywhere
for operators or signals within module declarations and instantiations. Although the
compiler may support other attribute declarations, XST ignores them.

Use Verilog attributes to:

• Set constraints on individual objects such as:
– modules

– instances

– nets

• Set the following specific synthesis constraints:
– Full Case (FULL_CASE)
– Parallel Case (PARALLEL_CASE)

Verilog-2001 Syntax
Verilog-2001 inline attributes are enclosed between (* and *) tokens, and use the
following general syntax:

(* attribute_name = attribute_value *)

where

• The attribute_value is a string. No integer or scalar values are allowed.
• The attribute_value is enclosed between quotes.
• The default value is 1. Therefore (* attribute_name *) is equivalent to (*

attribute_name = "1" *).

XST User Guide for Virtex-6 and Spartan-6 Devices
284 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 9: XST Design Constraints

Place the attribute immediately before the signal, module, or instance declaration to
which it refers. This can be done on a separate line, as follows:

(* ram_extract = “yes” *)
reg [WIDTH-1:0] myRAM [SIZE-1:0];

The attribute can also be placed on the same line as the declaration. For example:

(* ram_extract = “yes” *) reg [WIDTH-1:0] myRAM [SIZE-1:0];

A comma-separated list of several attributes may be specified as follows. These
attributes will be attached to the same Verilog object.

(* attribute_name1 = attribute_value1, attribute_name2 = attribute_value2 *)

The following style is also acceptable:

(* attribute_name1 = attribute_value1 *) (*attribute_name2 = attribute_value2 *)

For improved readability, the attribute list may span on multiple lines. For example:

(*
ram_extract = “yes”,
ram_style = “block”

*)
reg [WIDTH-1:0] myRAM [SIZE-1:0];

Verilog-2001 Attribute Coding Example
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 285

Chapter 9: XST Design Constraints

The following coding example illustrates various ways to specify attributes in Verilog,
attaching one or several properties respectively to a module, to a port, and to internal
signals. In addition, full_case and parallel_case directives are also attached to a
case construct using the attribute syntax.

//
// Verilog 2001 attribute examples
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Verilog_Language_Support/attributes/vlgattrib2001_1.v
//

(* mux_extract = "no" *)
module vlgattrib2001_1 (clk, we1, we2, sel, re1, re2, waddr, raddr, di, do);

(* max_fanout = "100", buffer_type = "none" *) input clk;
input [1:0] sel;
input we1, we2;
input re1, re2;
input [7:0] waddr;
input [7:0] raddr;
input [15:0] di;
output reg [15:0] do;

(* mux_extract = "yes",
use_clock_enable = "no" *)

reg re;

(*
ram_extract = "yes",
ram_style = "block"

*)
reg [15:0] RAM [255:0];

(* keep = "true" *) wire we;

assign we = we1 | we2;

always @ (posedge clk)
begin

(* full_case *) (* parallel_case *)
case (sel)

2’b00 : re <= re1 & re2;
2’b01 : re <= re1 | re2;
2’b10 : re <= re1;
2’b11 : re <= re2;

endcase
end

always @ (posedge clk)
begin

if (we)
RAM[waddr] <= di;

if (re)
do <= RAM[raddr];

end

endmodule

Verilog-2001 Limitations
Verilog-2001 attributes are not supported for:

• Signal declarations

• Statements

• Port connections

• Expression operators

XST User Guide for Virtex-6 and Spartan-6 Devices
286 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 9: XST Design Constraints

Verilog Meta Comments
Constraints can also be specified in Verilog code using meta comments. Verilog-2001
attribute syntax is preferred. The Verilog meta comment syntax is:

// synthesis attribute AttributeName [of] ObjectName [is]
AttributeValue

Verilog Meta Comment Syntax Examples
// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HU_SET u1 MY_SET
// synthesis attribute bufg of my_clock is "clk"

The following constraints use a different syntax:

• Full Case (FULL_CASE)
• Parallel Case (PARALLEL_CASE)
• Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)

For more information, see Verilog 2001 Attributes and Meta Comments in Chapter
4, XST Verilog Support.

XST Constraint File (XCF)
This section discusses the XST Constraint File (XCF), and includes:

• About the XST Constraint File (XCF)
• Native and Non-Native User Constraints File (UCF) Syntax
• Syntax Limitations
• Timing Constraints Applicable Only Through the XST Constraint File (XCF)

About the XST Constraint File (XCF)
Rather than specifying XST constraints in the Hardware Description Language (HDL)
source code, you can specify them in the XST Constraint File (XCF). The XCF file has an
extension of .xcf.

To specify an XCF file in ISE® Design Suite:
1. Select an HDL source file from Design > Hierarchy.
2. Right-click Processes > Synthesize-XST.
3. Select Process > Properties.
4. Select Synthesis Options.
5. Edit Synthesis Constraints File.
6. Check Synthesis Constraints File.
7. To specify the XCF in command line mode, use Synthesis Constraint File

(-uc) with the run command.

For more information about the run command and running XST from the command
line, see XST Commands in Chapter 2, Creating and Synthesizing an XST Project.

The XCF syntax enables you to specify constraints that are applicable to:

• The entire design
• Specific entities or modules

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 287

Chapter 9: XST Design Constraints

The XCF syntax is an extension of the User Constraints File (UCF) syntax. You apply
constraints to nets or instances in the same manner. In addition, the XCF syntax allows
constraints to be applied to specific levels of the design hierarchy. Use the keyword
MODEL to define the entity or module to which the constraint is applied. If a constraint is
applied to an entity or module, the constraint is effective for each instantiation of the
entity or module.

Define constraints in ISE Design Suite in Process > Properties, or the XST run command
on the command line. Specify exceptions in the XCF file. The constraints specified in the
XCF file are applied only to the module listed, and not to any submodules below it.

To apply a constraint to the entire entity or module use the following syntax:

MODEL entityname constraintname = constraintvalue;

Coding Example
MODEL top mux_extract = false;
MODEL my_design max_fanout = 256;

If the entity my_design is instantiated several times in the design, the
max_fanout=256 constraint is applied to each instance of my_design.

To apply constraints to specific instances or signals within an entity or module, use the
INST or NET keywords. XST does not support constraints that are applied to VHDL
variables.

The syntax is:

BEGIN MODEL entityname

INST instancename constraintname = constraintvalue ;
NET signalname constraintname = constraintvalue ;

END;

Syntax Example
BEGIN MODEL crc32

INST stopwatch opt_mode = area ;
INST U2 ram_style = block ;
NET myclock clock_buffer = true ;
NET data_in iob = true ;

END;

Native and Non-Native User Constraints File (UCF) Syntax
All XST-supported constraints can be divided into two groups:

• Native User Constraints File (UCF) Constraints

• Non-Native User Constraints File (UCF) Constraints

XST User Guide for Virtex-6 and Spartan-6 Devices
288 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 9: XST Design Constraints

Native User Constraints File (UCF) Constraints
Only Timing and Area Group constraints use native User Constraints File (UCF)
syntax. Use this syntax, including wildcards and hierarchical names, for such native
UCF constraints as:

• Period (PERIOD)

• Offset (OFFSET)

• From-To (FROM-TO)

• Timing Name (TNM)

• Timing Name on a Net (TNM_NET)

• Timegroup (TIMEGRP)

• Timing Ignore (TIG)

Do not use these constraints inside a BEGIN MODEL... END construct. If you do
so, XST issues an error.

Non-Native User Constraints File (UCF) Constraints
For all non-native User Constraints File (UCF) constraints, use the MODEL or BEGIN
MODEL... END; constructs. They include:

• Pure XST constraints such as:

– Automatic FSM Extraction (FSM_EXTRACT)

– RAM Style (RAM_STYLE)

• Implementation non-timing constraints such as:

– RLOC

– Keep (KEEP)

In XST, the default hierarchy separator is a forward slash (/). Use this separator when
specifying timing constraints that apply to hierarchical instance or net names in the
XST Constraint File (XCF). Change the hierarchy separator inserted by XST with the
Hierarchy Separator (-hierarchy_separator) option.

Syntax Limitations
XST Constraint File (XCF) syntax has the following limitations:

• Nested model statements are not supported.

• Instance or signal names listed between the BEGIN MODEL statement and the END
statement are only the ones visible inside the entity. Hierarchical instance or signal
names are not supported.

• Wildcards in instance and signal names are not supported, except in timing
constraints.

• Not all native User Constraints File (UCF) constraints are supported. For more
information, see the Constraints Guide

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 289

Chapter 9: XST Design Constraints

Timing Constraints Applicable Only Through the XST Constraint
File (XCF) File

The following timing constraints can be applied for synthesis only through the XST
Constraint File (XCF):

• Period (PERIOD)

• Offset (OFFSET)

• From-To (FROM-TO)

• Timing Name (TNM)

• Timing Name on a Net (TNM_NET)

• Timegroup (TIMEGRP)

• Timing Ignore (TIG)

• Timing Specifications (TIMESPEC) (See the Constraints Guide.)

• Timing Specification Identifier (TSidentifier) (See the Constraints Guide.)

These timing constraints are not only propagated to implementation tools. They are also
understood by XST, and influence synthesis optimization. To pass these constraints to
Place and Route (PAR), select Write Timing Constraints (–write_timing_constraints). For
more information as to the value and target of each constraint, see the Constraints Guide.

XST User Guide for Virtex-6 and Spartan-6 Devices
290 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10

XST General Constraints
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter discusses XST General Constraints, and includes:
• Add I/O Buffers (–iobuf)
• BoxType (BOX_TYPE)
• Bus Delimiter (–bus_delimiter)
• Case (–case)
• Case Implementation Style (–vlgcase)
• Verilog Macros (-define)
• Duplication Suffix (–duplication_suffix)
• Full Case (FULL_CASE)
• Generate RTL Schematic (–rtlview)
• Generics (-generics)
• Hierarchy Separator (–hierarchy_separator)
• I/O Standard (IOSTANDARD)
• Keep (KEEP)
• Keep Hierarchy (KEEP_HIERARCHY)
• Library Search Order (–lso)
• LOC (loc)
• Netlist Hierarchy (-netlist_hierarchy)
• Optimization Effort (OPT_LEVEL)
• Optimization Goal (OPT_MODE)
• Parallel Case (PARALLEL_CASE)
• RLOC (rloc)
• Save (S / SAVE)
• Synthesis Constraint File (–uc)
• Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)
• Ignore Synthesis Constraints File (–iuc)
• Verilog Include Directories (–vlgincdir)
• HDL Library Mapping File (–xsthdpini)
• Work Directory (–xsthdpdir)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 291

Chapter 10: XST General Constraints

Add I/O Buffers (–iobuf)
Add I/O Buffers (-iobuf) enables or disables I/O buffer insertion. XST automatically
inserts Input/Output Buffers into the design. If you manually instantiate I/O Buffers
for some or all the I/Os, XST inserts I/O Buffers only for the remaining I/Os. To prevent
XST from inserting any I/O Buffers, set -iobuf to no. Add I/O Buffers is useful for
synthesizing a part of a design to be instantiated later.

The values for this constraint are:

• yes (default)
• no

When yes is selected, IBUF and IOBUF primitives are generated. IBUF and OBUF
primitives are connected to I/O ports of the top-level module. When XST is called to
synthesize an internal module that is instantiated later in a larger design, you must
select the no option. If I/O buffers are added to a design, this design cannot be used as a
submodule of another design.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally

Propagation Rules
Applies to design primary I/Os

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-iobuf {yes|no|true|false|soft}

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Add I/O Buffers

BoxType (BOX_TYPE)
Box Type (BOX_TYPE) is a synthesis constraint.

The values for this constraint are:
• primitive

• black_box

• user_black_box

These values instruct XST not to synthesize the behavior of a module.

XST User Guide for Virtex-6 and Spartan-6 Devices
292 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

The black_box value is equivalent to primitive. It will eventually become obsolete.

If user_black_box is specified, XST reports inference of a black box in the log file. It
does not do so if primitive is specified.

If Box Type is applied to at least a single instance of a block of a design, Box Type is
propagated to all other instances of the entire design. This feature was implemented for
Verilog and the XST Constraint File (XCF) in order to provide support similar to VHDL,
where Box Type can be applied to a component.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to the following design elements:

• VHDL
component, entity

• Verilog
module, instance

• XCF
model, instance

Propagation Rules
Applies to the design element to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute box_type: string;

Specify as follows:

attribute box_type of {component_name|entity_name} :
{component|entity} is "{primitive|black_box|user_black_box}";

Verilog Syntax Example
Place immediately before the instantiation:

(* box_type = "{primitive|black_box|user_black_box}" *)

XCF Syntax Example One
MODEL "entity_name"
box_type="{primitive|black_box|user_black_box}";

XCF Syntax Example Two
BEGIN MODEL "entity_name"

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 293

Chapter 10: XST General Constraints

INST " instance_name "
box_type="{primitive|black_box|user_black_box}"; END;

Bus Delimiter (–bus_delimiter)
Bus Delimiter (–bus_delimiter) defines the format used to write the signal vectors in
the result netlist. The available formats are:
• <> (default)
• []
• {}
• ()

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to syntax

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-bus_delimiter {<>|[]|{}|()}

The default is <>.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Bus Delimiter

Case (–case)
Case (–case) determines whether instance and net names are written in the final netlist
using all lower or upper case letters, or whether the case is maintained from the source.
The case can be maintained for either Verilog or VHDL synthesis flow.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to syntax

XST User Guide for Virtex-6 and Spartan-6 Devices
294 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-case {upper|lower|maintain}

The default is maintain.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Case

Case Implementation Style (–vlgcase)
Case Implementation Style (–vlgcase) is valid for Verilog designs only.

Case Implementation Style instructs XST how to interpret Verilog case statements.
Case Implementation Style has three possible values:
• full

• parallel

• full-parallel

The following rules apply:
• Option not specified

XST implements the exact behavior of the case statements.
• full

XST assumes that the case statements are complete, and avoids latch creation.
• parallel

XST assumes that the branches cannot occur in parallel, and does not use a
priority encoder.

• full-parallel

XST assumes that the case statements are complete, and that the branches cannot
occur in parallel, therefore saving latches and priority encoders.

For more information, see:
• Full Case (FULL_CASE)
• Parallel Case (PARALLEL_CASE)
• Multiplexers in Chapter 7, XST HDL Coding Techniques

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 295

Chapter 10: XST General Constraints

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-vlgcase {full|parallel|full-parallel}

By default, there is no value.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > Case Implementation Style

Case Implementation Style values are:
• full

• parallel

• full-parallel

By default, there is no value.

Verilog Macros (-define)
Verilog Macros (-define) is valid for Verilog designs only. Use Verilog Macros to define
(or redefine) Verilog macros. This allows you to modify the design configuration without
modifying the source code. This feature is useful for such processes as IP core generation
and flow testing. If the defined macro is not used in the design, no message is given.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST User Guide for Virtex-6 and Spartan-6 Devices
296 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

XST Command Line Syntax Example
Define globally with the run command:
-define {name[=value] name[=value] -}

where
• name is a macro name
• value is a macro text

The default is an empty definition.

-define {}

• Values for macros are not mandatory.
• Place the values inside curly braces ({...}).
• Separate the values with spaces.
• Macro text can be specified between quotation marks ("..."), or without them. If

the macro text contains spaces, you must use quotation marks ("...").

-define {macro1=Xilinx macro2="Xilinx Virtex6"}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Verilog Macros

Do not use curly braces ({...}) when specifying values in ISE® Design Suite
.

acro1=Xilinx macro2="Xilinx Virtex6"

Duplication Suffix (–duplication_suffix)
Duplication Suffix (-duplication_suffix) controls how XST names replicated
flip-flops. When XST replicates a flip-flop, it creates a name for the new flip-flop by
adding _n to the end of the original flip-flop name, where n is an index number.

For example, if the original flip-flop name is my_ff, and this flip-flop was replicated
three times, XST generates flip-flops with the following names:
• my_ff_1

• my_ff_2

• my_ff_3

Use Duplication Suffix to specify a text string to append to the end of the default name.
Use the %d escape character to specify where in the name the index number appears.

For example, for the flip-flop named my_ff, if you specify _dupreg_%d with the
Duplication Suffix option, XST generates the following names:
• my_ff_dupreg_1

• my_ff_dupreg_2

• my_ff_dupreg_3

The %d escape character can be placed anywhere in the suffix definition.

For example, if the Duplication Suffix value is specified as _dup_%d_reg, XST generates
the following names:
• my_ff_dup_1_reg

• my_ff_dup_2_reg

• my_ff_dup_3_reg

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 297

Chapter 10: XST General Constraints

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to files

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-duplication_suffix string%dstring

The default is %d.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Other

Full Case (FULL_CASE)
Full Case (FULL_CASE) is valid for Verilog designs only. Full Case indicates that all
possible selector values have been expressed in a case, casex, or casez statement.
The Full Case directive prevents XST from creating additional hardware for those
conditions not expressed. For more information, see Multiplexers in Chapter 7, XST
HDL Coding Techniques.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to case statements in Verilog meta comments.

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Verilog Syntax Example
The Verilog 2001 syntax is as follows:

XST User Guide for Virtex-6 and Spartan-6 Devices
298 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

(* full_case *)

Since Full Case does not contain a target reference, the attribute immediately precedes
the selector.

(* full_case *)
casex select
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;

endcase

Full Case is also available as a meta comment in the Verilog code. The syntax differs
from the standard meta comment syntax as shown in the following:

// synthesis full_case

Since Full Case does not contain a target reference, the meta comment immediately
follows the selector.

casex select // synthesis full_case
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;

endcase

XST Command Line Syntax Example
Define globally with the run command:

-vlgcase {full|parallel|full-parallel}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Full Case

For Case Implementation Style, select full as a Value.

Generate RTL Schematic (–rtlview)
Generate RTL Schematic (-rtlview) enables XST to generate a netlist file, representing
an RTL structure of the design. This netlist can be viewed by the RTL and Technology
Viewers. Generate RTL Schematic has three possible values:
• yes

• no

• only

When only is specified, XST stops synthesis immediately after the RTL view is
generated. The file containing the RTL view has an NGR file extension.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to files

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 299

Chapter 10: XST General Constraints

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-rtlview {yes|no|only}

The default is no.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Generate RTL Schematic

The default is yes.

Generics (-generics)
Use Generics (-generics) to redefine generics (VHDL) or parameters (Verilog) values
defined in the top-level design block. This allows you to modify the design configuration
without modifying the source code. This feature is useful for such processes as IP core
generation and flow testing.

If the defined value does not correspond to the data type defined in the HDL source
code, then XST tries to detect the situation and issues a warning, ignoring the command
line definition.

In some situations, XST may fail to detect a type mismatch. In that case, XST attempts to
apply this value by adopting it to the type defined in the HDL file without any warning.
Be sure that the value you specified corresponds to the type defined in the HDL source
code. If a defined generic or parameter name does not exist in the design, no message is
given, and the definition is ignored.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST User Guide for Virtex-6 and Spartan-6 Devices
300 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

XST Command Line Syntax Example
xst run -generics {name=value name=value ...}

where
• name is the name of a generic or parameter of the top level design block
• value is the value of a generic or parameter of the top level design block

The default is an empty definition.

-generics {}
• Place the name/value pairs inside curly braces ({...}).
• Separate the name/value pairs with spaces.
• XST can accept only constants of scalar types as values. Composite data types

(arrays or records) are supported only for the following:
– –string

– –std_logic_vector

– –std_ulogic_vector

– –signed, unsigned

– –bit_vector

Formatting varies depending on the type of the generic value, as shown in the following
table.

Generics XST Command Line Syntax Formatting
Type Generic value syntax examples

Binary b00111010

Hexadecimal h3A

Decimal (integer) d58 (or 58)

Boolean true TRUE

Boolean false FALSE

There are no spaces between the prefix and the corresponding value.

-generics {company="Xilinx" width=5 init_vector=b100101}

This command sets:
• company to Xilinx
• width to 5
• init_vector to b100101

Hierarchy Separator (–hierarchy_separator)
Hierarchy Separator (-hierarchy_separator) defines the hierarchy separator
character that is used in name generation when the design hierarchy is flattened.

The two supported characters are:
• _ (underscore)
• / (forward slash)

The default is / (forward slash) for newly created projects.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 301

Chapter 10: XST General Constraints

If a design contains a sub-block with instance INST1, and this sub-block contains a net
called TMP_NET, then the hierarchy is flattened and the hierarchy separator character
is / (forward slash). The name TMP_NET becomes INST1_TMP_NET. If the hierarchy
separator character is / (forward slash), the net name is NST1/TMP_NET.

Using / (forward slash) as a hierarchy separator is useful in design debugging
because the / (forward slash) separator makes it much easier to identify a name if it
is hierarchical.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to files

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-hierarchy_separator {_|/}

The default is / (forward slash) for newly created projects.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Hierarchy Separator

The default is / (forward slash).

I/O Standard (IOSTANDARD)
Use I/O Standard (IOSTANDARD) to assign an I/O standard to an I/O primitive. I/O
Standard can be applied on individual signals or instances, using a VHDL attribute, a
Verilog attribute, or an XST Constraint File (XCF) constraint. It is not applicable globally.

For more information, see IOSTANDARD in the Constraints Guide.

Keep (KEEP)
Keep (KEEP) is an advanced mapping constraint. When a design is mapped, some
nets may be absorbed into logic blocks. When a net is absorbed into a block, it can no
longer be seen in the physical design database. This may happen, for example, if the
components connected to each side of a net are mapped into the same logic block. The
net may then be absorbed into the block containing the components. Keep prevents
this from happening.

XST User Guide for Virtex-6 and Spartan-6 Devices
302 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

Keep preserves the existence of the signal in the final netlist, but not its structure. For
example, if the design has a 2-bit multiplexer selector and you attach Keep to it, this
signal is preserved in the final netlist. But the multiplexer could be automatically
re-encoded by XST using one-hot encoding. As a consequence, this signal in the final
netlist is four bits wide instead of the original two. To preserve the structure of the
signal, you must use Enumerated Encoding (ENUM_ENCODING) in addition to Keep.

Allowed values are:
• true

• soft

• false

The soft value allows preservation of the designated signal during synthesis, but Keep
is not propagated to implementation where the signal may be optimized away.

Keep can be applied to a signal, using a VHDL attribute, a Verilog attribute, or an XCF
constraint.

For more information, see KEEP in the Constraints Guide.

Keep Hierarchy (KEEP_HIERARCHY)
Keep Hierarchy (KEEP_HIERARCHY) is a synthesis and implementation constraint. If
hierarchy is maintained during synthesis, the implementation tools use Keep Hierarchy
to preserve the hierarchy throughout implementation, and allow a simulation netlist
to be created with the desired hierarchy.

XST can flatten the design to obtain better results by optimizing entity or module
boundaries. If you set Keep Hierarchy to true, the generated netlist is hierarchical, and
respects the hierarchy and interface of any entity or module in the design.

Keep Hierarchy is related to the hierarchical blocks (VHDL entities, Verilog modules)
specified in the Hardware Description Language (HDL) design, and does not concern
the macros inferred by the HDL synthesizer.

Keep Hierarchy Values
The values for this constraint are:

• true

Allows the preservation of the design hierarchy, as described in the HDL project. If
this value is applied to synthesis, it is also propagated to implementation.

• false (default)
Hierarchical blocks are merged in the top level module.

• soft

Allows the preservation of the design hierarchy in synthesis, but Keep Hierarchy
is not propagated to implementation.

Preserving the Hierarchy
In general, a Hardware Description Language (HDL) design is a collection of hierarchical
blocks. Preserving the hierarchy gives the advantage of fast processing because the
optimization is done on separate pieces of reduced complexity. Nevertheless, very
often, merging the hierarchy blocks improves the fitting results (fewer PTerms and
device macrocells, better frequency) because the optimization processes (collapsing,
factorization) are applied globally on the entire logic.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 303

Chapter 10: XST General Constraints

Keep Hierarchy Diagram
In the following figure, if Keep Hierarchy is set to the entity or module I2, the hierarchy
of I2 is in the final netlist, but its contents I4, I5 are flattened inside I2. I1, I3, I6, and I7
are also flattened.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to logical blocks, including blocks of hierarchy or symbols

Propagation Rules
Applies to the entity or module to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Keep Hierarchy Schematic Syntax Example
• Attach to the entity or module symbol
• Attribute Name: KEEP_HIERARCHY
• Attribute Values: YES, NO

VHDL Syntax Example
Declare as follows:

attribute keep_hierarchy : string;

Specify as follows:

attribute keep_hierarchy of architecture_name : architecture is
"{yes|no|true|false|soft}";

The default is no.

XST User Guide for Virtex-6 and Spartan-6 Devices
304 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

Verilog Syntax Example
(* keep_hierarchy = "{yes|no|true|false|soft}" *)

XCF Syntax Example
MODEL "entity_name" keep_hierarchy={yes|no|true|false|soft};

XST Command Line Syntax Example
Define globally with the run command:

-keep_hierarchy {yes|no|soft}

The default is no.

For more information, see Running XST in Command Line Mode in Chapter 2, Creating
and Synthesizing an XST Project.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Keep Hierarchy

Library Search Order (–lso)
Use Library Search Order (-lso) to specify the order in which library files are used.
To invoke Library Search Order:
• Specify the search order file in ISE® Design Suite in Process > Properties > Synthesis

Options > Library Search Order, or
• Use the –lso command line option

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to files

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-lso file_name.lso

There is no default file name. If not specified, XST uses the default search order.

For more information, see Library Search Order (LSO) Files in Chapter 6, XST Mixed
Language Support.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 305

Chapter 10: XST General Constraints

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Library Search Order

For more information, see Library Search Order (LSO) Files in Chapter 6, XST Mixed
Language Support.

LOC
LOC defines where a design element can be placed within a device. For more
information, see LOC in the Constraints Guide.

Netlist Hierarchy (-netlist_hierarchy)
Use Netlist Hierarchy (-netlist_hierarchy) to control the form in which the final NGC
netlist is generated. Netlist Hierarchy allows you to write the hierarchical netlist even if
the optimization was done on a partially or fully flattened design.

If the value of Netlist Hierarchy is:
• as_optimized

XST takes Keep Hierarchy (KEEP_HIERARCHY) into account, and generates the
NGC netlist in the form in which it was optimized. In this mode, some hierarchical
blocks can be flattened, and some can maintain hierarchy boundaries.

• rebuilt

XST writes a hierarchical NGC netlist, regardless of Keep Hierarchy
(KEEP_HIERARCHY).

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

- netlist_hierarchy {as_optimized|rebuilt}

The default is as_optimized.

Optimization Effort (OPT_LEVEL)
Optimization Effort (OPT_LEVEL) defines the synthesis optimization effort level.

XST User Guide for Virtex-6 and Spartan-6 Devices
306 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

The values for this constraint are:

• 1 (normal optimization)
Use 1 (normal optimization) for very fast processing, especially for hierarchical
designs. In speed optimization mode, Xilinx® recommends using 1 (normal
optimization) for the majority of designs. 1 (normal optimization) is the default.

• 2 (higher optimization)
Use 2 (higher optimization) to instruct XST to enable more optimization techniques.
These techniques can result in significantly increased synthesis runtimes. A better
outcome is not guaranteed. While these optimizations may benefit a particular
design, there maybe no improvement at all, or the results may even be degraded.
Xilinx therefore recommends Optimization Effort 1 for most designs.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to an entity or module

Propagation Rules
Applies to the entity or module to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute opt_level: string;

Specify as follows:

attribute opt_level of entity_name: entity is "{1|2}";

Verilog Syntax Example
(* opt_level = "{1|2}" *)

XCF Syntax Example
MODEL "entity_name" opt_level={1|2};

XST Command Line Syntax Example
Define globally with the run command:

-opt_level {1|2}

The default is 1.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Optimization Effort

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 307

Chapter 10: XST General Constraints

Optimization Goal (OPT_MODE)
Optimization Goal (OPT_MODE) defines the synthesis optimization strategy.

Available Optimization Goal values are:
• speed

The priority of speed is to reduce the number of logic levels and therefore to
increase frequency. speed is the default.

• area

The priority of area is to reduce the total amount of logic used for design
implementation and therefore improve design fitting.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to an entity or module

Propagation Rules
Applies to the entity or module to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute opt_mode: string;

Specify as follows:

attribute opt_mode of entity_name: entity is "{speed|area}";

Verilog Syntax Example
(* opt_mode = "{speed|area}" *)

XCF Syntax Example
MODEL "entity_name" opt_mode={speed|area};

XST Command Line Syntax Example
Define globally with the run command:

-opt_mode {area|speed}

The default is speed.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Optimization Goal

XST User Guide for Virtex-6 and Spartan-6 Devices
308 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

The default is speed.

Parallel Case (PARALLEL_CASE)
Parallel Case (PARALLEL_CASE) is valid for Verilog designs only. Parallel Case forces
a case statement to be synthesized as a parallel multiplexer and prevents the case
statement from being transformed into a prioritized if-elsif cascade. For more
information, see Multiplexers in Chapter 7, XST HDL Coding Techniques.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to case statements in Verilog meta comments only

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Verilog Syntax Example
The syntax is:

(* parallel_case *)

Since Parallel Case does not contain a target reference, the attribute immediately
precedes the selector.

(* parallel_case *)
casex select
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;

endcase

Parallel Case is also available as a meta comment in the Verilog code. The syntax differs
from the standard meta comment syntax as shown in the following:

// synthesis parallel_case

Since Parallel Case does not contain a target reference, the meta comment immediately
follows the selector.

casex select // synthesis parallel_case
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;

endcase

XST Command Line Syntax Example
Define globally with the run command:

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 309

Chapter 10: XST General Constraints

-vlgcase {full|parallel|full-parallel}

RLOC
RLOC is a basic mapping and placement constraint. RLOC groups logic elements into
discrete sets. Use RLOC to define the location of any element within the set relative to
other elements in the set, regardless of eventual placement in the overall design. For
more information, see RLOC in the Constraints Guide.

Save (S or SAVE)
Save (S or SAVE) is an advanced mapping constraint. Typically, when the design is
mapped, some nets may be absorbed into logic blocks, and some elements such as LUTs
may be optimized away. If you need to preserve access to some specific nets and blocks
in the post-synthesis netlist, Save prevents such optimizations from happening. Disabled
optimization techniques include nets or blocks replication and register balancing.

If Save is applied to a net, XST preserves the net with all elements directly connected to
it in the final netlist. This includes nets connected to these elements.

If Save is applied to a block such as a LUT, XST preserves the LUT with all signals
connected to it.

Applicable elements are:
• Nets

XST preserves the designated net with all elements directly connected to it in the
final netlist. As a consequence nets connected to these elements are also preserved.

• Instantiated device primitives
If Save is applied to an instantiated primitive, such as a LUT, XST preserves the LUT
with all signals connected to it.

For more information, see the Constraints Guide.

Synthesis Constraint File (–uc)
Synthesis Constraint File (–uc) specifies a synthesis constraint file for XST to use. The
XST Constraint File (XCF) has an extension of .xcf. If the extension is not .xcf, XST
errors out and stops processing.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to files

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST User Guide for Virtex-6 and Spartan-6 Devices
310 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

XST Command Line Syntax Example
Define globally with the run command:

-uc filename

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Synthesis Constraints File

Translate Off (TRANSLATE_OFF) and Translate On
(TRANSLATE_ON)

Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON) instruct XST to
ignore portions of the Hardware Description Language (HDL) source code that are not
relevant for synthesis, such as simulation code.
• TRANSLATE_OFFmarks the beginning of the section to be ignored.
• TRANSLATE_ON instructs XST to resume synthesis from that point.

Translate Off and Translate On are also Synplicity and Synopsys directives that XST
supports in Verilog. Automatic conversion is also available in VHDL and Verilog.

Translate Off and Translate On can be used with the following words:
• synthesis

• synopsys

• pragma

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies locally

Propagation Rules
Instructs the synthesis tool to enable or disable portions of code

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

-- synthesis translate_off
...code not synthesized...
-- synthesis translate_on

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 311

Chapter 10: XST General Constraints

Verilog Syntax Example
Translate Off and Translate On are available as HDL meta comments. The Verilog syntax
differs from the standard meta comment syntax as shown in the following coding
example.

// synthesis translate_off
...code not synthesized...
// synthesis translate_on

Ignore Synthesis Constraints File (–iuc)
Use Ignore Synthesis Constraints File (–iuc) to ignore the constraint file specified with
Synthesis Constraints File (-uc) during synthesis.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to files

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-iuc {yes|no}

The default is no.

ISE Design Suite Syntax Example
Caution! Ignore Synthesis Constraints File is shown as Synthesis Constraints File in
ISE® Design Suite. The constraint file is ignored if you uncheck this option. It is checked
by default (therefore resulting in a –iuc no command line switch), meaning that any
synthesis constraints file you specify is taken into account.

Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Synthesis Constraints File

XST User Guide for Virtex-6 and Spartan-6 Devices
312 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

Verilog Include Directories (–vlgincdir)
Verilog Include Directories (–vlgincdir) helps the parser find files referenced by
‘include statements. When an ‘include statement references a file, XST looks
in different areas in this order:
• Relative to the current directory
• Relative to the inc directories
• Relative to the current file

Note Use -vlgincdir in conjunction with ‘include.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to directories

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define Verilog Include Directories globally with the –vlgincdir option of the run
command. Allowed values are names of directories. For more information, see “Names
With Spaces in Command Line Mode” in Chapter 2, Creating and Synthesizing an
XST Project.

Define globally with the run command:

-vlgincdir {directory_path [directory_path] }

There is no default.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Verilog Include Directories

Allowed values are names of directories.

There is no default.

To view this constraint, select Edit > Preferences > Processes > Property Display Level
> Advanced.

HDL Library Mapping File (–xsthdpini)
Use HDL Library Mapping File (-xsthdpini) to define the library mapping.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 313

Chapter 10: XST General Constraints

The library mapping file has two associated parameters:
• XSTHDPINI

• XSTHDPDIR

The library mapping file contains:
• The library name
• The directory in which the library is compiled

XST maintains two library mapping files:
• The pre-installed file, which is installed during the Xilinx® software installation
• The user file, which you can define for your own projects

The pre-installed (default) INI file is named xhdp.ini, and is located in
%XILINX%\vhdl\xst. These files contain information about the locations of the
standard VHDL and UNISIM libraries. These should not be modified, but the syntax
can be used for user library mapping. This file appears as follows:

-- Default lib mapping for XST
std=$XILINX/vhdl/xst/std
ieee=$XILINX/vhdl/xst/unisim
unisim=$XILINX/vhdl/xst/unisim
aim=$XILINX/vhdl/xst/aim
pls=$XILINX/vhdl/xst/pls

Use this file format to define where each of your own libraries will be placed. By default,
all compiled VHDL flies are stored in the xst sub-directory of the project directory.

To place a custom INI file anywhere on a disk:
• Select the VHDL INI file in ISE® Design Suite in:

Process > Properties > Synthesis Options, or
• Set the -xsthdpini parameter, using the following command in stand-alone mode:

set -xsthdpini file_name

Although you can give this library mapping file any name you wish, Xilinx recommends
keeping the .ini classification. The format is:

library_name=path_to_compiled_directory

Use double dash (--) for comments.

MY.INI Example Text
work1=H:\Users\conf\my_lib\work1
work2=C:\mylib\work2

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to files

Propagation Rules
Not applicable

XST User Guide for Virtex-6 and Spartan-6 Devices
314 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 10: XST General Constraints

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

set -xsthdpini file_name

The command can accept a single file only.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > VHDL INI File

To view this constraint, select Edit > Preferences > Processes > Property Display Level
> Advanced.

Work Directory (–xsthdpdir)
Work Directory (-xsthdpdir) defines the location in which VHDL-compiled files must be
placed if the location is not defined by library mapping files. To access Work Directory:
• In ISE® Design Suite select:

Process > Properties > Synthesis Options > VHDL Work Directory, or
• Use the following command in stand-alone mode:

set -xsthdpdir directory

Work Directory Example
Assume the following:
• Three different users are working on the same project.
• They share one standard, pre-compiled library, shlib.
• This library contains specific macro blocks for their project.
• Each user also maintains a local work library.
• User Three places her local work library outside the project directory (for example,

in c:\temp).
• User One and User Two share another library (lib12) between them, but not

with User Three.

The settings required for the three users are as follows:

Work Directory Example User One
Mapping file:
schlib=z:\sharedlibs\shlib
lib12=z:\userlibs\lib12

Work Directory Example User Two
Mapping file:
schlib=z:\sharedlibs\shlib
lib12=z:\userlibs\lib12

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 315

Chapter 10: XST General Constraints

Work Directory Example User Three
Mapping file:
schlib=z:\sharedlibs\shlib

User Three will also set:

XSTHDPDIR = c:\temp

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to directories

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

set -xsthdpdir directory

Work Directory can accept a single path only. You must specify the directory.

There is no default.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > VHDL Work Directory

To view this constraint, select Edit > Preferences > Processes > Property Display Level
> Advanced.

XST User Guide for Virtex-6 and Spartan-6 Devices
316 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 11

XST HDL Constraints
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on running XST with other devices, see
the XST User Guide.

This chapter discusses XST HDL Constraints, and includes:
• Automatic FSM Extraction (FSM_EXTRACT)
• Enumerated Encoding (ENUM_ENCODING)
• Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL)
• FSM Encoding Algorithm (FSM_ENCODING)
• Mux Minimal Size (MUX_MIN_SIZE)
• Resource Sharing (RESOURCE_SHARING)
• Safe Recovery State (SAFE_RECOVERY_STATE)
• Safe Implementation (SAFE_IMPLEMENTATION)

Automatic FSM Extraction (FSM_EXTRACT)
Automatic FSM Extraction (FSM_EXTRACT) enables or disables Finite State Machine
(FSM) extraction and specific synthesis optimizations. Automatic FSM Extraction must
be enabled in order to set values for the FSM Encoding Algorithm and FSM Flip-Flop
Type.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to an entity, module, or signal

Propagation Rules
Applies to the entity, module, or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute fsm_extract: string;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 317

Chapter 11: XST HDL Constraints

Specify as follows:

attribute fsm_extract of {entity_name|signal_name}:
{entity|signal is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration.

(* fsm_extract = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" fsm_extract={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" fsm_extract={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-fsm_extract {yes|no}*

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > FSM Encoding Algorithm

These options are:
• If FSM Encoding Algorithm (FSM_ENCODING) is set to none, and -fsm_extract

is set to no, -fsm_encoding does not influence synthesis.
• In all other cases, -fsm_extract is set to yes, and -fsm_encoding is set to the

selected value. For more information about -fsm_encoding, see FSM Encoding
Algorithm (FSM_ENCODING).

Enumerated Encoding (ENUM_ENCODING)
Enumerated Encoding (ENUM_ENCODING) applies a specific encoding to a VHDL
enumerated type. The value is a string containing space-separated binary codes.
You can specify Enumerated Encoding only as a VHDL constraint on the considered
enumerated type.

When describing a Finite State Machine (FSM) using an enumerated type for the state
register, you can specify a particular encoding scheme with Enumerated Encoding. In
order for XST to use this encoding set FSM Encoding Algorithm (FSM_ENCODING)
to user for the considered state register.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
318 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 11: XST HDL Constraints

Applicable Elements
Applies to a type or signal. Because Enumerated Encoding must preserve the external
design interface, XST ignores Enumerated Encoding when it is used on a port.

Propagation Rules
Applies to the type or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Specify as a VHDL constraint on the considered enumerated type.

...
architecture behavior of example is
type statetype is (ST0, ST1, ST2, ST3);
attribute enum_encoding of statetype : type is "001 010 100 111";
signal state1 : statetype;
signal state2 : statetype;
begin
...

XCF Syntax Example
BEGIN MODEL "entity_name"

NET "signal_name" enum_encoding="string";

END;

Equivalent Register Removal
(EQUIVALENT_REGISTER_REMOVAL)

Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL) enables or disables
removal of equivalent registers described at the RTL Level. By default, XST does not
remove equivalent flip-flops if they are instantiated from a Xilinx® primitive library.

Removal of equivalent flip-flops increases the probability that the design will fit on
the targeted device

The values for this constraint are:

• yes (default)
Flip-flop optimization is allowed.

• no

Flip-flop optimization is inhibited. The flip-flop optimization algorithm is time
consuming. For fast processing, use no.

• true (XCF only)
• false (XCF only)

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 319

Chapter 11: XST HDL Constraints

Applicable Elements
Applies globally, or to an entity, module, or signal

Propagation Rules
Removes equivalent flip-flops and flip-flops with constant inputs

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute equivalent_register_removal: string;

Specify as follows:

attribute equivalent_register_removal of
{entity_name|signal_name}: {signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* equivalent_register_removal = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name"
equivalent_register_removal={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name"
equivalent_register_removal={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-equivalent_register_removal {yes|no}

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Equivalent Register Removal

FSM Encoding Algorithm (FSM_ENCODING)
FSM Encoding Algorithm (FSM_ENCODING) selects the Finite State Machine (FSM)
coding technique. In order to select a value for the FSM Encoding Algorithm, Automatic
FSM Extraction (FSM_EXTRACT) must be enabled.

XST User Guide for Virtex-6 and Spartan-6 Devices
320 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 11: XST HDL Constraints

The values for this constraint are:

• auto

• one-hot

• compact

• sequential

• gray

• johnson

• speed1

• user

FSM Encoding Algorithm defaults to auto. The best coding technique is automatically
selected for each individual state machine.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to an entity, module, or signal

Propagation Rules
Applies to the entity, module, or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute fsm_encoding: string;

Specify as follows:

attribute fsm_encoding of
{entity_name|signal_name }: {entity|signal} is
"{auto|one-hot|compact|sequential|gray|johnson|speed1|user}";

The default is auto.

Verilog Syntax Example
Place immediately before the module or signal declaration.
(* fsm_encoding = "{auto|one-hot
|compact|sequential|gray|johnson|speed1|user}" *)

The default is auto.

XCF Syntax Example One
MODEL "entity_name" fsm_encoding={auto|one-hot
|compact|sequential|gray|johnson|speed1|user};

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 321

Chapter 11: XST HDL Constraints

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" fsm_encoding={auto|one-hot
|compact|sequential|gray|johnson|speed1|user};

END;

XST Command Line Syntax Example
Define globally with the run command:

-fsm_encoding
{auto|one-hot|compact|sequential|gray|johnson|speed1|user}

The default is auto.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > FSM Encoding Algorithm

The options are:
• If the FSM Encoding Algorithm menu is set to none, and -fsm_extract is set to

no, -fsm_encoding has no influence on the synthesis.
• In all other cases, -fsm_extract is set to yes and -fsm_encoding is set to the

value selected in the menu. For more information, see Automatic FSM Extraction
(FSM_EXTRACT).

Mux Minimal Size (MUX_MIN_SIZE)
Caution! Review this constraint carefully before use.

Mux Minimal Size (MUX_MIN_SIZE) allows you to control the minimal size of
multiplexer macros inferred by XST.

Size is the number of multiplexed data inputs. For example, for a 2-to-1 multiplexer,
the size, or number of multiplexed inputs, is 2. For a 16-to-1 multiplexer, the size is
16. Selector inputs do not count.

This number is independent of the width of the selected data. Both a 1-bit wide 8-to-1
multiplexer, and a 16-bit wide 8-to-1 multiplexer, have a size of 8.

Mux Minimal Size takes an integer value greater than 1. The default value is 2.

By default, XST infers 2-to-1 multiplexer macros. Explicit inference of 2-to-1 multiplexers
can have either a positive or negative impact on final device utilization, depending on
the design. Xilinx® does not recommend using Mux Minimal Size if device utilization
is satisfactory

If device utilization is not satisfactory, Mux Minimal Size may benefit your design if
there are a large number of 2-to-1 multiplexers inferred in the parts of the design that
are significantly contributing to the unsatisfactory device utilization. In this case, Xilinx
recommends that you try to disable 2-to-1 multiplexer inference, either globally, or
for the blocks that are specifically affecting your results. To disable inference of 2-to-1
multiplexers, apply a value of 3.

Mux Minimal Size may prevent inference of multiplexers for sizes above 2, but the
benefits are speculative. Xilinx recommends extra caution before using Mux Minimal
Size in this situation.

XST User Guide for Virtex-6 and Spartan-6 Devices
322 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 11: XST HDL Constraints

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to a designated VHDL entity or Verilog module.

Propagation Rules
Applies to the designated entity or module.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute mux_min_size: string;

Specify as follows:

attribute mux_min_size of entity_name : entity is "integer";

The default is 2.

Verilog Syntax Examples
Place immediately before the module declaration

(* mux_min_size= "integer" *)

The default is 2.

XST Command Line Syntax Example
Define globally with the run command:

-mux_min_size integer

Note Mux Minimal Size is not available in the default XST options set in ISE® Design
Suite.

Resource Sharing (RESOURCE_SHARING)
Resource Sharing (RESOURCE_SHARING) enables or disables resource sharing of
arithmetic operators.

Resource Sharing values are:
• yes (default)
• no

• true (XCF only)
• false (XCF only)

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 323

Chapter 11: XST HDL Constraints

Applicable Elements
Applies globally, or to design elements

Propagation Rules
Applies to the entity or module to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute resource_sharing: string;

Specify as follows:

attribute resynthesize of entity_name: entity is "{yes|no}";

Verilog Syntax Example
Place immediately before the module declaration or instantiation:

attribute resource_sharing of entity_name: entity is
"{yes|no}";

XCF Syntax Example One
MODEL "entity_name" resource_sharing={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" resource_sharing={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-resource_sharing {yes|no}

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

HDL Options > Resource Sharing

Safe Recovery State (SAFE_RECOVERY_STATE)
Safe Recovery State (SAFE_RECOVERY_STATE) defines a recovery state for use when a
Finite State Machine (FSM) is implemented in Safe Implementation mode. If the FSM
enters an invalid state, XST uses additional logic to force the FSM to a valid recovery
state. By implementing FSM in safe mode, XST collects all code not participating in the
normal FSM behavior and treats it as illegal.

XST User Guide for Virtex-6 and Spartan-6 Devices
324 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 11: XST HDL Constraints

XST uses logic that returns the FSM synchronously to the:
• Known state
• Reset state
• Power up state
• State specified using SAFE_RECOVERY_STATE

For more information, see Safe Implementation (SAFE_IMPLEMENTATION).

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to a signal representing a state register

Propagation Rules
Applies to the signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute safe_recovery_state: string;

Specify as follows:

attribute safe_recovery_state of {signal_name}:{signal} is
"<value>";

Verilog Syntax Example
Place immediately before the signal declaration.

(* safe_recovery_state = "<value>" *)*

XCF Syntax Example
BEGIN MODEL "entity_name"

NET "signal_name" safe_recovery_state="<value>";

END;

Safe Implementation (SAFE_IMPLEMENTATION)
Safe Implementation (SAFE_IMPLEMENTATION) implements Finite State Machine (FSM)
components in Safe Implementation mode. In Safe Implementation mode, XST generates
additional logic that forces an FSM to a valid state (recovery state) if the FSM enters an
invalid state. By default, XST automatically selects reset as the recovery state. If the
FSM does not have an initialization signal, XST selects power-up as the recovery state.

Define the recovery statemanuallywith Safe Recovery State (SAFE_RECOVERY_STATE).

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 325

Chapter 11: XST HDL Constraints

To activate Safe Implementation in:
• ISE® Design Suite

Select Process > Properties > HDL Options > Safe Implementation.
• Hardware Description Language (HDL)

Apply Safe Implementation to the hierarchical block or signal that represents the
state register in the FSM.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to an entire design through the XST command line, to a particular block (entity,
architecture, component), or to a signal

Propagation Rules
Applies to an entity, component, module, signal, or instance to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute safe_implementation: string;

Specify as follows:

attribute safe_implementation of
{entity_name|component_name|signal_name}:
{entity|component|signal is "{yes|no}}";

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* safe_implementation = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" safe_implementation={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" safe_implementation="{yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-safe_implementation {yes|no}

XST User Guide for Virtex-6 and Spartan-6 Devices
326 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 11: XST HDL Constraints

The default is no.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

HDL Options > Safe Implementation

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 327

XST User Guide for Virtex-6 and Spartan-6 Devices
328 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12

XST FPGA Constraints (Non-Timing)
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter discusses XST FPGA Constraints (Non-Timing), and includes:

• Asynchronous to Synchronous (ASYNC_TO_SYNC)

• Automatic BRAM Packing (AUTO_BRAM_PACKING)

• BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)

• Buffer Type (BUFFER_TYPE)

• Extract BUFGCE (BUFGCE)

• Cores Search Directories (-sd)

• DSP Utilization Ratio (DSP_UTILIZATION_RATIO)

• FSM Style (FSM_STYLE)

• Power Reduction (POWER)

• Read Cores (READ_CORES)

• LUT Combining (LC)

• Map Logic on BRAM (BRAM_MAP)

• Max Fanout (MAX_FANOUT)

• Move First Stage (MOVE_FIRST_STAGE)

• Move Last Stage (MOVE_LAST_STAGE)

• Multiplier Style (MULT_STYLE)

• Number of Global Clock Buffers (-bufg)

• Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES)

• Pack I/O Registers Into IOBs (IOB)

• RAM Extraction (RAM_EXTRACT)

• RAM Style (RAM_STYLE)

• Reduce Control Sets (REDUCE_CONTROL_SETS)

• Register Balancing (REGISTER_BALANCING)

• Register Duplication (REGISTER_DUPLICATION)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 329

Chapter 12: XST FPGA Constraints (Non-Timing)

• ROM Extraction (ROM_EXTRACT)

• ROM Style (ROM_STYLE)

• Shift Register Extraction (SHREG_EXTRACT)

• Shift Register Minimum Size (SHREG_MIN_SIZE)

• Use Low Skew Lines (USELOWSKEWLINES)

• Slice (LUT-FF Pairs) Utilization Ratio

• Slice (LUT-FF Pairs) Utilization Ratio Delta
(SLICE_UTILIZATION_RATIO_MAXMARGIN)

• Map Entity on a Single LUT (LUT_MAP)

• Use Carry Chain (USE_CARRY_CHAIN)

• Convert Tristates to Logic (TRISTATE2LOGIC)

• Use Clock Enable (USE_CLOCK_ENABLE)

• Use Synchronous Set (USE_SYNC_SET)

• Use Synchronous Reset (USE_SYNC_RESET)

• Use DSP Block (USE_DSP48)

In many cases, a particular constraint can be applied:

• Globally to an entire entity or model, or

• Locally to individual signals, nets or instances

Asynchronous to Synchronous (ASYNC_TO_SYNC)
Use Asynchronous to Synchronous (ASYNC_TO_SYNC) to treat asynchronous set and
reset signals as synchronous. The Asynchronous to Synchronous transformation:

• Applies to inferred sequential elements only

• Does not apply to instantiated flip-flops and latches

• Is performed on-the-fly

• Is reflected in the post-synthesis netlist

• Does not change your Hardware Description Language (HDL) source code

Set and reset functionality of Xilinx® device resources such as DSP blocks and block
RAMs is synchronous by nature. If strict coding practices require you to describe set
and reset signals asynchronously, you may not be using those resources to their full
potential. Automatic Asynchronous to Synchronous transformation allows you to assess
their potential without changing the description of the sequential elements in your HDL
source code. By better leveraging registers in your design, you may be able to:

• Improve device utilization

• Increase circuit performance

• Achieve better power reduction

XST User Guide for Virtex-6 and Spartan-6 Devices
330 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Caution! Carefully review the following to assess the potential impact of Asynchronous
to Synchronous transformation on your design:

• As a result of Asynchronous to Synchronous transformation, the post-synthesis
netlist is theoretically not functionally equivalent to your pre-synthesis HDL description.
However, if not actually using the asynchronous sets and resets that you have
described, or if they are derived from synchronous sources, the post-synthesis
solution is functionally equivalent in those cases.

• If you achieve your design goals by using Asynchronous to Synchronous
transformation, determine whether you should change the HDL description to
enforce synchronous set and reset signals in order to ensure the expected circuit
behavior. Changing the HDL description may also ease design validation.

• Xilinx highly recommends a timing simulation in order to assess the impact of the
Asynchronous to Synchronous transformation on your design.

• If you are allowed to change your coding practices, Xilinx recommends that you
describe synchronous set and reset signals in your HDL source code.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-async_to_sync {yes|no}

The default is no.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > Asynchronous to Synchronous

Automatic BRAM Packing (AUTO_BRAM_PACKING)
Use Automatic BRAM Packing (AUTO_BRAM_PACKING) to pack two small block RAMs
in a single block RAM primitive as dual-port block RAM. XST packs block RAMs
together only if they are situated in the same hierarchical level. Automatic BRAM
Packing is disabled by default.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 331

Chapter 12: XST FPGA Constraints (Non-Timing)

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-auto_bram_packing {yes|no}

The default is no.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Automatic BRAM Packing

BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)
BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO) defines the number of block
RAMs that XST must not exceed during synthesis. Block RAMs may come not only
from block RAM inference processes, but from instantiation and block RAM mapping
optimizations. You can isolate an RTL description of logic in a separate block, and then
direct XST to map this logic to block RAM.

For more information, see Mapping Logic to Block RAM in Chapter 8, XST FPGA
Optimization.

Instantiated block RAMs are the primary candidates for available block RAM resources.
The inferred RAMs are placed on the remaining block RAM resources. However, if
the number of instantiated block RAMs exceeds the number of available resources,
XST does not modify the instantiations and implement them as block RAMs. The
same behavior occurs if you force specific RAMs to be implemented as block RAMs.
If there are no resources, XST respects user constraints, even if the number of block
RAM resources is exceeded.

If the number of user-specified block RAMs exceeds the number of available block
RAM resources on the target device, XST issues a warning, and uses only available
block RAM resources on the chip for synthesis. Use value -1 to disable automatic block
RAM resource management. This can be used to see the number of block RAMs XST
can potentially infer for a specific design.

Synthesis time may increase if the number of block RAMs in the design significantly
exceeds the number of available block RAMs on the target device (hundreds of block
RAMs). This may happen due to a significant increase in design complexity when all
non-fittable block RAMs are converted to distributed RAMs.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
332 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Examples
Define globally with the run command:

-block RAM_utilization_ratio <integer>[%][#]

where

<integer> range is [-1 to 100]

and

% is used or both % and # are omitted

The default is 100.

XST Command Line Syntax Example One
-bram_utilization_ratio 50

means

50% of block RAMs in the target device

XST Command Line Syntax Example Two
-bram_utilization_ratio 50%

means

50% of block RAMs in the target device

XST Command Line Syntax Example Three
-bram_utilization_ratio 50#

means

50 block RAMs

There must be no space between the integer value and the percent (%) or pound (#)
characters.

In some situations, you can disable automatic block RAM resource management (for
example, to see how many block RAMs XST can potentially infer for a specific design).
To disable automatic resource management, specify -1 (or any negative value) as
a constraint value.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > BRAM Utilization Ratio

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 333

Chapter 12: XST FPGA Constraints (Non-Timing)

In ISE Design Suite, you can define the value of BRAM Utilization Ratio only as a
percentage. You cannot define the value as an absolute number of BlockRAMs.

Buffer Type (BUFFER_TYPE)
Buffer Type (BUFFER_TYPE) is a new name for CLOCK_BUFFER. Since CLOCK_BUFFER
will become obsolete in future releases, Xilinx® recommends that you use this new
name. BUFFER_TYPE selects the type of buffer to be inserted on the designated I/O
port or internal net.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to signals

Propagation Rules
Applies to the signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute buffer_type: string;

Specify as follows:

attribute buffer_type of signal_name: signal is
"{bufpll|ibufg|bufg|bufgp|bufh|bufr|bufio|bufio2fb|bufio2|ibuf|obuf|buf|none}";

Verilog Syntax Example
Place immediately before the signal declaration:

(* buffer_type = "{bufpll|ibufg|bufg|bufgp|bufh|bufr|bufio|bufio2fb|bufio2|ibuf|obuf|buf|none}" *)

XCF Syntax Example
BEGIN MODEL "entity_name"

NET
"signal_name" buffer_type={bufpll|ibufg|bufg|bufgp|bufh|bufr|bufio|bufio2fb|bufio2|ibuf|obuf|buf|none};

END;

Extract BUFGCE (BUFGCE)
Extract BUFGCE (BUFGCE) implements BUFGMUX functionality by inferring a BUFGMUX
primitive. This operation reduces the wiring. Clock and clock enable signals are driven
to n sequential components by a single wire. Extract BUFGCE must be attached to
the primary clock signal.

XST User Guide for Virtex-6 and Spartan-6 Devices
334 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Extract BUFGCE values are:

• yes

• no

Extract BUFGCE is accessible through Hardware Description Language (HDL) code. If
bufgce=yes, XST implements BUFGMUX functionality if possible. All flip-flops must
have the same clock enable signal.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to clock signals

Propagation Rules
Applies to the signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute bufgce : string;

Specify as follows:

attribute bufgce of signal_name: signal is "{yes|no}";

Verilog Syntax Example
Place immediately before the signal declaration.

(* bufgce = "{yes|no}" *)

XCF Syntax Example
BEGIN MODEL "entity_name"

NET "primary_clock_signal " bufgce={yes|no|true|false};

END;

Cores Search Directories (–sd)
By default, XST searches for cores in the directory specified by the -ifn option. Cores
Search Directories (–sd) tells XST to look for cores in directories other than the default.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 335

Chapter 12: XST FPGA Constraints (Non-Timing)

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-sd {directory_path [directory_path]}

Allowed values are names of directories. For more information, see Names With Spaces
in Command Line Mode in Chapter 2, Creating and Synthesizing an XST Project.

There is no default.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Cores Search Directory

DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
DSP Utilization Ratio (DSP_UTILIZATION_RATIO) defines the number of DSP slices
(in absolute number or percent of slices) that XST must not exceed during synthesis
optimization. The default is 100% of the target device.

DSP slices in the design may come not only from DSP inference processes, but also
from instantiation. Instantiated DSP slices are the primary candidates for available DSP
resources. The inferred DSPs are placed on the remaining DSP resources. If the number
of instantiated DSPs exceeds the number of available resources, XST does not modify
the instantiations and implement them as block DSP slices. The same behavior occurs
if you force specific macro implementation to be implemented as DSP slices with Use
DSP Block (USE_DSP48). If there are no resources, XST respects user constraints even
if the number of DSP slices is exceeded.

If the number of user-specified DSP slices exceeds the number of available DSP resources
on the target device, XST issues a warning, and uses only available DSP resources on the
chip for synthesis.

To disable automatic DSP resource management (for example, to see how many DSPs
XST can potentially infer for a specific design, specify -1 (or any negative value) as
a constraint value.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally

XST User Guide for Virtex-6 and Spartan-6 Devices
336 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-dsp_utilization_ratio number[%|#]

where

<integer> range is [-1 to 100]

when

% is used or both % and # are omitted.

To specify a percent of total slices use %. To specify an absolute number of slices use #.

The default is %.

• To specify 50% of DSP blocks of the target device:

-dsp_utilization_ratio 50

• To specify 50% of DSP blocks of the target device:

-dsp_utilization_ratio 50%

• To specify 50 DSP blocks:

-dsp_utilization_ratio 50#

There must be no space between the integer value and the percent (%) or pound
(#) characters.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > DSP Utilization Ratio

In ISE® Design Suite, you can define the value of DSP Utilization Ratio only as a
percentage. You cannot define the value as an absolute number of slices.

FSM Style (FSM_STYLE)
FSM Style (FSM_STYLE) makes large Finite State Machine (FSM) components more
compact and faster by implementing them in the block RAM resources. Use FSM Style
to direct XST to use block RAM resources rather than LUTs (default) to implement
FSM Styles.

FSM Style is both a global and a local constraint.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 337

Chapter 12: XST FPGA Constraints (Non-Timing)

Applicable Elements
Applies globally, or to an entity, module, or signal

Propagation Rules
Applies to the entity, module, or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute fsm_style: string;

Specify as follows:

attribute fsm_style of {entity_name|signal_name }:
{entity|signal} is "{lut|bram}";

The default is lut.

Verilog Syntax Example
Place immediately before the instance, module, or signal declaration.

(* fsm_style = "{lut|bram}" *)

XCF Syntax Example One
MODEL "entity_name" fsm_style = {lut|bram};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" fsm_style = {lut|bram};

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name"

INST "instance_name " fsm_style = {lut|bram};

END;

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > FSM Style

Power Reduction (POWER)
Use Power Reduction (POWER) to enable synthesis optimization techniques to reduce
power consumption. By default, power optimizations are disabled.

XST User Guide for Virtex-6 and Spartan-6 Devices
338 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Even if Power Reduction is enabled, XST still attempts to honor the primary optimization
goal (speed or area) set by Optimization Goal (OPT_MODE). Xilinx® recommends
that you carefully review whether the optimizations performed to reduce power
consumption negatively impact your primary optimization goal.

In this release, power optimizations available for Spartan®-6 and Virtex®-6 devices are
primarily related to block RAMs. In particular, XST attempts to minimize the amount
of simultaneously active block RAMs by properly using RAM enable features. For
information on more precise control of RAM power optimizations, see RAM Style
(RAM_STYLE).

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to:
• A component or entity (VHDL)
• A model or label (instance) (Verilog)
• A model or INST (in model) (XCF)
• The entire design (XST command line)

Propagation Rules
Applies to the entity, module, or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute power: string;

Specify as follows:

attribute power of {component name|entity_name } :
{component|entity } is "{yes|no}";

The default is no.

Verilog Syntax Example
Place immediately before the module declaration or instantiation:

(* power = "{yes|no}" *)

The default is no.

XCF Syntax Example
MODEL "entity_name" power = {yes|no|true|false};

The default is false.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 339

Chapter 12: XST FPGA Constraints (Non-Timing)

XST Command Line Syntax Example
Define globally with the run command:

-power {yes|no}

The default is no.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Power Reduction

Read Cores (READ_CORES)
Use Read Cores (READ_CORES) to enable or disable the ability of XST to read Electronic
Data Interchange Format (EDIF) or NGC core files for timing estimation and device
utilization control. By reading a specific core, XST is better able to optimize logic around
the core, since it sees how the logic is connected.

In some cases the Read Cores operation must be disabled in XST in order to obtain the
desired results. For example, the PCI™ core must not be visible to XST, since the logic
directly connected to the PCI core must be optimized differently as compared to other
cores. Read Cores allows you to enable or disable read operations on a core by core basis.

For more information, see Cores Processing in Chapter 8, XST FPGA Optimization.

Read Cores has three possible values:
• no (false)

Disables cores processing
• yes (true)

Enables cores processing, but maintains the core as a black box and does not further
incorporate the core into the design.

• optimize

Enables cores processing, and merges the core netlist into the overall design. This
value is available through the XST command line mode only.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Since Read Cores can be used with BoxType (BOX_TYPE), the set of objects on which the
both constraints can be applied must be the same.

Applies to:
• A component or entity (VHDL)
• A model or label (instance) (Verilog)
• A model or INST (in model) (XCF)
• The entire design (XST command line)

If Read Cores is applied to at least a single instance of a block, then Read Cores is applied
to all other instances of this block for the entire design.

XST User Guide for Virtex-6 and Spartan-6 Devices
340 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute read_cores: string;

Specify as follows:

attribute read_cores of {component_name|entity_name } :
{yes|no|optimize}";component|entity } is "{yes|no|optimize}";

The default is yes.

Verilog Syntax Example
Place immediately before the module declaration or instantiation:

(* read_cores = "{yes|no|optimize}" *)

The default is yes.

XCF Syntax Example One
MODEL "entity_name" read_cores = {yes|no|true|false|optimize};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

INST "instance_name " read_cores = {yes|no|true|false|optimize};

END;

XST Command Line Syntax Example
-read_cores {yes|no|optimize}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Read Cores

The optimize option is not available in ISE® Design Suite.

LUT Combining (LC)
LUT Combining (LC) enables the merging of LUT pairs with common inputs into single
dual-output LUT6 elements in order to improve design area. This optimization process
may reduce design speed.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 341

Chapter 12: XST FPGA Constraints (Non-Timing)

LUT Combining supports three values:

• auto

XST tries to make a tradeoff between area and speed. Auto is the default for both
Virtex®-6 devices and Spartan®-6 devices.

• area

XST performs maximum LUT combining to provide as small an implementation as
possible.

• off

Disables LUT combining.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-lc {auto|area|off}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > LUT Combining

Map Logic on BRAM (BRAM_MAP)
Map Logic on BRAM (BRAM_MAP) is used to map an entire hierarchical block on the
block RAM resources available in Virtex® and later technologies.

Map Logic on BRAM values are:
• yes

• no (default)

Map Logic on BRAM is both a global and a local constraint.

For more information, see Mapping Logic to Block RAM in Chapter 8, XST FPGA
Optimization.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
342 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Applicable Elements
Applies to BRAMs

Propagation Rules
Isolate the logic (including output register) to be mapped on RAM in a separate
hierarchical level. Logic that does not fit on a single block RAM is not mapped. Ensure
that the whole entity fits, not just part of it.

The attribute BRAM_MAP is set on the instance or entity. If no block RAM can be inferred,
the logic is passed to Global Optimization Goal (–glob_opt), where it is optimized. The
macros are not inferred. Be sure that XST has mapped the logic.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute bram_map: string;

Specify as follows:

attribute bram_map of component_name: component is "{yes|no}";

Verilog Syntax Example
Place immediately before the module declaration or instantiation:

(* bram_map = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" bram_map = {yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

INST "instance_name " bram_map = {yes|no|true|false};

END;

Max Fanout (MAX_FANOUT)
Max Fanout (MAX_FANOUT) limits the fanout of nets or signals. The value is an integer.
The Max Fanout default value is 100000 (One Hundred Thousand). Max Fanout is both
a global and a local constraint.

Large fanouts can interfere with routability. XST tries to limit fanout by duplicating
gates or by inserting buffers. This limit is not a technology limit but a guide to XST. This
limit is not always observed, especially when this limit is small (less than 30).

In most cases, fanout control is performed by duplicating the gate driving the net with a
large fanout. If the duplication cannot be performed, buffers are inserted. These buffers
are protected against logic trimming at the implementation level by defining Keep
(KEEP) in the NGC file.

If the register replication option is set to no, only buffers are used to control fanout
of flip-flops and latches.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 343

Chapter 12: XST FPGA Constraints (Non-Timing)

Max Fanout is global for the design, but you can use constraints to control maximum
fanout independently for each entity or module or for individual signals.

If the actual net fanout is less than the Max Fanout value, XST behavior depends on how
Max Fanout is specified.
• If the value of Max Fanout is set in ISE® Design Suite, in the command line, or is

applied to a specific hierarchical block, XST interprets its value as a guidance.
• If Max Fanout is applied to a specific net, XST does not perform logic replication.

Putting Max Fanout on the net may prevent XST from having better timing
optimization.

For example, suppose that the critical path goes through the net, which actual fanout
is 80 and set Max Fanout value to 100. If Max Fanout is specified in ISE Design Suite,
XST can replicate it, trying to improve timing. If Max Fanout is applied to the net itself,
XST does not perform logic replication.

Max Fanout can also take the value reduce. This value has no direct meaning to XST. It
is considered only during placement and routing. Until then, fanout control is deferred.

Max Fanout with a value of reduce can be applied only to a net. It cannot be applied
globally.

XST disables any logic optimization related to the designated net, meaning that it is
preserved in the post-synthesis netlist, and that a MAX_FANOUT=reduce property is
attached to it.

If a more global Max Fanout constraint was defined with an integer value (either on
the command line, or with an attribute attached to the entity or module containing
the considered net), then:
• The reduce value takes precedence.
• The integer value is ignored for the designated net.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to an entity, module, or signal

Exception: When Max Fanout takes the value reduce, it can be applied only to a signal.

Propagation Rules
Applies to the entity, module, or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute max_fanout: string;

Specify as follows:

attribute max_fanout of {signal_name|entity_name}:
{signal|entity} is "integer";

XST User Guide for Virtex-6 and Spartan-6 Devices
344 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Or

attribute max_fanout of {signal_name}: {signal} is "reduce";

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* max_fanout = "integer" *)

Or

(* max_fanout = "reduce" *)

XCF Syntax Example One
MODEL "entity_name" max_fanout=integer;

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" max_fanout=integer;

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name"

NET "signal_name" max_fanout="reduce";

END;

XST Command Line Syntax Example
-max_fanout integer

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Max Fanout

Move First Stage (MOVE_FIRST_STAGE)
Move First Stage (MOVE_FIRST_STAGE) controls the retiming of registers with
paths coming from primary inputs. Both Move First Stage and Move Last Stage
(MOVE_LAST_STAGE) relate to Register Balancing.

• A flip-flop (FF in the figure) belongs to the First Stage if it is on the paths coming
from primary inputs

• A flip-flop belongs to the Last Stage if it is on the paths going to primary outputs.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 345

Chapter 12: XST FPGA Constraints (Non-Timing)

Move First Stage Diagram

During register balancing:
• First Stage flip-flops are moved forward
• Last Stage flip-flops are moved backward

This process can dramatically increase input-to-clock and clock-to-output timing, which
is not desirable. To prevent this, use OFFSET_IN_BEFORE and OFFSET_IN_AFTER.

You can use two additional constraints if:
• The design does not have strong requirements, or
• You want to see the first results without touching the first and last flip-flop stages.

The additional constraints are:
• MOVE_FIRST_STAGE

• MOVE_LAST_STAGE

Both constraints can have two values: yes and no.
• MOVE_FIRST_STAGE=no prevents the first flip-flop stage from moving
• MOVE_LAST_STAGE=no prevents the last flip-flop stage from moving

Several constraints influence register balancing. For more information, see Register
Balancing (REGISTER_BALANCING).

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to the following only:
• Entire design
• Single modules or entities
• Primary clock signal

Propagation Rules
For Move First Stage propagation rules, see the figure above.

XST User Guide for Virtex-6 and Spartan-6 Devices
346 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute move_first_stage : string;

Specify as follows:

attribute move_first_stage of {entity_name|signal_name}:
{signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* move_first_stage = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" move_first_stage={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "primary_clock_signal " move_first_stage={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-move_first_stage {yes|no}

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Move First Flip-Flop Stage

Move Last Stage (MOVE_LAST_STAGE)
Move Last Stage (MOVE_LAST_STAGE) controls the retiming of registers with
paths going to primary outputs. Both Move Last Stage and Move First Stage
(MOVE_FIRST_STAGE) relate to Register Balancing.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 347

Chapter 12: XST FPGA Constraints (Non-Timing)

Applicable Elements
Applies to the following only:
• Entire design
• Single modules or entities
• Primary clock signal

Propagation Rules
See Move First Stage (MOVE_FIRST_STAGE).

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute move_last_stage : string;

Specify as follows:

attribute move_last_stage of {entity_name|signal_name }:
{signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* move_last_stage = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name"{move_last_stage={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "primary_clock_signal " move_last_stage={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-move_last_stage {yes|no}

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Move Last Flip-Flop Stage

Multiplier Style (MULT_STYLE)
Multiplier Style (MULT_STYLE) controls the way the macrogenerator implements the
multiplier macros.

XST User Guide for Virtex-6 and Spartan-6 Devices
348 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

The values for this constraint are:

• auto (default)
XST looks for the best implementation for each considered macro.

• block

• pipe_block

Used to pipeline DSP48 based multipliers.
• kcm

• csd

• lut

• pipe_lut

For pipeline slice-based multipliers. The implementation style can be manually
forced to use block multiplier or LUT resources.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to an entity, module, or signal

Propagation Rules
Applies to the entity, module, or signal to which it is attached

Multiplier Style is applicable only through an HDL attribute. It is not available as
a command line option.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute mult_style: string;

Specify as follows:

attribute mult_style of
{signal_name|entity_name }: {signal|entity } is
"{auto|block|pipe_block|kcm|csd|lut|pipe_lut}";

The default is auto.

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* mult_style = "{auto|block|pipe_block|kcm|csd|lut|pipe_lut}" *)

The default is auto.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 349

Chapter 12: XST FPGA Constraints (Non-Timing)

XCF Syntax Example One
MODEL "entity_name"
mult_style={auto|block|pipe_block|kcm|csd|lut|pipe_lut};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name"
mult_style={auto|block|pipe_block|kcm|csd|lut|pipe_lut};

END;

Number of Global Clock Buffers (–bufg)
Number of Global Clock Buffers (–bufg) controls the maximum number of BUFG
elements created by XST. The value is an integer. The default value depends on the
target device, and is equal to the maximum number of available BUFG elements.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-bufg integer

The value is an integer. The default values are different for different architectures. The
defaults for selected architectures are shown in the following table. The number of BUFG
elements cannot exceed the maximum number of BUFG elements for the target device.

Default Values of Number of Global Clock Buffers
Device Default Value
Spartan®-6 16

Virtex®-6 32

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Number of Clock Buffers

XST User Guide for Virtex-6 and Spartan-6 Devices
350 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES)
By default, XST does not optimize instantiated primitives in Hardware
Description Language (HDL) designs. Use Optimize Instantiated Primitives
(OPTIMIZE_PRIMITIVES) to deactivate the default. Optimize Instantiated Primitives
allows XST to optimize Xilinx® library primitives that have been instantiated in an
HDL design.

Optimization of instantiated primitives is limited by the following factors:
• If an instantiated primitive has specific constraints such as RLOC applied, XST

preserves it as is.
• Not all primitives are considered by XST for optimization. Such hardware elements

as MULT18x18, block RAMs, and DSP48 are not optimized (modified) even if
optimization of instantiated primitives is enabled.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to the designated hierarchical blocks, components, and instances.

Propagation Rules
Applies to the component or instance to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax Examples
• Attach to a valid instance
• Attribute Name

OPTIMIZE_PRIMITIVES

• Attribute Values
– yes

– no (default)

VHDL Syntax Example
Declare as follows:

attribute optimize_primitives: string;

Specify as follows:

attribute optimize_primitives of
{component_name|entity_name|label_name }:
{component|entity|label} is "{yes|no}";

Verilog Syntax Example
Place immediately before the instance, module or signal declaration:

(* optimize_primitives = "{yes|no}" *)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 351

Chapter 12: XST FPGA Constraints (Non-Timing)

XCF Syntax Example
MODEL "entity_name" optimize_primitives = {yes|no|true|false};

XST Command Line Syntax Example
Define globally with the run command:

-optimize_primitives {yes|no}

The default is no.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Optimize Instantiated Primitives

Pack I/O Registers Into IOBs (IOB)
Pack I/O Registers Into IOBs (IOB) packs flip-flops in the I/Os to improve input/output
path timing.

When Pack I/O Registers Into IOBs is set to auto, the action XST takes depends on
the Optimization setting:
• area

XST packs registers as tightly as possible to the IOBs in order to reduce the number
of slices occupied by the design.

• speed

XST packs registers to the IOBs provided they are not covered by timing constraints
(in other words, they are not taken into account by timing optimization). For
example, if you specify a PERIOD constraint, XST packs a register to the IOB if it is
not covered by the period constraint. If a register is covered by timing optimization,
but you do want to pack it to an IOB, you must apply the IOB constraint locally
to the register.

For more information, see IOB in the Constraints Guide.

RAM Extraction (RAM_EXTRACT)
RAM Extraction (RAM_EXTRACT) enables or disables RAM macro inference.

RAM Extraction values are:

The values for this constraint are:
• yes (default)
• no

• true (XCF only)
• false (XCF only)

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to an entity, module, or signal

XST User Guide for Virtex-6 and Spartan-6 Devices
352 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Propagation Rules
Applies to the entity, module, or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute ram_extract: string;

Specify as follows:

attribute ram_extract of {signal_name|entity_name}:
{signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* ram_extract = "{yes|no}" *)

XCF Syntax Example One
RAM Extraction Syntax MODEL "entity_name"

ram_extract={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" ram_extract={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-ram_extract {yes|no}

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > RAM Extraction

RAM Style (RAM_STYLE)
RAM Style (RAM_STYLE) controls the way the macrogenerator implements the inferred
RAM macros.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 353

Chapter 12: XST FPGA Constraints (Non-Timing)

RAM Style values are:
• auto (default)

Instructs XST to look for the best implementation for each inferred RAM, based on:
– Whether the description style allows block RAM implementation (synchronous

data read)
– Available block RAM resources on the targeted device

• distributed

Manually forces the implementation to distributed RAM resources
• pipe_distributed

– When an inferred RAM is implemented on LUT resources, and several
distributed RAM primitives are required to accommodate its size, multiplexing
logic is created on the RAM data output path. The pipe_distributed value
instructs XST to use any latency stages available behind the RAM to pipeline
this logic.

– May be specified only as:
♦ VHDL attribute
♦ Verilog attribute
♦ XST Constraint File (XCF) constraint

• block

Manually forces the implementation to block RAM. Actual implementation on block
RAM remains conditional on:
– A properly synchronized data read, and
– Available resources on the device

Use block_power1 and block_power2 to enable two levels of optimizations aimed at
reducing power consumption of RAMs implemented on block resources.
• block_power1

– Is intended to have minimal impact on the primary optimization goal defined
by Optimization Goal (OPT_MODE) (area or speed)

– Is the selected mode when general power optimizations are enabled with Power
Reduction (POWER)

– May be specified only as:
♦ VHDL attribute
♦ Verilog attribute
♦ XST Constraint File (XCF) constraint

• block_power2

– Allows further power reduction
– Can significantly impact area and speed
– May be specified only as:

♦ VHDL attribute
♦ Verilog attribute
♦ XST Constraint File (XCF) constraint

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
354 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Applicable Elements
Applies globally, or to an entity, module, or signal

Propagation Rules
Applies to the entity, module, or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute ram_style: string;

Specify as follows:

attribute ram_style of {signal_name|entity_name }: {signal|entity} is
"{auto|block|distributed|pipe_distributed|block_power1|block_power2}";

The default is auto.

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* ram_style = "{auto|block|distributed|pipe_distributed|block_power1|block_power2}" *)

The default is auto.

XCF Syntax Example One
MODEL "entity_name" ram_style={auto|block|distributed|pipe_distributed|block_power1|block_power2};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" ram_style={auto|block|distributed|pipe_distributed|block_power1|block_power2};

END;

XST Command Line Syntax Example
Define globally with the run command:

-ram_style {auto|block|distributed}

The default is auto.

The pipe_distributed value is not accessible through the command line.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > RAM Style

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 355

Chapter 12: XST FPGA Constraints (Non-Timing)

Reduce Control Sets (REDUCE_CONTROL_SETS)
Use Reduce Control Sets (REDUCE_CONTROL_SETS) to reduce the number of control
sets and, as a consequence, reduce the design area. Reducing the number of control
sets improves the packing process in map, and therefore reduces the number of used
slices even if the number of LUTs increases.

Reducing the number of unique control sets applies only to synchronous control signals
(synchronous set/reset and clock enable). Use Reduce Control Sets has no effect on
asynchronous sets/reset logic.

Reduce Control Sets supports two values:
• auto (default)

XST optimizes automatically, and reduces the existing control sets in the design.
• no

XST performs no control set optimization.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-reduce_control_sets {auto|no}

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx Specific Options > Reduce Control Sets

Register Balancing (REGISTER_BALANCING)
Register Balancing (REGISTER_BALANCING) enables flip-flop retiming. The main goal
of register balancing is to move flip-flops and latches across logic to increase clock
frequency.

The two categories of Register Balancing are:
• Forward Register Balancing
• Backward Register Balancing

XST User Guide for Virtex-6 and Spartan-6 Devices
356 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Forward Register Balancing
Forward Register Balancing moves a set of flip-flops at the inputs of a LUT to a single
flip-flop at its output.

Forward Register Balancing

When replacing several flip-flops with one, select the name based on the name of the
LUT across which the flip-flops are moving as shown in the following:

LutName_FRBId

Backward Register Balancing
Backward Register Balancing moves a flip-flop at the output of a LUT to a set of flip-flops
at its inputs.

Backward Register Balancing

As a consequence the number of flip-flops in the design can be increased or decreased.

The new flip-flop has the same name as the original flip-flop with an indexed suffix as
shown in the following:

OriginalFFName _BRBId

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 357

Chapter 12: XST FPGA Constraints (Non-Timing)

Register Balancing Values
The values for this constraint are:

• yes

Both forward and backward retiming are allowed.
• no (default)

Neither forward nor backward retiming is allowed.
• forward

Only forward retiming is allowed
• backward

Only backward retiming is allowed.
• true (XCF only)
• false (XCF only)

Additional Constraints That Affect Register Balancing
Two additional constraints control register balancing:
• Move First Stage (MOVE_FIRST_STAGE)
• Move Last Stage (MOVE_LAST_STAGE)

Several other constraints also influence register balancing:
• Keep Hierarchy (KEEP_HIERARCHY)

– If the hierarchy is preserved, flip-flops are moved only inside the block
boundaries.

– If the hierarchy is flattened, flip-flops may leave the block boundaries.
• Pack I/O Registers Into IOBs (IOB)

If IOB=TRUE, register balancing is not applied to the flip-flops having this property.
• Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES)

– Instantiated flip-flops are moved only if OPTIMIZE_PRIMITIVES=YES.
– Flip-flops are moved across instantiated primitives only if

OPTIMIZE_PRIMITIVES=YES.
• Keep (KEEP)

If applied to the output flip-flop signal, the flip-flop is not moved forward.

Applied to the Output Flip-Flop Signal

If applied to the input flip-flop signal, the flip-flop is not moved backward.

If applied to both the input and output of the flip-flop, it is equivalent to
REGISTER_BALANCING=no.

XST User Guide for Virtex-6 and Spartan-6 Devices
358 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Register Balancing can be applied:
• Globally to the entire design using the command line or ISE® Design Suite
• To an entity or module
• To a signal corresponding to the flip-flop description (RTL)
• To a flip-flop instance
• To the Primary Clock Signal

In this case, the register balancing is performed only for flip-flops synchronized by
this clock.

Propagation Rules
Applies to the entity, module, or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute register_balancing: string;

Specify as follows:

attribute register_balancing of {signal_name|entity_name}:
{signal|entity} is "{yes|no|forward|backward}";

Verilog Syntax Example
Place immediately before the module or signal declaration:

* register_balancing = "{yes|no|forward|backward}" *)(

The default is no.

XCF Syntax Example One
MODEL "entity_name"

register_balancing={yes|no|true|false|forward|backward};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "primary_clock_signal "
register_balancing={yes|no|true|false|forward|backward};

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name"

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 359

Chapter 12: XST FPGA Constraints (Non-Timing)

INST "instance_name "

register_balancing={yes|no|true|false|forward|backward};

END;

XST Command Line Syntax Example
Define globally with the run command:

-register_balancing {yes|no|forward|backward}

The default is no.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Register Balancing

Register Duplication (REGISTER_DUPLICATION)
Register Duplication (REGISTER_DUPLICATION) enables or disables register
replication.

Register Duplication values are:

The values for this constraint are:
• yes (default)
• no

• true (XCF only)
• false (XCF only)

The default is yes. Register replication is enabled, and is performed during timing
optimization and fanout control.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to an entity or module

Propagation Rules
Applies to the entity or module to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute register_duplication: string;

Specify as follows:

XST User Guide for Virtex-6 and Spartan-6 Devices
360 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

attribute register_duplication of entity_name: entity is
"{yes|no}";

Verilog Syntax Example
Place immediately before the module declaration or instantiation:

(* register_duplication = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" register_duplication={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" register_duplication={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-register_duplication {yes|no}

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Register Duplication

ROM Extraction (ROM_EXTRACT)
ROM Extraction (ROM_EXTRACT) enables or disables ROM macro inference.

The values for this constraint are:
• yes (default)
• no

• true (XCF only)
• false (XCF only)

A ROM can usually be inferred from a case statement where all assigned contexts
are constant values.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to a design element or signal

Propagation Rules
Applies to the entity, module, or signal to which it is attached

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 361

Chapter 12: XST FPGA Constraints (Non-Timing)

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute rom_extract: string;

Specify as follows:

attribute rom_extract of {signal_name|entity_name}:
{signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* rom_extract = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" rom_extract={yes|no|true|false};*

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" rom_extract={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-rom_extract {yes|no}

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > ROM Extraction

ROM Style (ROM_STYLE)
ROM Style (ROM_STYLE) controls the manner in which the macrogenerator implements
the inferred ROM macros.

ROM Extraction (ROM_EXTRACT) must be set to yes for ROM Style to take effect.

The values for this constraint are:

• auto (default)
• block

• distributed

XST looks for the best implementation for each inferred ROM. The implementation style
can be manually forced to use block RAM or LUT resources.

XST User Guide for Virtex-6 and Spartan-6 Devices
362 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to an entity, module, or signal

Propagation Rules
Applies to the entity, module, or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
ROM Extraction (ROM_EXTRACT) must be set to yes for ROM Style to take effect.

Declare as follows:

attribute rom_style: string;

Specify as follows:

attribute rom_style of {signal_name|entity_name}:
{signal|entity} is "{auto|block|distributed}";

The default is auto.

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* rom_style = "{auto|block|distributed}" *)

The default is auto.

XCF Syntax Example One
ROM Extraction (ROM_EXTRACT) must be set to yes for ROM Style to take effect.

MODEL "entity_name" rom_style={auto|block|distributed};

XCF Syntax Example Two
ROM Extraction (ROM_EXTRACT) must be set to yes for ROM Style to take effect.

BEGIN MODEL "entity_name"

NET "signal_name" rom_style={auto|block|distributed};

END;

XST Command Line Syntax Example
ROM Extraction (ROM_EXTRACT) must be set to yes for ROM Style to take effect.

Define globally with the run command:

-rom_style {auto|block|distributed}

The default is auto.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 363

Chapter 12: XST FPGA Constraints (Non-Timing)

ISE Design Suite Syntax Example
ROM Extraction (ROM_EXTRACT) must be set to yes for ROM Style to take effect.

Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > ROM Style

Shift Register Extraction (SHREG_EXTRACT)
Shift Register Extraction (SHREG_EXTRACT) enables or disables shift register macro
inference.

Shift Register Extraction values are:

The values for this constraint are:
• yes (default)
• no

• true (XCF only)
• false (XCF only)

Enabling Shift Register Extraction results in the usage of dedicated hardware resources
such as SRL16 and SRLC16. For more information, see Chapter 7, XST HDL Coding
Techniques.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to a design element or signal

Propagation Rules
Applies to the design elements or signals to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute shreg_extract : string;

Specify as follows:

attribute shreg_extract of {signal_name|entity_name}:
{signal|entity} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* shreg_extract = "{yes|no}" *)

XST User Guide for Virtex-6 and Spartan-6 Devices
364 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

XCF Syntax Example One
MODEL "entity_name" shreg_extract={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" shreg_extract={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-shreg_extract {yes|no}

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > Shift Register Extraction

Shift Register Minimum Size (SHREG_MIN_SIZE)
Shift Register Minimum Size (SHREG_MIN_SIZE) allows you to control the minimum
length of shift registers that are inferred and implemented using SRL-type resources.
Shift registers below the specified limit are implemented using simple flip-flops. The
constraint takes a natural value of 2 or higher. The default value is 2.

In some cases, extensive use of SRL-type resources to implement small shift register
macros, such as 2-bit shift registers, may lead to excessive placement restrictions for
other elements in your design, eventually having adverse impact on your circuit
performance. Shift Register Minimum Size allows you to overcome this potential
problem, instructing XST to force implementation of shift registers below a designated
length using simple flip-flop resources. This option may be particularly useful when
targeting Spartan®-6 devices, where availability of a single SliceM for every four Slices
(SliceL, SliceM, SliceX, SliceX), makes this element particularly scarce and valuable, and
may justify to save it for better use, such as real LUT RAM applications.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Only available as an XST option, defining a global inference threshold for the whole
design. If you need to more finely control inference of individual shift registers, use this
option in conjunction with the Shift Register Extraction (SHREG_EXTRACT) constraint,
which can be applied to designated elements of your design.

Propagation Rules
Not applicable.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 365

Chapter 12: XST FPGA Constraints (Non-Timing)

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-shreg_min_size integer

The default is 2.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > Shift Register Minimum Size

Use Low Skew Lines (USELOWSKEWLINES)
Use Low Skew Lines (USELOWSKEWLINES) is a basic routing constraint. During
synthesis, Use Low Skew Lines prevents XST from using dedicated clock resources and
logic replication, based on the value of Max Fanout (MAX_FANOUT). Use Low Skew
Lines specifies the use of low skew routing resources for any net. For more information,
see Use Low Skew Lines in the Constraints Guide.

Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO)
Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO) defines the area
size in absolute numbers or percent of total numbers of LUT-FF pairs that XST must
not exceed during timing optimization.

If the area constraint cannot be satisfied, XST will make timing optimization regardless
of the area constraint. To disable automatic resource management, specify -1 as a
constraint value. For more information, see Speed Optimization Under Area Constraint
in Chapter 8, XST FPGA Optimization.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to a VHDL entity or Verilog module

Propagation Rules
Applies to the entity or module to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute slice_utilization_ratio: string;

XST User Guide for Virtex-6 and Spartan-6 Devices
366 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Specify as follows:

attribute slice_utilization_ratio of entity_name : entity is
"integer";

attribute slice_utilization_ratio of entity_name : entity is
"integer%";

attribute slice_utilization_ratio of entity_name : entity is
"integer#";

In the preceding example, XST interprets the integer values in the first two attributes as
a percentage and in the last attribute as an absolute number of slices or FF-LUT pairs.

Verilog Syntax Example
Place Slice (LUT-FF Pairs) Utilization Ratio immediately before the module declaration
or instantiation.

(* slice_utilization_ratio = "integer" *)

(* slice_utilization_ratio = "integer%" *)

(* slice_utilization_ratio = "integer#" *)

In the preceding examples XST interprets the integer values in the first two attributes as
a percentage and in the last attribute as an absolute number of slices or FF-LUT pairs

XCF Syntax Example One
MODEL "entity_name" slice_utilization_ratio=integer;

XCF Syntax Example Two
MODEL "entity_name" slice_utilization_ratio="integer%";

XCF Syntax Example Three
MODEL "entity_name" slice_utilization_ratio="integer#";*

In the preceding examples, XST interprets the integer values in the first two lines as a
percentage and in the last line as an absolute number of slices or FF-LUT pairs.

There must be no space between the integer value and the percent (%) or pound (#)
characters.

The integer value range is -1 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

You must surround the integer value and the percent (%) and pound (#) characters with
double quotes ("...") because the percent (%) and pound (#) characters are special
characters in the XST Constraint File (XCF).

XST Command Line Syntax Example
Define globally with the run command:

-slice_utilization_ratio integer

-slice_utilization_ratio integer%

-slice_utilization_ratio integer#

In the preceding examples XST interprets the integer values in the first two lines as a
percentage and in the last line as an absolute number of slices or FF-LUT pairs.

The integer value range is -1 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 367

Chapter 12: XST FPGA Constraints (Non-Timing)

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:
• Process > Properties > Synthesis Options > Slice Utilization Ratio, or
• Process > Properties > Synthesis Options > LUT-FF Pairs Utilization Ratio.

In ISE® Design Suite, you can define the value of Slice (LUT-FF Pairs) Utilization Ratio
only as a percentage. You cannot define the value as an absolute number of slices.

Slice (LUT-FF Pairs) Utilization Ratio Delta
(SLICE_UTILIZATION_RATIO_MAXMARGIN)

Slice (LUT-FF Pairs) Utilization Ratio Delta
(SLICE_UTILIZATION_RATIO_MAXMARGIN) is closely related to Slice (LUT-FF Pairs)
Utilization Ratio (SLICE_UTILIZATION_RATIO) Slice (LUT-FF Pairs) Utilization
Ratio Delta defines the tolerance margin for Slice (LUT-FF Pairs) Utilization Ratio
(SLICE_UTILIZATION_RATIO). The value of the parameter can be defined in the form
of percentage as well as an absolute number of slices or LUT-FF Pairs.

If the ratio is within the margin set, the constraint is met and timing optimization can
continue. For more information, see Speed Optimization Under Area Constraint in
Chapter 8, XST FPGA Optimization.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to a VHDL entity or Verilog module

Propagation Rules
Applies to the entity or module to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute slice_utilization_ratio_maxmargin: string;

Specify as follows:

attribute slice_utilization_ratio_maxmargin of entity_name :
entity is "integer";

attribute slice_utilization_ratio_maxmargin of entity_name :
entity is "integer%";

attribute slice_utilization_ratio_maxmargin of entity_name :
entity is "integer#";

In the preceding examples, XST interprets the integer values in the first two attributes as
a percentage, and in the last attribute as an absolute number of slices or FF-LUT pairs.

XST User Guide for Virtex-6 and Spartan-6 Devices
368 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

Verilog Syntax Examples
Place immediately before the module declaration or instantiation:

(* slice_utilization_ratio_maxmargin = "integer" *)

(* slice_utilization_ratio_maxmargin = "integer%" *)

(* slice_utilization_ratio_maxmargin = "integer#" *)

In the preceding examples, XST interprets the integer values in the first two attributes as
a percentage, and in the last attribute as an absolute number of slices or FF-LUT pairs.

XCF Syntax Example One
MODEL "entity_name" slice_utilization_ratio_maxmargin=integer;

XCF Syntax Example Two
MODEL "entity_name" slice_utilization_ratio_maxmargin="integer%;

XCF Syntax Example Three
MODEL "entity_name"
slice_utilization_ratio_maxmargin="integer#";

In the preceding example, XST interprets the integer values in the first two lines as a
percentage and in the last line as an absolute number of slices or FF-LUT pairs.

There must be no space between the integer value and the percent (%) or pound (#)
characters.

You must surround the integer value and the percent (%) and pound (#) characters with
double quotes because the percent (%) and pound (#) characters are special characters in
the XST Constraint File (XCF).

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

XST Command Line Syntax Example
Define globally with the run command:

-slice_utilization_ratio_maxmargin integer

-slice_utilization_ratio_maxmargin integer%

-slice_utilization_ratio_maxmargin integer#

In the preceding example, XST interprets the integer values in the first two lines as a
percentage and in the last line as an absolute number of slices or FF-LUT pairs.

The integer value range is 0 to 100 when percent (%) is used or both percent (%) and
pound (#) are omitted.

Map Entity on a Single LUT (LUT_MAP)
Map Entity on a Single LUT (LUT_MAP) forces XST to map a single block into a single
LUT. If a described function on an Register Transfer Level (RTL) description does not fit
in a single LUT, XST issues an error message.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 369

Chapter 12: XST FPGA Constraints (Non-Timing)

Use the UNISIM library to directly instantiate LUT components in the Hardware
Description Language (HDL) code. To specify a function that a particular LUT must
execute, apply INIT to the instance of the LUT. To place an instantiated LUT or register
in a particular slice, apply RLOC to the same instance.

LUT INIT functions and different methods can be used to achieve this. Alternatively,
you can describe the function that you want to map onto a single LUT in the HDL source
code in a separate block. Attaching LUT_MAP to this block indicates to XST that this
block must be mapped on a single LUT. XST automatically calculates the INIT value
for the LUT and preserves this LUT during optimization.

For more information, seeMapping Logic to LUTs in Chapter 8, XST FPGAOptimization.

XST automatically recognizes the Synplicity XC_MAP constraint.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to an entity or module

Propagation Rules
Applies to the entity or module to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute lut_map: string;

Specify as follows:

attribute lut_map of entity_name: entity is "{yes|no}";

Verilog Syntax Example
Place immediately before the module declaration or instantiation:

(* lut_map = "{yes|no}" *)

XCF Syntax Example
MODEL "entity_name" lut_map={yes|no|true|false};

Use Carry Chain (USE_CARRY_CHAIN)
ALthough XST uses carry chain resources to implement certain macros, there are
situations in which you can obtain better results by not using carry chain. Use Carry
Chain (USE_CARRY_CHAIN) can deactivate carry chain use for macro generation. Use
Carry Chain is both a global and a local constraint.

XST User Guide for Virtex-6 and Spartan-6 Devices
370 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Use Carry Chain values are:
• yes (default)
• no

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies globally, or to signals

Propagation Rules
Applies to the signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax Example
• Attach to a valid instance
• Attribute Name

USE_CARRY_CHAIN

• Attribute Values
– yes

– no

VHDL Syntax Example
Declare as follows:

attribute use_carry_chain: string;

Specify as follows:

attribute use_carry_chain of signal_name: signal is "{yes|no}";

Verilog Syntax Example
Place immediately before the signal declaration.

(* use_carry_chain = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" use_carry_chain={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" use_carry_chain={yes|no|true|false};

END;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 371

Chapter 12: XST FPGA Constraints (Non-Timing)

XST Command Line Syntax Example
Define globally with the run command:

-use_carry_chain {yes|no}

The default is yes.

Convert Tristates to Logic (TRISTATE2LOGIC)
Since some devices do not support internal tristates, XST automatically replaces tristates
with equivalent logic. Because the logic generated from tristates can be combined and
optimized with surrounding logic, replacing internal tristates with logic can increase
speed, and in some cases, lead to better area optimization. In general, however,
replacing tristate with logic increases area. If the optimization goal is area, set Convert
Tristates to Logic to no.

Convert Tristates to Logic Limitations
• Only internal tristates are replaced by logic. The tristates of the top module

connected to output pads are preserved.
• Internal tristates are not replaced by logic for modules when incremental synthesis

is active.
• The situations in which XST is unable to replace a tristate by logic are:

– The tristate is connected to a black box.
– The tristate is connected to the output of a block, and the hierarchy of the block

is preserved.
– The tristate is connected to a top-level output.
– Convert Tristates to Logic is set to no on the block where tristates are placed,

or on the signals to which tristates are connected.

The values for this constraint are:
• yes (default)
• no

• true (XCF only)
• false (XCF only)

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Convert Tristates to Logic applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal

Propagation Rules
Applies to an entity, component, module, signal, or instance to which it is attached

XST User Guide for Virtex-6 and Spartan-6 Devices
372 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute tristate2logic: string;

Specify as follows:

attribute tristate2logic of
{entity_name|component_name|signal_name}:
{entity|component|signal} is "{yes|no}";

Verilog Syntax Example
Place immediately before the module or signal declaration:

(* tristate2logic = "{yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" tristate2logic={yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" tristate2logic={yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-tristate2logic {yes|no}

The default is yes.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Convert Tristates to Logic

Use Clock Enable (USE_CLOCK_ENABLE)
Use Clock Enable (USE_CLOCK_ENABLE) enables or disables the clock enable function
in flip-flops. The disabling of the clock enable function is typically used for ASIC
prototyping.

By detecting Use Clock Enable with a value of no or false, XST avoids using CE
resources in the final implementation. For some designs, putting the Clock Enable
function on the data input of the flip-flop allows better logic optimization and therefore
better QOR. In automode, XST tries to estimate a trade off between using a dedicated
clock enable input of a flip-flop input and putting clock enable logic on the D input of a
flip-flop. Where a flip-flop is instantiated by you, XST removes the clock enable only if
Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES) is set to yes.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 373

Chapter 12: XST FPGA Constraints (Non-Timing)

The values for this constraint are:
• auto (default)
• yes

• no

• true (XCF only)
• false (XCF only)

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal representing a flip-flop
• An instance representing an instantiated flip-flop

Propagation Rules
Applies to an entity, component, module, signal, or instance to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute use_clock_enable: string;

Specify as follows:

attribute use_clock_enable of
{entity_name|component_name|signal_name|instance_name} :
{entity|component|signal|label} is "{auto|yes|no}";

Verilog Syntax Example
Place immediately before the instance, module or signal declaration:

(* use_clock_enable = "{auto|yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" use_clock_enable={auto|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" use_clock_enable={auto|yes|no|true|false};

END;

XST User Guide for Virtex-6 and Spartan-6 Devices
374 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

XCF Syntax Example Three
BEGIN MODEL "entity_name"

INST "instance_name " use_clock_enable={auto|yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-use_clock_enable {auto|yes|no}

The default is auto.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Use Clock Enable

Use Synchronous Set (USE_SYNC_SET)
Use Synchronous Set (USE_SYNC_SET) enables or disables the synchronous set function
in flip-flops. The disabling of the synchronous set function is generally used for ASIC
prototyping. Detecting Use Synchronous Set with a value of no or false, XST avoids
using synchronous reset resources in the final implementation. Moreover, for some
designs, putting synchronous reset function on data input of the flip-flop allows better
logic optimization and therefore better QOR.

In automode, XST tries to estimate a trade off between using dedicated Synchronous
Set input of a flip-flop input and putting Synchronous Set logic on the D input of a
flip-flop. Where a flip-flop is instantiated by you, XST removes the synchronous reset
only if Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES) is set to yes.

Use Synchronous Set values are:

The values for this constraint are:
• auto (default)
• yes

• no

• true (XCF only)
• false (XCF only)

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal representing a flip-flop
• An instance representing an instantiated flip-flop

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 375

Chapter 12: XST FPGA Constraints (Non-Timing)

Propagation Rules
Applies to an entity, component, module, signal, or instance to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute use_sync_set: string;

Specify as follows:

attribute use_sync_set of
{entity_name|component_name|signal_name|instance_name}:
{entity|component|signal|label} is "{auto|yes|no}";

Verilog Syntax Example
Place immediately before the instance, module or signal declaration:

(* use_sync_set = "{auto|yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" use_sync_set={auto|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" use_sync_set={auto|yes|no|true|false};

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name"

INST "instance_name " use_sync_set={auto|yes|no|true|false };

END;

XST Command Line Syntax Example
Define globally with the run command:

-use_sync_set {auto|yes|no}

The default is auto.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Use Synchronous Set

Use Synchronous Reset (USE_SYNC_RESET)
Use Synchronous Reset (USE_SYNC_RESET) enables or disables the usage of
synchronous reset function of flip-flops. The disabling of the Synchronous Reset
function could be used for ASIC prototyping flow.

XST User Guide for Virtex-6 and Spartan-6 Devices
376 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Detecting Use Synchronous Reset with a value of no or false, XST avoids using
synchronous reset resources in the final implementation. Moreover, for some designs,
putting synchronous reset function on data input of the flip-flop allows better logic
optimization and therefore better QOR.

In automode, XST tries to estimate a trade off between using a dedicated Synchronous
Reset input on a flip-flop input and putting Synchronous Reset logic on the D input of a
flip-flop. Where a flip-flop is instantiated by you, XST removes the synchronous reset
only if Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES) is set to yes.

The values for this constraint are:
• auto (default)
• yes

• no

• true (XCF only)
• false (XCF only)

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal representing a flip-flop
• An instance representing an instantiated flip-flop

Propagation Rules
Applies to an entity, component, module, signal, or instance to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute use_sync_reset: string;

Specify as follows:

attribute use_sync_reset of
{entity_name|component_name|signal_name|instance_name}: is
"{entity|component|signal|label; is {auto|yes|no}";

Verilog Syntax Example
Place immediately before the instance, module, or signal declaration.

(* use_sync_reset = "{auto|yes|no}" *)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 377

Chapter 12: XST FPGA Constraints (Non-Timing)

XCF Syntax Example One
MODEL "entity_name" use_sync_reset={auto|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" use_sync_reset={auto|yes|no|true|false};

END;

XCF Syntax Example Three
BEGIN MODEL "entity_name"

INST "instance_name " use_sync_reset={auto|yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-use_sync_reset {auto|yes|no}

The default is auto.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Xilinx-Specific Options > Use Synchronous Reset

XST User Guide for Virtex-6 and Spartan-6 Devices
378 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 12: XST FPGA Constraints (Non-Timing)

Use DSP Block (USE_DSP48)
Use DSP Block (USE_DSP48) enables or disables the use of DSP Block resources.
Allowed values are:

• auto (default)

XST selectively implements arithmetic logic to DSP blocks, and seeks to
maximize circuit performance. Macros such as multiply, multiply-addsub, and
multiply-accumulate are automatically considered for DSP block implementation.
XST looks for opportunities to leverage the cascading capabilities of DSP blocks.
Other macros such as adders, counters, and standalone accumulators are
implemented on slice logic.

• automax

XST attempts to maximize DSP block utilization within the limits of available
resources on the selected device. In addition to the macros considered in the auto
mode, automax considers additional functions, such as adders, counters, and
standalone accumulators, as candidates for DSP block implementation. Xilinx®
recommends that you use automax when a tightly packed device is your primary
concern, and you are attempting to free up LUT resources.

Caution! Using automax may degrade circuit performance compared to the
default auto mode. Do not use automax when performance is your primary
implementation goal.

• yes [or true (XCF only)]

Allows you to manually force implementation of arithmetic logic to DSP blocks.
Use yes primarily to force individual functions to DSP resources. Xilinx does not
recommend applying yes globally, since XST does not check actual DSP resources
availability in this mode, and may oversubscribe DSP blocks.

• no [or false (XCF only)]

Allows you to manually prevent implementation of designated logic on DSP
resources.

In the auto and automax modes, you can further control the number
of DSP block resources exploited by synthesis with DSP Utilization Ratio
(DSP_UTILIZATION_RATIO). By default, XST assumes that all available DSP blocks on
the selected device can be used.

Macros such as multiply-addsub and multiply-accumulate are treated as a composition
of simpler macros such as multipliers, accumulators, and registers. To maximize
performance, XST performs these aggregations aggressively. It attempts in particular to
use all pipelining stages in the DSP block. Use the Keep (KEEP) constraint to control
how XST aggregates those basic macros into a DSP block. For example, when two
register stages are available before a multiplication operand, insert a Keep (KEEP)
constraint between them if you want to prevent one of them from being implemented in
the DSP block.

For more information on supported macros and their implementation control, see
Chapter 7, XST HDL Coding Techniques.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 379

Chapter 12: XST FPGA Constraints (Non-Timing)

Applicable Elements
Applies to:
• An entire design through the XST command line
• A particular block (entity, architecture, component)
• A signal representing a macro described at the RTL level

Propagation Rules
Applies to the entity, component, module, or signal to which it is attached

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute use_dsp48: string;

Specify as follows:

attribute use_dsp48 of "entity_name|component_name|signal_name}:
{entity|component|signal} is "{auto|automax|yes|no}";

Verilog Syntax Example
Place immediately before the instance, module or signal declaration:

(* use_dsp48 = "{auto|automax|yes|no}" *)

XCF Syntax Example One
MODEL "entity_name" use_dsp48={auto|automax|yes|no|true|false};

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" use_dsp48={auto|automax|yes|no|true|false};

END;

XST Command Line Syntax Example
Define globally with the run command:

-use_dsp48 {auto|automax|yes|no}

The default is auto.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > HDL Options > Use DSP Block

XST User Guide for Virtex-6 and Spartan-6 Devices
380 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 13

XST Timing Constraints
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter discusses XST Timing Constraints, and includes:
• Applying Timing Constraints
• Cross Clock Analysis (–cross_clock_analysis)
• Write Timing Constraints (–write_timing_constraints)
• Clock Signal (CLOCK_SIGNAL)
• Global Optimization Goal (–glob_opt)
• XCF Timing Constraint Support
• Period (PERIOD)
• Offset (OFFSET)
• From-To (FROM-TO)
• Timing Name (TNM)
• Timing Name on a Net (TNM_NET)
• Timegroup (TIMEGRP)
• Timing Ignore (TIG)

Applying Timing Constraints
This section discusses Applying Timing Constraints, and includes:
• About Applying Timing Constraints
• Applying Timing Constraints Using Global Optimization Goal
• Applying Timing Constraints Using the User Constraints File (UCF)
• Writing Constraints to the NGC File
• Additional Options Affecting Timing Constraint Processing

About Applying Timing Constraints
Apply XST-supported timing constraints with:
• Global Optimization Goal (–glob_opt)
• ISE® Design Suite in Process > Properties > Synthesis Options > Global

Optimization Goal
• User Constraints File (UCF)

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 381

Chapter 13: XST Timing Constraints

Applying Timing Constraints Using Global Optimization Goal
Use Global Optimization Goal (–glob_opt) to apply the five global timing constraints:
• ALLCLOCKNETS

• OFFSET_IN_BEFORE

• OFFSET_OUT_AFTER

• INPAD_TO_OUTPAD

• MAX_DELAY

These constraints are applied globally to the entire design. You cannot specify a value for
these constraints, since XST optimizes them for the best performance. These constraints
are overridden by constraints specified in the User Constraints File (UCF).

Applying Timing Constraints Using the User Constraints File (UCF)
Use the User Constraints File (UCF) to specify timing constraints with native UCF
syntax. XST supports constraints such as:
• Timing Name (TNM)
• Timegroup (TIMEGRP)
• Period (PERIOD)
• Timing Ignore (TIG)
• From-To (FROM-TO)

XST supports wildcards and hierarchical names with these constraints.

Writing Constraints to the NGC File
By default, timing constraints are not written to the NGC file. Timing constraints are
written to the NGC file only if:
• Write Timing Constraints is checked yes in ISE® Design Suite in Process >

Properties, or
• -write_timing_constraints is specified in the command line

Additional Options Affecting Timing Constraint Processing
The following additional options affect timing constraint processing, regardless of how
the timing constraints are specified:
• Cross Clock Analysis (–cross_clock_analysis)
• Write Timing Constraints (–write_timing_constraints)
• Clock Signal (CLOCK_SIGNAL)

Cross Clock Analysis (–cross_clock_analysis)
Cross Clock Analysis (–cross_clock_analysis) allows inter-clock domain analysis
during timing optimization. By default (no) XST does not perform this analysis.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

XST User Guide for Virtex-6 and Spartan-6 Devices
382 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 13: XST Timing Constraints

Applicable Elements
Applies to an entire design through the XST command line

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-cross_clock_analysis {yes|no}

The default is no.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Cross Clock Analysis

Write Timing Constraints (–write_timing_constraints)
Timing constraints are written to the NGC file only when:
• Write Timing Constraints is checked yes in ISE® Design Suite in Process >

Properties > Synthesis Options > Write Timing Constraints, or
• -write_timing_constraints is specified in the command line.
By default, timing constraints are not written to the NGC file.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to an entire design through the XST command line

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XST Command Line Syntax Example
Define globally with the run command:

-write_timing_constraints {yes|no}

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 383

Chapter 13: XST Timing Constraints

The default is no.

ISE Design Suite Syntax Example
Define globally in ISE® Design Suite in:

Process > Properties > Synthesis Options > Write Timing Constraints

Clock Signal (CLOCK_SIGNAL)
If a clock signal goes through combinatorial logic before being connected to the clock
input of a flip-flop, XST cannot identify which input pin or internal signal is the real
clock signal. Use Clock Signal (CLOCK_SIGNAL) to define the clock signal.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
Applies to signals

Propagation Rules
Applies to clock signals

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare as follows:

attribute clock_signal : string;

Specify as follows:

attribute clock_signal of signal_name: signal is “{yes|no}”;

Verilog Syntax Example
Place immediately before the signal declaration.

(* clock_signal = "{yes|no}" *)

XCF Syntax Example
BEGIN MODEL "entity_name"

NET "primary_clock_signal " clock_signal={yes|no|true|false};

END;

XST User Guide for Virtex-6 and Spartan-6 Devices
384 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 13: XST Timing Constraints

Global Optimization Goal (-glob_opt)
Depending on the Global Optimization Goal (-glob_opt), XST can optimize the
following design regions:

• Register to register

• Inpad to register

• Register to outpad

• Inpad to outpad)

Global Optimization Goal (-glob_opt) defines how XST will optimize the entire design
for the best possible performance. Global Optimization Goal lets you select between one
of the following global timing constraints:

• ALLCLOCKNETS

Optimizes the period of the entire design

• OFFSET_BEFORE

Optimizes the maximum delay from input pad to clock, either for a specific clock
or for an entire design.

• OFFSET_OUT_AFTER

Optimizes the maximum delay from clock to output pad, either for a specific clock
or for an entire design.

• INPAD_OUTPAD

Optimizes the maximum delay from input pad to output pad throughout an entire
design.

• MAX_DELAY

Incorporates all previously mentioned constraints

These constraints affect the entire design. They apply only if no timing constraints are
specified in the constraint file.

Define Global Optimization Goal globally with the -glob_opt option of the run
command.

glob_opt {allclocknets|offset_in_before|offset_out_after
|inpad_to_outpad|max_delay} -

Set this value in ISE Design Suite in Process > Properties > Synthesis Options > Global
Optimization Goal.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 385

Chapter 13: XST Timing Constraints

Global Optimization Goal Domain Definitions
The possible domains are shown in the following schematic.

• ALLCLOCKNETS (register to register)

Identifies all paths from register to register on the same clock for all clocks in a
design. To take inter-clock domain delays into account, set Cross Clock Analysis
(–cross_clock_analysis) to yes.

• OFFSET_IN_BEFOREE (inpad to register)

Identifies all paths from all primary input ports to either all sequential elements or
the sequential elements driven by the given clock signal name.

• OFFSET_OUT_AFTER (register to outpad)

Similar to OFFSET_IN_BEFORE , but sets the constraint from the sequential
elements to all primary output ports

• INPAD_TO_OUTPAD (inpad to outpad)

Sets a maximum combinatorial path constraint.

• MAX_DELAY

– ALLCLOCKNETS

– OFFSET_IN_BEFORE

– OFFSET_OUT_AFTER

– INPAD_TO_OUTPAD

Global Optimization Goal Domain Diagram

XCF Timing Constraint Support
If you specify timing constraints in an XST Constraint File (XCF), Xilinx® recommends
that you use a forward slash (/) as a hierarchy separator instead of an underscore (_). For
more information, see Hierarchy Separator.

If XST does not support all or part of a specified timing constraint, XST issues a warning,
and ignores the unsupported timing constraint (or unsupported part of it) in the Timing
Optimization step. If Write Timing Constraints (–write_timing_constraints) is set to
yes, XST propagates the entire constraint to the final netlist, even if it was ignored at
the Timing Optimization step.

XST User Guide for Virtex-6 and Spartan-6 Devices
386 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 13: XST Timing Constraints

The following timing constraints are supported in an XCF:

• Period (PERIOD)
• Offset (OFFSET)
• From-To (FROM-TO)
• Timing Name (TNM)
• Timing Name on a Net (TNM_NET)
• Timegroup (TIMEGRP)
• Timing Ignore (TIG)

Period (PERIOD)
Period (PERIOD) is a basic timing constraint and synthesis constraint. A clock period
specification checks timing between all synchronous elements within the clock domain
as defined in the destination element group. The group may contain paths that pass
between clock domains if the clocks are defined as a function of one or the other. For
more information, see PERIOD in the Constraints Guide.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
See PERIOD in the Constraints Guide.

Propagation Rules
See PERIOD in the Constraints Guide.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XCF Syntax Example
NET netname PERIOD = value [{HIGH|LOW} value];

Offset (OFFSET)
Offset (OFFSET) is a basic timing constraint. It specifies the timing relationship between
an external clock and its associated data-in or data-out pin. Offset is used only for
pad-related signals, and cannot be used to extend the arrival time specification method
to the internal signals in a design.

Use Offset to:
• Calculate whether a setup time is being violated at a flip-flop whose data and clock

inputs are derived from external nets
• Specify the delay of an external output net derived from the Q output of an internal

flip-flop being clocked from an external device pin

For more information, see OFFSET in the Constraints Guide.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 387

Chapter 13: XST Timing Constraints

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
For more information, see OFFSET in the Constraints Guide.

Propagation Rules
For more information, see OFFSET in the Constraints Guide.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XCF Syntax Example
OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER} clk_name
[TIMEGRP group_name];

From-To (FROM-TO)
From-To (FROM-TO) defines a timing constraint between two groups. A group can be
user-defined or predefined (FF, PAD, RAM). For more information, see FROM-TO in the
Constraints Guide.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
For more information, see FROM-TO in the Constraints Guide.

Propagation Rules
For more information, see FROM-TO in the Constraints Guide.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XCF Syntax Example
TIMESPEC TSname = FROM group1 TO group2 value;

Timing Name (TNM)
Timing Name (TNM) is a basic grouping constraint. Use Timing Name to identify the
elements that make up a group which you can then use in a timing specification.
Timing Name tags specific FF, RAM, LATCH, PAD, BRAM_PORTA, BRAM_PORTB, CPU,
HSIO, and MULT elements as members of a group to simplify the application of timing
specifications to the group.

XST User Guide for Virtex-6 and Spartan-6 Devices
388 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 13: XST Timing Constraints

You can also use the RISING and FALLING keywords with Timing Name. For more
information, see TNM in the Constraints Guide.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
For more information, see TNM in the Constraints Guide.

Propagation Rules
For more information, see TNM in the Constraints Guide.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XCF Syntax Example
{INST|NET|PIN} inst_net_or_pin_name TNM =
[predefined_group:]identifier;

Timing Name on a Net (TNM_NET)
Timing Name on a Net (TNM_NET) is essentially equivalent to Timing Name (TNM) on a
net except for input pad nets. Special rules apply when using Timing Name (TNM) and
TNM_NET with Period (PERIOD) for DLLs, DCMs, and PLLs. For more information, see
PERIOD Specifications on CLKDLLs, DCMs, and PLLs in the Constraints Guide.

A Timing Name on a Net is a property that you normally use in conjunction with a
Hardware Description Language (HDL) design to tag a specific net. All downstream
synchronous elements and pads tagged with the TNM_NET identifier are considered a
group. For more information, see TNM_NET in the Constraints Guide.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
For more information, see TNM_NET in the Constraints Guide.

Propagation Rules
For more information, see TNM_NET in the Constraints Guide.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XCF Syntax Example
NET netname TNM_NET = [predefined_group:] identifier;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 389

Chapter 13: XST Timing Constraints

Timegroup (TIMEGRP)
Timegroup (TIMEGRP) is a basic grouping constraint. In addition to naming groups
using the TNM identifier, you can also define groups in terms of other groups. You
can create a group that is a combination of existing groups by defining a Timegroup
constraint.

You can place Timegroup constraints in an XST Constraint File (XCF) or a Netlist
Constraints File (NCF). You can use Timegroup attributes to create groups using the
following methods.

• Combining multiple groups into one
• Defining flip-flop subgroups by clock sense

For more information, see TIMEGRP in the Constraints Guide.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
For more information, see TIMEGRP in the Constraints Guide.

Propagation Rules
For more information, see TIMEGRP in the Constraints Guide.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XCF Syntax Example
TIMEGRP newgroup = existing_grp1 existing_grp2 [existing_grp3
...];

Timing Ignore (TIG)
Timing Ignore (TIG) causes all paths going through a specific net to be ignored for
timing analysis and optimization. Timing Ignore can be applied to the name of the
signal affected. For more information, see TIG in the Constraints Guide.

Architecture Support
Applies to Virtex®-6 and Spartan®-6 devices

Applicable Elements
For more information, see TIG in the Constraints Guide.

Propagation Rules
For more information, see TIG in the Constraints Guide.

XST User Guide for Virtex-6 and Spartan-6 Devices
390 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 13: XST Timing Constraints

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

XCF Syntax Example
NET net_name TIG;

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 391

XST User Guide for Virtex-6 and Spartan-6 Devices
392 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 14

XST-Supported Third Party Constraints
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter describes XST-Supported Third Party Constraints, and includes:
• XST Equivalents to Third Party Constraints
• Third Party Constraints Syntax Examples

XST Equivalents to Third Party Constraints
XST supports many third party constraints. The following table shows the XST
equivalents for these constraints. For more information on specific constraints, see your
vendor documentation.

Constraints marked yes are fully supported. If a constraint is only partially supported,
the support conditions are shown in the Automatic Recognition column.

VHDL uses standard attribute syntax. No changes are needed to the Hardware
Description Language (HDL) code.

For Verilog with third party metacomment syntax, you must change the metacomment
syntax to conform to XST conventions. The constraint name and its value can be used
as shown in the third party tool.

For Verilog 2001 attributes, no changes are needed to the HDL code. The constraint is
automatically translated as in the case of VHDL attribute syntax.

XST Equivalents to Third Party Constraints
Name Vendor XST Equivalent Automatic

Recognition
Available For

VHDLblack_box Synplicity BoxType N/A

Verilog

black_box_pad_pin Synplicity N/A N/A N/A

black_box_tri_pins Synplicity N/A N/A N/A

cell_list Synopsys N/A N/A N/A

clock_list Synopsys N/A N/A N/A
enum Synopsys N/A N/A N/A

Synplicityfull_case

Synopsys

Full Case N/A Verilog

ispad Synplicity N/A N/A N/A

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 393

Chapter 14: XST-Supported Third Party Constraints

Name Vendor XST Equivalent Automatic
Recognition

Available For

map_to_module Synopsys N/A N/A N/A
net_name Synopsys N/A N/A N/A

Synplicityparallel_case

Synopsys

Parallel Case N/A Verilog

return_port_name Synopsys N/A N/A N/A

VHDLresource_sharing
directives

Synopsys Resource Sharing N/A

Verilog

set_dont_touch_network Synopsys not required N/A N/A

set_dont_touch Synopsys not required N/A N/A

set_dont_use_cel_name Synopsys not required N/A N/A

set_prefer Synopsys N/A N/A N/A
state_vector Synopsys N/A N/A N/A

VHDLsyn_allow_retiming Synplicity Register Balancing N/A

Verilog

VHDLsyn_black_box Synplicity BoxType Yes

Verilog

syn_direct_enable Synplicity N/A N/A N/A

syn_edif_bit_format Synplicity N/A N/A N/A

syn_edif_scalar_format Synplicity N/A N/A N/A

VHDLsyn_encoding Synplicity FSM Encoding
Algorithm

Yes

The value safe is
not supported for
automatic recognition.

Use Safe
Implementation in
XST to activate this
mode.

Verilog

syn_enum_encoding Synplicity Enumerated Encoding N/A VHDL

VHDL

Verilog

syn_hier Synplicity Keep Hierarchy Yes

syn_hier = hard
is recognized as
keep_hierarchy
= soft

syn_hier =
remove is
recognized as
keep_hierarchy
= no

XST supports
only the values
hard and remove
for syn_hier in
automatic recognition.

XST User Guide for Virtex-6 and Spartan-6 Devices
394 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 14: XST-Supported Third Party Constraints

Name Vendor XST Equivalent Automatic
Recognition

Available For

syn_isclock Synplicity N/A N/A N/A

VHDLsyn_keep Synplicity Keep Yes

Verilog

VHDLsyn_maxfan Synplicity Max Fanout Yes

Verilog

VHDLsyn_netlist_hierarchy Synplicity Netlist Hierarchy N/A

Verilog
syn_noarrayports Synplicity N/A N/A N/A

VHDLsyn_noclockbuf Synplicity Buffer Type Yes

Verilog

VHDLsyn_noprune Synplicity Optimize Instantiated
Primitives

Yes

Verilog

VHDLsyn_pipeline Synplicity Register Balancing N/A

Verilog

VHDLsyn_preserve Synplicity Equivalent Register
Removal

Yes

Verilog

Yes VHDL

Verilog

syn_ramstyle Synplicity RAM Extraction and
RAM Style

XST implements
RAMs in
no_rw_check mode
whether or not
no_rw_check is
specified.

The area value is
ignored.

syn_reference_clock Synplicity N/A N/A N/A

VHDLsyn_replicate Synplicity Register Duplication Yes

Verilog

VHDLsyn_romstyle Synplicity ROM Extraction and
ROM Style

Yes

Verilog

VHDLsyn_sharing Synplicity Resource Sharing N/A

Verilog

VHDLsyn_state_machine Synplicity Automatic FSM
Extraction

Yes

Verilog
syn_tco Synplicity N/A N/A N/A

syn_tpd Synplicity N/A N/A N/A

syn_tristate Synplicity N/A N/A N/A

syn_tristatetomux Synplicity N/A N/A N/A
syn_tsu Synplicity N/A N/A N/A

syn_useenables Synplicity Use Clock Enable N/A N/A

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 395

Chapter 14: XST-Supported Third Party Constraints

Name Vendor XST Equivalent Automatic
Recognition

Available For

VHDLsyn_useioff Synplicity Pack I/O Registers
Into IOBs (IOB)

N/A

Verilog

synthesis_
translate_off

Synplicity VHDL

synthesis_
translate_on

Synopsys

Translate Off and
Translate On

Yes

Verilog

xc_alias Synplicity N/A N/A N/A

VHDLxc_clockbuftype Synplicity Buffer Type N/A

Verilog

VHDLxc_fast Synplicity FAST N/A

Verilog

VHDLxc_fast_auto Synplicity FAST N/A

Verilog

VHDLxc_global_buffers Synplicity BUFG (XST) N/A

Verilog

VHDLxc_ioff Synplicity Pack I/O Registers
Into IOBs

N/A

Verilog

xc_isgsr Synplicity N/A N/A N/A

VHDLxc_loc Synplicity LOC Yes

Verilog

VHDLxc_map Synplicity Map Entity on a Single
LUT

Yes

XST supports only
the value lut for
automatic recognition.

Verilog

xc_ncf_auto_relax Synplicity N/A N/A N/A

VHDLxc_nodelay Synplicity NODELAY N/A

Verilog

VHDLxc_padtype Synplicity I/O Standard N/A

Verilog
xc_props Synplicity N/A N/A N/A

VHDLxc_pullup Synplicity PULLUP N/A

Verilog

VHDLxc_rloc Synplicity RLOC Yes

Verilog

VHDLxc_fast Synplicity FAST N/A

Verilog

xc_slow Synplicity N/A N/A N/A

VHDLxc_uset Synplicity U_SET Yes

Verilog

XST User Guide for Virtex-6 and Spartan-6 Devices
396 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 14: XST-Supported Third Party Constraints

Third Party Constraints Syntax Examples
This section contains the following third party constraints syntax examples:

• Third Party Constraints Verilog Syntax Example

• Third Party Constraints XCF Syntax Example

Third Party Constraints Verilog Syntax Example
module testkeep (in1, in2, out1);
input in1;
input in2;
output out1;
(* keep = "yes" *) wire aux1;
(* keep = "yes" *) wire aux2;
assign aux1 = in1;
assign aux2 = in2;
assign out1 = aux1 & aux2;
endmodule

Third Party Constraints XCF Syntax Examples
Keep (KEEP) can also be applied through the separate synthesis constraint file.

BEGIN MODEL testkeep

NET aux1 KEEP=true;

END;

Caution! In an XST Constraint File (XCF) file, the value of Keep (KEEP) may optionally
be enclosed in double quotes. Double quotes are mandatory for SOFT.

BEGIN MODEL testkeep

NET aux1 KEEP=”soft”;

END;

These are the only two ways to preserve a signal or net in a Hardware Description
Language (HDL) design and to prevent optimization on the signal or net during
synthesis.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 397

XST User Guide for Virtex-6 and Spartan-6 Devices
398 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 15

XST Synthesis Report
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter discusses the XST Synthesis Report, and includes:
• About the XST Synthesis Report
• XST Synthesis Report Contents
• XST Synthesis Report Navigation
• XST Synthesis Report Information

About the XST Synthesis Report
The XST Synthesis Report:
• Is an ASCII text file
• Is a hybrid between a report and a log
• Contains information about the XST synthesis run

During synthesis, the XST Synthesis Report allows you to:
• Control the progress of the synthesis
• Review what has occurred so far

After synthesis, the XST Synthesis Report allows you to:
• Determine whether the Hardware Description Language (HDL) description has

been processed according to expectations
• Determine whether device resources utilization and optimization levels are likely

to meet design goals once the synthesized netlist has been run through the
implementation chain

XST Synthesis Report Contents
The XST Synthesis Report contains the following sections:
• XST Synthesis Report Table of Contents
• XST Synthesis Report Synthesis Options Summary
• XST Synthesis Report HDL Parsing and Elaboration Sections
• XST Synthesis Report HDL Synthesis Section
• XST Synthesis Report Advanced HDL Synthesis Section
• XST Synthesis Report Low Level Synthesis Section
• XST Synthesis Report Partition Report
• XST Synthesis Report Design Summary

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 399

Chapter 15: XST Synthesis Report

XST Synthesis Report Table of Contents
Use the Table of Contents to navigate through the report. For more information, see
XST Synthesis Report Navigation.

XST Synthesis Report Synthesis Options Summary
The Synthesis Options Summary section summarizes the parameters and options used
for the current synthesis run.

XST Synthesis Report HDL Parsing and Elaboration Section
During Hardware Description Language (HDL) parsing and elaboration, XST:

• Parses the VHDL and Verilog files that make up the synthesis project
• Interprets the contents of the VHDL and Verilog files
• Recognizes the design hierarchy
• Flags HDL coding mistakes
• Points out potential problems such as:

– Simulation mismatches between post-synthesis and HDL
– Potential multi-source situations

If problems occur at later stages of synthesis, the HDL parsing and elaboration sections
may reveal the root cause of these problems.

XST Synthesis Report HDL Synthesis Section
During HDL Synthesis, XST:

• Attempts to recognize basic macros such as registers, adders, and multipliers for
which a technology-specific implementation might later be possible

• Looks for Finite State Machine (FSM) descriptions on a block by block basis
• Issues the HDL Synthesis Report, providing statistics on inferred macros

For more information about the processing of each macro and the corresponding
messages issued during synthesis, see Chapter 7, XST HDL Coding Techniques.

XST Synthesis Report Advanced HDL Synthesis Section
During Advanced HDL Synthesis, XST:

• Attempts to combine basic macros inferred during the HDL Synthesis
phase into larger macro blocks such as counters, pipelined multipliers, and
multiply-accumulate functions

• Reports on the selected encoding scheme for each inferred Finite State Machine
(FSM)

The Advanced HDL Synthesis Report at the end of the section summarizes the
recognized macros in the overall design, sorted by macro type.

For more information on reporting in the Advanced HDL Synthesis Section, see Chapter
7, XST HDL Coding Techniques.

XST Synthesis Report Low Level Synthesis Section
The Low Level Synthesis Section displays information about the low-level optimizations
performed by XST, including the removal of equivalent flip-flops, register replication,
or the optimization of constant flip-flops.

XST User Guide for Virtex-6 and Spartan-6 Devices
400 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 15: XST Synthesis Report

XST Synthesis Report Partition Report
If the design is partitioned, the Partition Report displays information about the design
partitions.

XST Synthesis Report Design Summary
The Design Summary section helps you determine whether synthesis has been
successful, especially whether device utilization and circuit performance has met design
goals.

The Design Summary section contains the following subsections:

• Primitive and Black Box Usage
• Device Utilization Summary
• Partition Resource Summary
• Timing Report
• Clock Information
• Asynchronous Control Signals Information
• Timing Summary
• Timing Details
• Encrypted Modules

Primitive and Black Box Usage
The Primitive and Black Box Usage subsection displays usage statistics for all device
primitives and identified black boxes.

The primitives are classified in the following groups:

• BELS

All basic logical primitives such as LUT, MUXCY, XORCY, MUXF5, and MUXF6
• Flip-flops and latches
• Block and distributed RAM

• Shift register primitives
• Tristate buffers
• Clock buffers
• I/O buffers
• Other logical, more complex, primitives such as AND2 and OR2
• Other primitives

Device Utilization Summary
The Device Utilization Summary subsection displays XST device utilization estimates
for such functions as:
• Slice logic utilization
• Slice logic distribution
• Number of flip-flops
• I/O utilization
• Number of block RAMs
• Number of DSP blocks

A similar report is generated when you later run MAP.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 401

Chapter 15: XST Synthesis Report

Partition Resource Summary
If partitions have been defined, the Partition Resource Summary subsection displays
information similar to the Device Utilization Summary on a partition-by-partition basis.

Timing Report
The Timing Report subsection displays XST timing estimates to help you:

• Determine whether the design meets performance and timing requirements

• Locate bottlenecks if performance and timing requirements are not met

Clock Information
The Clock Information subsection displays information about the number of clocks in
the design, how each clock is buffered, and their respective fanout.

Clock Information Report Example
Clock Information:

-----------------------------------+------------------------+-------+
Clock Signal | Clock buffer(FF name) | Load |
-----------------------------------+------------------------+-------+
CLK | BUFGP | 11 |
-----------------------------------+------------------------+-------+

Asynchronous Control Signals Information
The Asynchronous Control Signals Information subsection displays information about
the number of asynchronous set/reset signals in the design, how each signal is buffered,
and their respective fanout.

Asynchronous Control Signals Report Information Example
Asynchronous Control Signals Information:
-------------------------------------+-------------------------------+-------+
Control Signal | Buffer(FF name) | Load |
-------------------------------------+-------------------------------+-------+
rstint(MACHINE/current_state_Out01:O)| NONE(sixty/lsbcount/qoutsig_3)| 4 |
RESET | IBUF | 3 |
sixty/msbclr(sixty/msbclr:O) | NONE(sixty/msbcount/qoutsig_3)| 4 |
-------------------------------------+-------------------------------+-------+

Timing Summary
The Timing Summary subsection shows timing information for all four possible clock
domains of a netlist:

• Minimum period (register to register paths)

• Minimum input arrival time before clock (input to register paths)

• Maximum output required time after clock (register to outpad paths)

• Maximum combinatorial path delay (inpad to outpad paths)

This timing information is an estimate. For precise timing information, see the TRACE
Report generated after placement and routing.

XST User Guide for Virtex-6 and Spartan-6 Devices
402 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 15: XST Synthesis Report

Timing Summary Report Example
Timing Summary:

Speed Grade: -1

Minimum period: 2.644ns (Maximum Frequency: 378.165MHz)
Minimum input arrival time before clock: 2.148ns
Maximum output required time after clock: 4.803ns
Maximum combinatorial path delay: 4.473ns

Timing Details
The Timing Details subsection displays information about the most critical path in
each region, including:
• Start point
• End point
• Maximum delay
• Levels of logic
• Detailed breakdown of the path into individual net and component delays, also

providing valuable information on net fanouts.
• Distribution between routing and logic

Timing Details Report Example
Timing Details:

All values displayed in nanoseconds (ns)

===
Timing constraint: Default period analysis for Clock ’CLK’
Clock period: 2.644ns (frequency: 378.165MHz)
Total number of paths / destination ports: 77 / 11

Delay: 2.644ns (Levels of Logic = 3)
Source: MACHINE/current_state_FFd3 (FF)
Destination: sixty/msbcount/qoutsig_3 (FF)
Source Clock: CLK rising
Destination Clock: CLK rising

Data Path: MACHINE/current_state_FFd3 to sixty/msbcount/qoutsig_3
Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)
-- ------------
FDC:C->Q 8 0.272 0.642 ctrl/state_FFd3 (ctrl/state_FFd3)
LUT3:I0->O 3 0.147 0.541 Ker81 (clkenable)
LUT4_D:I1->O 1 0.147 0.451 sixty/msbce (sixty/msbce)
LUT3:I2->O 1 0.147 0.000 sixty/msbcount/qoutsig_3_rstpot (N43)
FDC:D 0.297 sixty/msbcount/qoutsig_3
--
Total 2.644ns (1.010ns logic, 1.634ns route)

(38.2% logic, 61.8% route)

Encrypted Modules
XST hides all information about encrypted modules.

XST Synthesis Report Navigation
This section discusses XST Synthesis Report Navigation, and includes:
• Command Line Mode Report Navigation
• ISE Design Suite Report Navigation

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 403

Chapter 15: XST Synthesis Report

Command Line Mode Report Navigation
In command line mode, XST generates an SRP (.srp) file. The SRP file:

• Contains the full XST Synthesis Report

• Is an ASCII text file

• Can be opened in a text editor

Entries in the SRP file Table of Contents are not hyperlinked. Use the text editor Find
function to navigate.

ISE Design Suite Report Navigation
In ISE® Design Suite, XST generates an SYR (.syr) file. The SYR file:

• Contains the full XST Synthesis Report

• Is located in the directory in which the ISE Design Suite project resides

• Allows you to navigate to the different sections of the XST Synthesis Report using
a navigation pane

XST Synthesis Report Information
Use the following to reduce the information displayed in the XST Synthesis Report:

• Message Filtering

• Quiet Mode

• Silent Mode

Message Filtering
When running XST in ISE® Design Suite, use the Message Filtering wizard to select
specific messages to filter out of the XST Synthesis Report. You can filter out individual
messages, or a category of messages. For more information, see Using the Message Filters
in the ISE Design Suite Help.

Quiet Mode
Quiet Mode limits the number of messages printed to the computer screen (stdout),
but does not affect the contents of the XST Synthesis Report itself. The report contains
the full, unfiltered, synthesis information. To invoke Quiet Mode, set -intstyle to either
of the following:

• ise

Formats messages for ISE® Design Suite

• xflow

Formats messages for XFLOW

XST User Guide for Virtex-6 and Spartan-6 Devices
404 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 15: XST Synthesis Report

XST normally prints the entire report to stdout. In Quiet Mode, XST does not print the
following sections of the XST Synthesis Report to stdout:

• Copyright Message

• Table of Contents

• Synthesis Options Summary

• The following portions of the Design Summary:

– Final Results section

– A note in the Timing Report stating that the timing numbers are only a synthesis
estimate

– Timing Details

– CPU (XST run time)

– Memory usage

In Quiet Mode, XST prints the following sections of the XST Synthesis Report to stdout:

• Device Utilization Summary

• Clock Information

• Timing Summary

Silent Mode
Silent Mode prevents messages from being sent to the computer screen (stdout).
The entire XST Synthesis Report is written to the log file. To invoke Silent Mode, set
-intstyle to silent.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 405

XST User Guide for Virtex-6 and Spartan-6 Devices
406 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 16

XST Naming Conventions
Note The XST User Guide for Virtex-6 and Spartan-6 Devices applies to Xilinx® Virtex®-6
and Spartan®-6 devices only. For information on using XST with other devices, see
the XST User Guide.

This chapter discusses naming conventions in XST, and includes:

• About XST Naming Conventions

• XST Net Naming Conventions Coding Examples

• XST Net Naming Conventions

• XST Instance Naming Conventions

• XST Case Preservation

• XST Name Generation Control

About XST Naming Conventions
Synthesis tools must ensure a naming strategy for objects written to the synthesized
netlist that is logical, consistent, predictable, and repeatable. Whether you wish to
control implementation of a design with constraints, or to reduce timing closure cycles,
XST naming conventions help you achieve those goals.

XST Naming Conventions Coding Examples
Coding examples are accurate as of the date of publication. Download updates and
other examples from ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip.
Each directory contains a summary.txt file listing all examples together with a brief
overview.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 407

Chapter 16: XST Naming Conventions

Reg in Labelled Always Block Verilog Coding Example
//
// A reg in a labelled always block
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Naming_Conventions/reg_in_labelled_always.v
//
module top (

input clk,
input di,
output do

);

reg data;

always @(posedge clk)
begin : mylabel

reg tmp;

tmp <= di; // Post-synthesis name : mylabel.tmp
data <= ~tmp; // Post-synthesis name : data

end

assign do = ~data;

endmodule

Primitive Instantiation in If-Generate Without Label Verilog Coding
Example

//
// A primitive instantiation in a if-generate without label
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Naming_Conventions/if_generate_nolabel.v
//
module top (

input clk,
input di,
output do

);

parameter TEST_COND = 1;

generate

if (TEST_COND) begin
FD myinst (.C(clk), .D(di), .Q(do)); // Post-synthesis name : myinst

end

endgenerate

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
408 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 16: XST Naming Conventions

Primitive Instantiation in If-Generate With Label Verilog Coding
Example

//
// A primitive instantiation in a labelled if-generate
//
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: Naming_Conventions/if_generate_label.v
//
module top (

input clk,
input rst,
input di,
output do

);

// parameter TEST_COND = 1;
parameter TEST_COND = 0;

generate

if (TEST_COND)
begin : myifname

FDR myinst (.C(clk), .D(di), .Q(do), .R(rst));
// Post-synthesis name : myifname.myinst

end
else

begin : myelsename
FDS myinst (.C(clk), .D(di), .Q(do), .S(rst));

// Post-synthesis name : myelsename.myinst
end

endgenerate

endmodule

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 409

Chapter 16: XST Naming Conventions

Variable in Labelled Process VHDL Coding Example
--
-- A variable in a labelled process
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: Naming_Conventions/var_in_labelled_process.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity top is
port(

clk : in std_logic;
di : in std_logic;

do : out std_logic
);

end top;

architecture behavioral of top is
signal data : std_logic;

begin

mylabel: process (clk)
variable tmp : std_logic;

begin
if rising_edge(clk) then

tmp := di; -- Post-synthesis name : mylabel.tmp
end if;
data <= not(tmp);

end process;

do <= not(data);

end behavioral;

Flip-Flop Modelled With a Boolean VHDL Coding Example
--
-- Naming of boolean type objects
--
-- Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
-- File: Naming_Conventions/boolean.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity top is
port(

clk : in std_logic;
di : in boolean;

do : out boolean
);

end top;

architecture behavioral of top is
signal data : boolean;

begin

process (clk)
begin

if rising_edge(clk) then
data <= di; -- Post-synthesis name : data

end if;
end process;

do <= not(data);

end behavioral;

XST User Guide for Virtex-6 and Spartan-6 Devices
410 www.xilinx.com UG687 (v 12.1) April 19, 2010

Chapter 16: XST Naming Conventions

XST Net Naming Conventions
XST creates net names based on the following rules, listed in order of naming priority:

1. Maintain external pin names.

2. Keep hierarchy in signal names, using the hierarchy separator defined by Hierarchy
Separator. The default hierarchy separator is a forward slash (/).

3. Maintain output signal names of registers, including state bits. Use the hierarchical
name from the level where the register was inferred.

4. For output signals of clock buffers, a _clockbuffertype suffix (such as _BUFGP
or _IBUFG) is appended to the clock signal name.

5. Maintain input nets to registers and tristates names.

6. Maintain names of signals connected to primitives and black boxes.

7. The output net of an IBUF is named <signal_name>_IBUF. Assuming for example
that an IBUF output drives signal DIN, the output net of this IBUF is named
DIN_IBUF.

8. The input net to an OBUF is named <signal_name>_OBUF. Assuming for example
that an OBUF input is driven by signal DOUT, the input net of this OBUF is named
DOUT_OBUF.

9. Base names for internal (combinatorial) nets on user HDL signal names where
possible.

10. Nets resulting from the expansion of buses are formatted as
<bus_name><left_delimiter><position>#<right_delimiter>. The default left
and right delimiters are respectively < and >. Use Bus Delimiter (–bus_delimiter) to
change this convention.

XST User Guide for Virtex-6 and Spartan-6 Devices
UG687 (v 12.1) April 19, 2010 www.xilinx.com 411

Chapter 16: XST Naming Conventions

XST Instance Naming Conventions
XST creates instance names based on the following rules, listed in order of naming
priority:

1. Keep hierarchy in instance names, using the hierarchy separator defined by
Hierarchy Separator. The default hierarchy separator is a slash (/).

2. When instance names are generated from HDL generate statements, labels from
generate statements are used in composition of instance names.
For the following VHDL generate statement:

i1_loop: for i in 1 to 10 generate
inst_lut:LUT2 generic map (INIT => "00")

XST generates the following instance names for LUT2:

i1_loop[1].inst_lut
i1_loop[2].inst_lut
...
i1_loop[9].inst_lut
i1_loop[10].inst_lut

3. Match the flip-flop instance name to the name of the signal it drives. This principle
also applies to state bits.

4. Name clock buffer instances _clockbuffertype (such as _BUFGP or _IBUFG)
after the output signal.

5. Names of black box instances are maintained.
6. Name of library primitive instances are maintained.
7. Name input and output buffers using the form _IBUF or _OBUF after the pad name.
8. Name Output instance names of IBUFs using the form instance_name_IBUF.
9. Name input instance names to OBUFs using the form instance_name_OBUF.

XST Case Preservation
Verilog is case sensitive. Unless instructed otherwise through the Case (-case) option,
XST enforces the exact capitalization found in the Hardware Description Language
(HDL) source code. For more information on XST support for Verilog case sensitivity,
see Case Sensitivity in Chapter 4, XST Verilog Support.

VHDL is case insensitive. Unless instructed otherwise through the Case (-case) option,
object names based on names defined in the HDL source code are converted to all lower
case in the synthesized netlist.

XST Name Generation Control
The following constraints give you some control over the naming of objects in the
synthesized netlist.
• Hierarchy Separator (–hierarchy_separator)
• Bus Delimiter (–bus_delimiter)
• Case (–case)
• Duplication Suffix (–duplication_suffix)

Apply these constraints in ISE® Design Suite in Synthesize - XST Process > Properties,
or use the appropriate command line options.

For more information, see Chapter 9, XST Design Constraints.

XST User Guide for Virtex-6 and Spartan-6 Devices
412 www.xilinx.com UG687 (v 12.1) April 19, 2010

	Software Manuals
	XST User Guide for Virtex-6 and Spartan-6 Devices
	Preface About the XST User Guide for Virtex-6 and Spartan-6 Devi
	Guide Contents
	Acronyms
	Online Document
	Additional Resources

	Table of Contents
	Chapter 1 Introduction to Xilinx Synthesis Technology (XST)
	About Xilinx Synthesis Technology (XST)
	What’s New in This Release

	Chapter 2 Creating and Synthesizing an XST Project
	Creating an HDL Synthesis Project
	HDL Project File Coding Example

	Running XST in ISE Design Suite
	Running XST in Command Line Mode
	Running XST as a Standalone Tool
	Running XST Interactively
	Running XST in Scripted Mode
	XST Script Files
	XST Commands
	XST Run Command
	XST Set Command
	XST Script Command
	XST Help Command
	Supported Families
	All Commands for a Specific Device
	Specific Commands for a Specific Device

	Improving Readability of an XST Script File

	XST Output Files
	XST Typical Output Files
	XST Temporary Output Files
	Names With Spaces in Command Line Mode

	Chapter 3 XST VHDL Language Support
	Advantages of VHDL
	VHDL IEEE Support
	VHDL Data Types
	VHDL Supported Data Types
	VHDL Predefined Enumerated Types
	VHDL User-Defined Enumerated Types
	VHDL Bit Vector Types
	VHDL Integer Types
	VHDL Multi-Dimensional Array Types
	VHDL Record Types

	VHDL Unsupported Data Types

	VHDL Objects
	VHDL Signals
	VHDL Variables
	VHDL Constants

	VHDL Operators
	VHDL Entity and Architecture Descriptions
	VHDL Circuit Descriptions
	VHDL Entity Declarations
	VHDL Architecture Declarations
	VHDL Component Instantiation
	VHDL Recursive Component Instantiation
	VHDL Component Configuration
	VHDL Generics
	Conflicts Among VHDL Generics and Attributes

	VHDL Combinatorial Circuits
	VHDL Concurrent Signal Assignments
	VHDL Generate Statements
	VHDL For-Generate Statements
	VHDL If-Generate Statements

	VHDL Combinatorial Processes
	About VHDL Combinatorial Processes
	VHDL Variable and Signal Assignments
	VHDL If-Else Statements
	VHDL Case Statements
	VHDL For-Loop Statements

	VHDL Sequential Logic
	VHDL Sequential Processes With a Sensitivity List
	VHDL Sequential Processes Without a Sensitivity List
	VHDL Initial Values and Operational Set/Reset
	VHDL Default Initial Values on Memory Elements

	VHDL Functions and Procedures
	VHDL Assert Statements
	VHDL Libraries and Packages
	VHDL Libraries
	VHDL Predefined Packages
	VHDL Predefined Standard Packages
	VHDL Predefined IEEE Packages
	VHDL Predefined IEEE Fixed and Floating Point Packages
	VHDL Predefined IEEE Real Type and IEEE math_real Packages

	Defining Your Own VHDL Packages
	Accessing VHDL Packages

	VHDL File Type Support
	XST VHDL File Read and File Write Capability
	Loading Memory Contents from an External File
	Writing to a File for Debugging Coding Examples
	Rules for Debugging Using Write Operations

	VHDL Constructs
	VHDL Design Entities and Configurations
	VHDL Expressions
	Supported/Unsupported VHDL Operators
	Supported/Unsupported VHDL Operands

	VHDL Statements

	VHDL Reserved Words

	Chapter 4 XST Verilog Support
	About XST Verilog Support
	Verilog Variable Part Selects
	Variable Part Selects Verilog Coding Example

	Structural Verilog Features
	Verilog Parameters
	Verilog Parameter and Attribute Conflicts
	Verilog Usage Restrictions in XST
	Case Sensitivity
	Blocking and Nonblocking Assignments
	Integer Handling
	Integer Handling in Verilog Case Statements
	Integer Handling in Verilog Concatenations

	Verilog–2001 Attributes and Meta Comments
	Verilog-2001 Attributes
	Verilog Meta Comments

	Verilog Constructs
	Verilog Constants
	Verilog Data Types
	Verilog Continuous Assignments
	Verilog Procedural Assignments
	Verilog Design Hierarchies
	Verilog Compiler Directives

	Verilog System Tasks and Functions
	Verilog System Tasks and Functions Supported in XST
	Using Conversion Functions
	Loading Memory Contents With File I/O Tasks
	Display Tasks
	Creating Design Rule Checks with $finish

	Verilog Primitives
	Verilog Reserved Keywords
	Verilog 2001 Support in XST

	Chapter 5 XST Behavioral Verilog Support
	Behavioral Verilog Variable Declarations
	Behavioral Verilog Initial Values
	Behavioral Verilog Arrays Coding Examples
	Behavioral Verilog Multi-Dimensional Arrays
	Behavioral Verilog Data Types
	Behavioral Verilog Legal Statements
	Behavioral Verilog Expressions
	About Behavioral Verilog Expressions
	Behavioral Verilog Supported Operators
	Behavioral Verilog Supported Expressions
	Results of Evaluating Expressions in Behavioral Verilog

	Behavioral Verilog Blocks
	Behavioral Verilog Modules
	Behavioral Verilog Module Declaration
	Behavioral Verilog Module Instantiation

	Behavioral Verilog Continuous Assignment
	Behavioral Verilog Procedural Assignments
	About Behavioral Verilog Procedural Assignments
	Combinatorial Always Blocks
	If-Else Statements
	Case Statements
	For and Repeat Loops
	While Loops
	Sequential Always Blocks
	Assign and Deassign Statements
	Assignment Extension Past 32 Bits

	Behavioral Verilog Tasks and Functions
	About Behavioral Verilog Tasks and Functions
	Behavioral Verilog Tasks and Functions Coding Examples
	Behavioral Verilog Recursive Tasks and Functions
	Behavioral Verilog Constant Functions

	Behavioral Verilog Blocking Versus Non-Blocking Procedural Assig
	Behavioral Verilog Constants
	Behavioral Verilog Macros
	Behavioral Verilog Include Files
	Behavioral Verilog Comments
	Behavioral Verilog Generate Statements
	About Behavioral Verilog Generate Statements
	Behavioral Verilog Generate Loop Statements
	Behavioral Verilog Generate Conditional Statements
	Behavioral Verilog Generate Case Statements

	Chapter 6 XST Mixed Language Support
	About XST Mixed Language Support
	VHDL and Verilog Boundary Rules
	About VHDL and Verilog Boundary Rules
	Instantiating a VHDL Design Unit in a Verilog Design
	Instantiating a Verilog Module in VHDL

	Port Mapping
	VHDL Instantiated in Verilog
	Verilog Instantiated in VHDL

	Generics Support
	Library Search Order (LSO) Files
	About Library Search Order (LSO) Files
	Specifying Library Search Order (LSO) Files in ISE Design Suite
	Specifying Library Search Order (LSO) Files in Command Line Mode
	Library Search Order (LSO) Rules
	Empty Library Search Order (LSO) Files
	DEFAULT_SEARCH_ORDER Keyword Only
	DEFAULT_SEARCH_ORDER Keyword and List of Libraries
	List of Libraries Only
	DEFAULT_SEARCH_ORDER Keyword and Non-Existent Library Name

	Chapter 7 XST Hardware Description Language (HDL) Coding Techniq
	About XST Hardware Description Language (HDL) Coding Techniques
	Choosing a Description Language
	Macro Inference Flow Overview
	Flip-Flops and Registers
	About Flip-Flops and Registers
	Flip-Flops and Registers Initialization
	Flip-Flops and Registers Control Signals
	Flip-Flops and Registers Related Constraints
	Flip-Flops and Registers Reporting
	Flip-Flops and Registers Coding Examples

	Latches
	About Latches
	Describing Latches
	Latches Related Constraints
	Latches Reporting
	Latches Coding Examples

	Tristates
	About Tristates
	Tristates Implementation
	Tristates Related Constraints
	Tristates Reporting
	Tristates Coding Examples

	Counters and Accumulators
	About Counters and Accumulators
	Counters and Accumulators Implementation
	Counters and Accumulators Related Constraints
	Counters and Accumulators Reporting
	Counters and Accumulators Coding Examples

	Shift Registers
	About Shift Registers
	Describing Shift Registers
	Shift Registers Implementation
	Shift Registers SRL-Based Implementation
	Implementing Shift Registers on Block RAM
	Implementing Shift Registers on LUT RAM

	Shift Registers Related Constraints
	Shift Registers Reporting
	Shift Registers Coding Examples

	Dynamic Shift Registers
	About Dynamic Shift Registers
	Dynamic Shift Registers Related Constraints
	Dynamic Shift Registers Reporting
	Dynamic Shift Registers Coding Examples

	Multiplexers
	About Multiplexers
	Multiplexers Implementation
	Multiplexers Verilog Case Implementation Style Parameter
	Multiplexers Related Constraints
	Multiplexers Reporting
	Multiplexers Coding Examples

	Arithmetic Operators
	About Arithmetic Operators
	Arithmetic Operators Signed and Unsigned Support in XST
	About Arithmetic Operators Signed and Unsigned Support in XST
	Verilog Signed/Unsigned Support
	VHDL Signed/Unsigned Support

	Arithmetic Operators Implementation
	Arithmetic Operators Slice Logic
	Arithmetic Operators DSP Block Resources

	Comparators
	About Comparators
	Comparators Related Constraints
	Comparators Reporting
	Comparators Coding Examples

	Dividers
	About Dividers
	Dividers Related Constraints
	Dividers Reporting
	Dividers Coding Examples

	Adders, Subtractors, and Adders/Subtractors
	About Adders, Subtractors, and Adders/Subtractors
	Describing a Carry Output
	Adders, Subtractors, and Adders/Subtractors Implementation
	Adders, Subtractors, and Adders/Subtractors Related Constraints
	Adders, Subtractors, and Adders/Subtractors Reporting
	Adders, Subtractors, and Adders/Subtractors Coding Examples

	Multipliers
	About Multipliers
	Multipliers Implementation
	About Multipliers Implementation
	DSP Block Implementation
	Slice Logic Implementation
	Multiplication to a Constant

	Multipliers Related Constraints
	Multipliers Reporting
	Multipliers Coding Examples

	Multiply-Add and Multiply-Accumulate
	About Multiply-Add and Multiply-Accumulate
	Multiply-Add and Multiply-Accumulate Implementation
	Multiply-Add and Multiply-Accumulate Related Constraints
	Multiply-Add and Multiply-Accumulate Reporting
	Multiply-Add and Multiply-Accumulate Coding Examples

	Extended DSP Inferencing
	About Extended DSP Inferencing
	Symmetric Filters
	Extended DSP Inferencing Coding Examples

	Resource Sharing
	About Resource Sharing
	Resource Sharing Related Constraints
	Resource Sharing Reporting
	Resource Sharing Coding Examples

	RAMs
	About RAMs
	Distributed RAMs vs. Block RAMs
	RAMs Supported Features
	RAMs HDL Coding Guidelines
	Modelling
	Describing Write Access
	Describing Write Access in VHDL
	Describing Write Access in Verilog

	Describing Read Access
	Describing Read Access in VHDL
	Describing Read Access in Verilog

	Block RAM Read/Write Synchronization
	Re-Settable Data Outputs (Block RAM)
	Byte-Write Enable Support (Block RAM)
	Single-Process Description Style
	Two-Process Description Style

	Asymmetric Ports Support (Block RAM)
	About Port Asymmetry
	Modelling
	Shared Variable (VHDL)
	Read-Write Synchronization
	Parity Bits
	Limitations
	Reporting

	RAM Initial Contents
	Specifying Initial Contents in the HDL Source Code
	Specifying Initial Contents in an External Data File

	Block RAM Optimization Strategies
	About Block RAM Optimization Strategies
	Block RAM Performance
	Block RAM Device Utilization
	Block RAM Power
	Rules for Small RAMs
	Mapping Logic and Finite State Machine (FSM) Components to Block
	Block RAM Resource Management
	Block RAM Packing

	Distributed RAM Pipelining
	RAMs Related Constraints
	RAM Reporting
	RAMs Coding Examples

	ROMs
	About Read-Only Memory (ROM)
	ROMs Description
	ROMs Modelling
	Describing Read Access

	ROMs Implementation
	ROMs Related Constraints
	ROM Reporting
	ROMs Coding Examples

	Finite State Machine (FSM) Components
	About Finite State Machine (FSM) Components
	Finite State Machine (FSM) Description
	About Finite State Machine (FSM) Description
	State Register
	Next State Equation
	Unreachable States
	Finite State Machine (FSM) Outputs	
	Finite State Machine (FSM) Inputs	
	State Encoding Techniques
	Auto State Encoding
	One-Hot State Encoding
	Gray State Encoding
	Compact State Encoding
	Johnson State Encoding
	Sequential State Encoding
	Speed1 State Encoding
	User State Encoding

	Implementing Finite State Machine (FSM) Components on block RAM
	Finite State Machine (FSM) Safe Implementation
	Finite State Machine (FSM) Related Constraints
	Finite State Machine (FSM) Reporting
	Finite State Machine (FSM) Coding Examples

	Black Boxes
	About Black Boxes
	Black Boxes Related Constraints
	Black Boxes Reporting
	Black Boxes Coding Examples

	Chapter 8 XST FPGA Optimization
	Low Level Synthesis
	Mapping Logic to Block RAM
	Flip-Flop Implementation Guidelines
	Flip-Flop Retiming
	About Flip-Flop Retiming
	Limitations of Flip-Flop Retiming
	Controlling Flip-Flop Retiming

	Speed Optimization Under Area Constraint
	Implementation Constraints
	Xilinx Device Primitive Support
	About Device Primitive Support
	Generating Primitives Through Attributes
	Primitives and Black Boxes
	VHDL and Verilog Xilinx Device Primitives Libraries
	About VHDL and Verilog Xilinx Device Primitives Libraries
	About VHDL and Verilog Xilinx Device Primitives Libraries

	VHDL Xilinx® Device Primitives Device Libraries
	Verilog Device Primitives Device Libraries
	Primitive Instantiation Guidelines

	Specifying Primitive Properties
	Reporting of Instantiated Device Primitives
	Primitives Related Constraints
	Primitives Coding Examples

	Using the UniMacro Library
	Cores Processing
	Loading Cores
	Finding Cores
	Cores Reporting

	Mapping Logic to LUTs
	Controlling Placement on the Device
	Inserting Buffers
	Using the PCI Flow With XST
	About Using the PCI Flow With XST
	Preventing Logic and Flip-Flop Replication
	Disabling Read Cores

	Chapter 9 XST Design Constraints
	About Constraints
	Specifying Constraints
	Constraints Precedence Rules
	Synthesis Options in ISE Design Suite
	Setting XST Options in ISE Design Suite
	Setting Other XST Command Line Options
	Design Goals and Strategies

	VHDL Attributes
	Verilog-2001 Attributes
	About Verilog-2001 Attributes
	Verilog-2001 Syntax
	Verilog-2001 Limitations
	Verilog Meta Comments

	XST Constraint File (XCF)
	About the XST Constraint File (XCF)
	Native and Non-Native User Constraints File (UCF) Syntax
	Native User Constraints File (UCF) Constraints
	Non-Native User Constraints File (UCF) Constraints

	Syntax Limitations
	Timing Constraints Applicable Only Through the XST Constraint Fi

	Chapter 10 XST General Constraints
	Add I/O Buffers (–iobuf)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	BoxType (BOX_TYPE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Bus Delimiter (–bus_delimiter)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Case (–case)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Case Implementation Style (–vlgcase)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Verilog Macros (-define)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Duplication Suffix (–duplication_suffix)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Full Case (FULL_CASE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Generate RTL Schematic (–rtlview)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Generics (-generics)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Hierarchy Separator (–hierarchy_separator)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	I/O Standard (IOSTANDARD)
	Keep (KEEP)
	Keep Hierarchy (KEEP_HIERARCHY)
	Keep Hierarchy Values
	Preserving the Hierarchy
	Keep Hierarchy Diagram
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Library Search Order (–lso)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	LOC
	Netlist Hierarchy (-netlist_hierarchy)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Optimization Effort (OPT_LEVEL)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Optimization Goal (OPT_MODE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Parallel Case (PARALLEL_CASE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	RLOC
	Save (S or SAVE)
	Synthesis Constraint File (–uc)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Ignore Synthesis Constraints File (–iuc)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Verilog Include Directories (–vlgincdir)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	HDL Library Mapping File (–xsthdpini)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Work Directory (–xsthdpdir)
	Work Directory Example
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Chapter 11 XST HDL Constraints
	Automatic FSM Extraction (FSM_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Enumerated Encoding (ENUM_ENCODING)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	FSM Encoding Algorithm (FSM_ENCODING)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Mux Minimal Size (MUX_MIN_SIZE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Resource Sharing (RESOURCE_SHARING)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Safe Recovery State (SAFE_RECOVERY_STATE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Safe Implementation (SAFE_IMPLEMENTATION)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Chapter 12 XST FPGA Constraints (Non-Timing)
	Asynchronous to Synchronous (ASYNC_TO_SYNC)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Automatic BRAM Packing (AUTO_BRAM_PACKING)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	BRAM Utilization Ratio (BRAM_UTILIZATION_RATIO)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Buffer Type (BUFFER_TYPE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Extract BUFGCE (BUFGCE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Cores Search Directories (–sd)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	DSP Utilization Ratio (DSP_UTILIZATION_RATIO)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	FSM Style (FSM_STYLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Power Reduction (POWER)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Read Cores (READ_CORES)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	LUT Combining (LC)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Map Logic on BRAM (BRAM_MAP)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Max Fanout (MAX_FANOUT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Move First Stage (MOVE_FIRST_STAGE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Move Last Stage (MOVE_LAST_STAGE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Multiplier Style (MULT_STYLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Number of Global Clock Buffers (–bufg)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Optimize Instantiated Primitives (OPTIMIZE_PRIMITIVES)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Pack I/O Registers Into IOBs (IOB)
	RAM Extraction (RAM_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	RAM Style (RAM_STYLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Reduce Control Sets (REDUCE_CONTROL_SETS)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Register Balancing (REGISTER_BALANCING)
	Forward Register Balancing
	Backward Register Balancing
	Register Balancing Values
	Additional Constraints That Affect Register Balancing
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Register Duplication (REGISTER_DUPLICATION)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	ROM Extraction (ROM_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	ROM Style (ROM_STYLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Shift Register Extraction (SHREG_EXTRACT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Shift Register Minimum Size (SHREG_MIN_SIZE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Use Low Skew Lines (USELOWSKEWLINES)
	Slice (LUT-FF Pairs) Utilization Ratio (SLICE_UTILIZATION_RATIO)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Slice (LUT-FF Pairs) Utilization Ratio Delta (SLICE_UTILIZATION_
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Map Entity on a Single LUT (LUT_MAP)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Use Carry Chain (USE_CARRY_CHAIN)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Convert Tristates to Logic (TRISTATE2LOGIC)
	Convert Tristates to Logic Limitations
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Use Clock Enable (USE_CLOCK_ENABLE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Use Synchronous Set (USE_SYNC_SET)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Use Synchronous Reset (USE_SYNC_RESET)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Use DSP Block (USE_DSP48)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Chapter 13 XST Timing Constraints
	Applying Timing Constraints
	About Applying Timing Constraints
	Applying Timing Constraints Using Global Optimization Goal
	Applying Timing Constraints Using the User Constraints File (UCF
	Writing Constraints to the NGC File
	Additional Options Affecting Timing Constraint Processing

	Cross Clock Analysis (–cross_clock_analysis)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Write Timing Constraints (–write_timing_constraints)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Clock Signal (CLOCK_SIGNAL)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Global Optimization Goal (-glob_opt)
	Global Optimization Goal Domain Definitions

	XCF Timing Constraint Support
	Period (PERIOD)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Offset (OFFSET)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	From-To (FROM-TO)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Timing Name (TNM)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Timing Name on a Net (TNM_NET)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Timegroup (TIMEGRP)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Timing Ignore (TIG)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	Chapter 14 XST-Supported Third Party Constraints
	XST Equivalents to Third Party Constraints
	Third Party Constraints Syntax Examples
	Third Party Constraints Verilog Syntax Example
	Third Party Constraints XCF Syntax Examples

	Chapter 15 XST Synthesis Report
	About the XST Synthesis Report
	XST Synthesis Report Contents
	XST Synthesis Report Table of Contents
	XST Synthesis Report Synthesis Options Summary
	XST Synthesis Report HDL Parsing and Elaboration Section
	XST Synthesis Report HDL Synthesis Section
	XST Synthesis Report Advanced HDL Synthesis Section
	XST Synthesis Report Low Level Synthesis Section
	XST Synthesis Report Partition Report
	XST Synthesis Report Design Summary
	Primitive and Black Box Usage
	Device Utilization Summary
	Partition Resource Summary
	Timing Report
	Clock Information
	Asynchronous Control Signals Information
	Timing Summary
	Timing Details
	Encrypted Modules

	XST Synthesis Report Navigation
	Command Line Mode Report Navigation
	ISE Design Suite Report Navigation

	XST Synthesis Report Information
	Message Filtering
	Quiet Mode

	Silent Mode

	Chapter 16 XST Naming Conventions
	About XST Naming Conventions
	XST Naming Conventions Coding Examples
	Reg in Labelled Always Block Verilog Coding Example
	Primitive Instantiation in If-Generate Without Label Verilog Cod
	Primitive Instantiation in If-Generate With Label Verilog Coding
	Variable in Labelled Process VHDL Coding Example
	Flip-Flop Modelled With a Boolean VHDL Coding Example

	XST Net Naming Conventions
	XST Instance Naming Conventions
	XST Case Preservation
	XST Name Generation Control

