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Stable Recovery of Sparse Overcomplete
Representations in the Presence of Noise

David L. Donoho, Member, IEEE, Michael Elad, and Vladimir N. Temlyakov

Abstract—Overcomplete representations are attracting interest
in signal processing theory, particularly due to their potential to
generate sparse representations of signals. However, in general, the
problem of finding sparse representations must be unstable in the
presence of noise. This paper establishes the possibility of stable
recovery under a combination of sufficient sparsity and favorable
structure of the overcomplete system. Considering an ideal under-
lying signal that has a sufficiently sparse representation, it is as-
sumed that only a noisy version of it can be observed. Assuming
further that the overcomplete system is incoherent, it is shown that
the optimally sparse approximation to the noisy data differs from
the optimally sparse decomposition of the ideal noiseless signal by
at most a constant multiple of the noise level. As this optimal-spar-
sity method requires heavy (combinatorial) computational effort,
approximation algorithms are considered. It is shown that similar
stability is also available using the basis and the matching pursuit
algorithms. Furthermore, it is shown that these methods result in
sparse approximation of the noisy data that contains only terms
also appearing in the unique sparsest representation of the ideal
noiseless sparse signal.

Index Terms—Basis pursuit, greedy approximation, incoherent
dictionary, Kruskal rank, matching pursuit, overcomplete repre-
sentation, sparse representation, stability, stepwise regression, su-
perresolution.

I. INTRODUCTION

A. Overcomplete Representation

RESEARCHERS spanning a diverse range of viewpoints
have recently advocated the use of overcomplete signal

representations [27], [30], [1], [5], [4], [33], [37], [35]. Gen-
erally speaking, they suppose we have a signal vector ,
and a collection of vectors , with
such vectors, so that the collection forms “more than a basis”;
since [27] such collections are usually called dictionaries, and
their elements are called atoms. We want a representation for
our signal as a linear combination of atoms in this
dictionary.

Such representations differ from the more traditional basis
representation because they offer a wider range of generating
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elements; potentially, this wider range allows more flexibility in
signal representation, and more effectiveness at tasks like signal
extraction and data compression. Proposals for overcomplete
representations have included multiscale Gabor functions [27],
[30], systems defined by algebraic codes [33], amalgams of
wavelets and sinusoids [3], [4], [14], libraries of windowed
cosines with a range of different widths and locations [5],
[42], multiscale windowed ridgelets [32], systems generated at
random [11], and amalgams of wavelets and linelike generating
elements [22].

A number of interesting arguments, both heuristic and
theoretical, have been advanced to support the benefits of over-
completeness; in theoretical neuroscience it has been argued
that overcomplete representations are probably necessary for
use in biological settings in the mammalian visual system [28];
in approximation theory, there are persuasive examples where
approximation from overcomplete systems outperforms any
known basis [2]; in signal processing, it has been reported that
decomposition into separate transforms gives improved com-
pression [1], [8] and improved equalization [6]; and in image
processing, it has been shown that one can separate images into
disjoint signal types using such decompositions [31], [32], [22].

At the same time, there is an apparent obstacle to overcom-
plete representations, based on elementary linear algebra. We
can think of the atoms in our dictionary as columns in a matrix

, so that is by and . A representation of
can be thought of as a vector satisfying . How-
ever, linear algebra tells us that because , the problem of
representation is underdetermined. Hence, as is widely taught
in elementary courses, there is no unique solution to the rep-
resentation problem, and far more disturbingly, if the data are
even slightly inaccurate, some familiar algorithms will be stag-
geringly unstable. That this can be a real issue was shown by
Wohlberg [43] who considered a dictionary of sinusoids with
frequencies spaced finer than the usual discrete Fourier frequen-
cies, and documented the extreme ill-posedness that can result.

In this paper, we consider the impact of sparsity constraints
on this situation, and study algorithms which can in certain
circumstances generate sparse representations in an overcom-
plete dictionary. We derive rigorous bounds showing that, when
the dictionary has a property of mutual incoherence (defined
below), and when it offers a sufficiently sparse representation
for the ideal noiseless signal, the algorithms are locally stable,
i.e., under addition of small amounts of noise, the algorithms re-
cover the ideal sparse representation with an error that grows at
most proportionally to the noise level. Some of the algorithms
are even globally stable, i.e., they recover the ideal noiseless re-
construction with an error at worst proportional to noise level
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even under the addition of arbitrary amounts of noise. Under
sufficient sparsity the constants of proportionality are very rea-
sonable.

In short, we show that, although the problem of recovering the
underlying overcomplete representation is admittedly very ill-
posed in general, when the underlying representation is sparse,
and the dictionary is incoherent, the ill-posedness can disappear.

B. Sparse Representation

To fix ideas, consider the problem of finding the sparsest rep-
resentation possible in an overcomplete dictionary . As a mea-
sure of sparsity of a vector , we take the so-called norm

, which is simply the number of nonzero elements in .
The sparsest representation is then the solution to the optimiza-
tion problem

subject to (1.1)

As stated, this seems to be a general combinatorial opti-
mization problem, requiring that one enumerate all possible

-element collections of columns of , for ,
looking for the smallest collection permitting representation
of the signal. Such an algorithm would cost at least
flops to carry out in general, and at least even when a
sparse -element representation existed. We therefore turn to
approximations/relaxations of .

Orthogonal Greedy Algorithm. One heuristic approach
builds up -element approximate representations a step at a
time, adding to an existing -element approximation a
new term chosen in a greedy fashion to minimize the resulting

error (over all possible choices of the single additional
term). When stopped after stages, one gets a sparse
approximate representation. In more detail, the procedure starts
from an initial residual and a current decomposition

; then for it augments the decomposition
and updates the residual step-

wise, always maintaining . We suppose that the
dictionary has normalized atoms, so that each . At
the th stage, the algorithm selects an atom to be added to the
decomposition based on correlation with the current residual

it builds a decomposition consisting of the atoms selected
through that stage

(1.2)

where the coefficients are fitted by least squares to mini-
mize ; and it subtracts this model from , obtaining
a new residual

which can be input to the next stage of the algorithm. At that
point, the basic iteration is repeated. The algorithm can be

stopped when the residual norm is below some predetermined
threshold, or based on the number of atoms used.

In the setting of statistical modeling, greedy stepwise least
squares is called forward stepwise regression, and has been
widely practiced since the 1960s [7], [20]. When used in the
signal processing setting, this goes by the name of matching
pursuit (MP) [27]; actually we have described a variant called
orthogonal matching pursuit (OMP) [29]. Following [9], we
call this the orthogonal greedy algorithm (OGA).

Convex Relaxation. A more formal approach convexifies
by replacing the -norm with an -norm

subject to (1.3)

This can be cast as a linear programming (LP) problem, for
which solutions are available even in large-scale problems,
owing to modern interior-point linear programming methods.
This approach to overcomplete signal representation was called
basis-pursuit (BP) in [4], which observed that it sometimes
gave highly sparse solutions to problems known to have such
sparse solutions, and showed that it could, in specific cases,
outperform the greedy pursuit approach in generating sparse
solutions.

Formal Justification. The key point about both OGA and BP
is that they are much more practical than the direct solution of

. Perhaps surprisingly, these approaches can, with certain
conditions, correctly solve . Thus, practical methods can
solve problems that otherwise on the surface seem computa-
tionally intractable. Previous work [9], [17], [39], [38], [15],
[13], [14], [11], [19] established that both OGA and BP ap-
proaches can be successful for signals having sparse representa-
tions; under appropriate conditions on and , these algorithms
produce the globally optimal solution of . The concept of
mutual coherence of the dictionary plays a major role in these
results. It is defined, assuming that the columns of are normal-
ized to unit -norm, in terms of the Gram matrix .
With denoting entries of this matrix, the mutual coher-
ence is

(1.4)

A dictionary is incoherent if is small. There are overcom-
plete systems with and [33]. The results
in [13], [14], [11], [19] showed that, if there exists a represen-
tation with sparsity , and does not ex-
ceed a threshold defined by alone (we consider

), then a) this is the unique sparsest representation, and
b) these algorithms would find it. If, for example, ,
this result promises, for large , an ideal form of atomic decom-
position even of fairly complex objects. In such cases, provided
the object is made from atoms in the dictionary, this
sparse decomposition can be uniquely recovered.

C. Presence of Noise

In most practical situations it is not sensible to assume that
the available data obey precise equality with a sparse
representation . A more plausible scenario assumes sparse ap-
proximate representation: that there is an ideal noiseless signal
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with a sparse representation, with
small, but that we can observe only a noisy version ,
where .

Noise-Aware Variant of . We can adapt to this noisy set-
ting by modifying to include a noise allowance

subject to (1.5)

Note that . Also, if we apply this with
, the problem has a sparse solution; in fact, the solution

obeys , or more formally, since is a feasible
solution of

(1.6)

In our notations, of an optimization problem stands for its
value at the solution. Note that rarely has a unique so-
lution, since once the sparsest solution is found, many feasible
variants of it sharing the same support can be built.

Noise-Aware Variant of OGA. Just as with de-
mands exorbitant computational efforts in general, and so again
we may resort to heuristics and relaxations. On the one hand,
OGA can be employed for approximating the solution of (1.5);
the stepwise procedure can simply be stopped when the repre-
sentation error gets below .

Noise-Aware Variant of . On the other hand, we can
pursue a strategy of convexification, replacing the -norm in
(1.5) by an -norm

subject to (1.7)

This can be cast as a convex quadratic program which can
be solved by many standard approaches, including iteratively
reweighted least squares (IRLS) [23], interior-point algorithms
[4], and active-set methods. It is also closely related to basis
pursuit denoising (BPDN) [4], and to the LASSO technique
employed in statistical regression to avoid overfitting when
combining predictors [34]. Both those proposals amount to
solving a corresponding convex optimization in Lagrangian
form

(1.8)

for appropriate the solutions of and
are the same. Solving (1.8) with fixed leads to

different results—see [40] for an analysis of this option.
We note that instead of , one can use -norm with

in order to better imitate while losing convexity. This is
the spirit behind the FOCUSS method [18].

D. Stability Properties

In this paper, we develop several results exhibiting stable re-
covery of sparse representations in the presence of noise. We
now briefly sketch their statements.

First, we show that when sufficient sparsity is present, where
“sufficient” is defined relative to the degree of mutual incoher-
ence, solving enables stable recovery. We suppose that
we have a possibly overcomplete system with mutual coher-
ence . Suppose that we have a noisy signal and
that the ideal noiseless signal has a sparse representation

with at most nonzeros. We have that the noise is bounded,
. Then if , it follows that the

solution of obeys

(1.9)

with the stability coefficient .
The proportionality constant (which we also call the stability
coefficient) can be quite moderate given sufficient sparsity. In
words, provided the underlying object is sparsely represented
and the noise level is known, recovery by explicitly imposing
sparsity yields an approximation to the ideal sparse decomposi-
tion of the noiseless signal in which the error is at worst propor-
tional to the input noise level.

Next, we develop a parallel result for minimization.
Making parallel assumptions, tightened so that the ideal
noiseless signal has a sparse representation with

, we show that the solution of
obeys

(1.10)

where the stability coefficient

In words, -based reconstruction in incoherent overcomplete
systems has an error which is at worst proportional to the input
noise level. The sparsity requirement is twice as stringent for the

-based result as for the -based result.
By comparison, OGA obeys a local stability result. Again

suppose a possibly overcomplete system with , and
an ideal noiseless signal having a representation with at most

atoms. Suppose that the smallest among the nonzeros in
the representation of has amplitude . Assume that we know
the noise level and run the OGA just until the
representation error . Call the result of this greedy algorithm

. Set

Then if the noise is sufficiently weak

(1.11)

the recovered representation obeys

(1.12)

This is a local stability result because for large values of
the condition (1.11) will necessarily fail.

Note the parallel nature of the bounds and the conclusions.
Three quite different algorithms all obey stability results in
which having a fraction of is the key assumption.

E. Support Properties

A different fundamental question about efforts to obtain
sparse representation is: do we actually recover the correct
sparsity pattern? Our stability results do not address this ques-
tion, since it is possible for a nonsparse representation to be
close to a sparse representation in an sense.

The question is fundamental and broadly significant.
Throughout science and technology, it is habitual to fit sparse
models to noisy data, and then simply assume that terms
appearing in such fitted models are dependable features.
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In this paper, we are able to shed some light on this situation.
Our results show that, under appropriate conditions, the empir-
ical representation is not only at least as sparse as the ideal
sparse representation but it only contains atoms also appearing
in the ideal sparse representation. Since that ideal sparse repre-
sentation is, by our other results, unique and well-defined, these
insights endow the empirical support of with a, perhaps sur-
prising, significance.

Our first result concerns solution of with
Here, , and so we are solving the min-
imization problem using an exaggeration of the noise level. It
shows, with and , that the solu-
tion has its support contained in the support of . Here

for for high
values of , so ordinarily it requires considerable overstatement
of the noise level to achieve this level of conservatism. However,
it does provide the very interesting epistemological benefit that
the atoms appearing in the representation have more than inci-
dental meaning.

Our second result is obtained in the course of analyzing OGA;
it shows that, under condition (1.11) and , the ideal
noiseless representation is unique, and the support of is
contained in the support of .

F. Contents

The next sections supply the analysis behind the stability
bounds just quoted, and a discussion of support properties. The
final section extends this work in various directions.

• Numerical Results. We study the actual stability and sup-
port recovery behavior of the and OGA on synthetic ex-
amples, finding typical behavior far more favorable than
our theoretical bounds.

• Superresolution. We situate our work with respect to the
problem of superresolution, in which astronomers, seis-
mologists, spectroscopists, and others attempt to “deblur”
sparse spike trains.

• Geometry. We develop a geometric viewpoint explaining
why stability can sometimes be expected for the penal-
ization scheme, under conditions of sufficient sparsity.

We have recently learned that in parallel to our efforts, there
are two similar contributions, handling stability and support re-
covery for the basis pursuit. J. A. Tropp has been working in-
dependently on some of the same problems [40], and so has J.
J. Fuchs [16]. After some recent discussions with these authors
and a careful study of these works we find that their methods
and results have a rather different flavor, ensuring that the three
separate works are of interest in studying sparse approximation
under noise.

II. STABILITY USING

Suppose again the existence of an ideal noiseless signal
and noisy observations with .

Consider applying with to obtain a sparse approx-
imation to . The following establishes the stability estimate
mentioned in the introduction.

Theorem 2.1: Let the dictionary have mutual coherence
. Suppose the noiseless signal , where

satisfies

(2.1)

Then

a) is the unique sparsest such representation of ; and
b) the reconstruction from applying to the noisy

data approximates

(2.2)

Claim a) actually follows from known results; e.g., see [13],
[14] for the two-ortho case, and [11], [19] for general dictio-
naries. Claim b) requires the following.

Lemma 2.2: Let , and let . Every
submatrix formed by concatenating columns from

has the th singular value bounded below by
.

Proof: This is equivalent to the claim that

(2.3)

where is the concatenation of columns from and is
any vector in . Assume without loss of generality these are
the first columns. Let be the corresponding Gram
matrix, and write

(2.4)

Now

Using this inequality in the identity (2.4) gives (2.3).

Apply this to , with , and we have

Also, note that, if , then is a linear combination of
at most columns of . Thus, can be written as a
linear combination of at most columns from . Applying
Lemma 2.2, or, more properly, the inequality (2.3), gives the
result.

III. STABILITY USING

As in the Introduction, we are given a signal ,
where is an additive noise, known to satisfy . We
apply to this signal (necessarily with ); i.e., we
solve (1.7) and obtain a solution . We study its deviation
from the ideal representation .
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A. Stability Result

Theorem 3.1: Let the overcomplete system have mutual
coherence . If some representation of the noiseless signal

satisfies

(3.1)

then the deviation of the representation from , as-
suming , can be bounded by

(3.2)

Proof: The stability bound can be posed as the solution to
an optimization problem of the form

subject to

subject to
(3.3)

Put in words, we consider all representation vectors of
bounded support, and all possible realizations of bounded
noise, and we ask for the largest error between the ideal sparse
decomposition and its reconstruction from noisy data. Defining

, and similarly , we can rewrite the
above problem as

subject to

subject to

(3.4)

We develop an upper bound on (3.4) in a sequence of re-
laxations, each one expanding the feasible set and increasing
the maximal value. To begin, note that if is the minimizer of

under these constraints, then relaxing the constraints
to all satisfying expands the feasible set.
However, this is true only if since otherwise is not
a feasible solution. Thus, we consider

(3.5)

We now expand this set by exploiting the relation

where is the support of the nonzeros in with complement
, and we used . Therefore,

we get a further increase in value by replacing the feasible set
in (3.5) with

#
(3.6)

Writing this out yields a new optimization problem with still
larger value

subject to

#
(3.7)

We next simplify our analysis by eliminating the noise vector ,
using

(3.8)
Expanding the feasible set of (3.7) using this observation gives

subject to
#

(3.9)
where we introduced .

The constraint is not posed in terms of the abso-
lute values in the vector , complicating the analysis; we now
relax this constraint using incoherence of . Again, the Gram
matrix is , and the mutual coherence is the maximal
off-diagonal amplitude: . For a vector

, let be vector containing absolute values from ; simi-
larly for matrices. Also, let be the the -by- matrix of all
ones. The constraint

can be relaxed

(3.10)

Using this, (3.9) is bounded above by the value

subject to
#

(3.11)
This problem is invariant under permutations of the entries in

which preserve membership in and . It is also invariant
under relabeling of coordinates. So assume that all nonzeros in

are concentrated in the initial slots of the vector, i.e., that
.

Putting where gives the first entries in
, and the remaining entries of , we obviously have

(3.12)

The norm on dominates the norm and is dominated by
times the norm. Thus,

(3.13)

We define

(3.14)

Returning to the problem given in (3.11), and using our
notations, we obtain a further reduction, from an opti-
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mization problem on to an optimization problem on

subject to

(3.15)

We further define , where and rewrite (3.15)
as

subject to

(3.16)

Define . Then over the
region (3.16). Setting , the first constraint
defining that region takes the form

(3.17)

Since , the sparsity requirement (3.1) leads to

(3.18)

Hence,

(3.19)

as stated by (3.2) with the choice .
The requirement (3.18) puts a restriction on and , being

free parameters of the problem. Using leads to the
sparsity requirement in (3.1), since .

B. Interpretation and Comments

Theorem 3.1 prompts several remarks.

• Setting puts us in the noiseless case
. In that setting, Theorem 3.1 tells us that if

, there will be zero error in finding the
unique sparsest representation—i.e., solving the opti-
mization problem solves the problem .
As the problem is convex and the problem combi-
natorial in general, this is by itself significant. The same
general phenomenon described has been observed before
in [13], [14], [11], [19]. The sharpest results, in [11], [19],
established that this phenomenon occurs for any sparsity

smaller than , which means that the new
result is slack by a factor of in the case. Perhaps
a tighter inequality could be achieved with more care.

• If the signal is not noisy (i.e., ) but nevertheless
is employed with , an approximate solution is

assured, with a bound on the deviation of the approximate
representation from the ideal noiseless representation. So
in “needlessly” going from to we tolerate
errors in the decomposition, but the errors are controlled.

• In practice, if the signal is noisy (i.e., ) and we set
as if there were no noise, some degree of stability

is still obtained! However, our results do not cover this
case, and further work is required to establish this kind of
stability.

IV. SUPPORT RECOVERY WITH

So far, we have concentrated on the recovery of . We now
consider whether we can correctly recover the support of .
Our approach applies with a specially chosen .

Theorem 4.1: Suppose that where
and . Let and suppose

. Set

(4.1)

Solve with exaggerated noise level . Then
.

As an example, if , exaggerating the noise level by a
factor leads to partial support recovery. This pro-
nounced inflation of the noise level might cause (in an extreme
case) a zero solution. Still, from the following proof it seems
that dependence is intrinsic to the problem.

Proof: For later use, we let be the smallest th
singular value of any submatrix of containing columns
from . By our assumptions and Lemma 2.2

(4.2)

We need notation for the convex functional and
for the quadratic functional .

Now let be the support of the ideal noiseless representation
, and consider the support-constrained optimization problem

where feasible vectors must be supported in . Let
be a solution of this problem. We claim that, in fact, is ac-

tually the solution of the support-unconstrained problem ,
i.e., . Observe, first of all, that unless , there is
nothing to prove. Now consider perturbations of i.e., rep-
resentations of the form , for small. We will
show that a perturbation which does not increase the objec-
tive, definitely violates the constraint. Formally

for all sufficiently small (4.3)

implies

for all sufficiently small (4.4)

It follows that is locally optimal for . By convexity,
this local condition implies global optimality; and global opti-
mality implies that the solution has support as claimed.

We now note that, for

(4.5)

where and , while for
sufficiently small positive

(4.6)
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where for , and otherwise, and we
used the identity , valid for . Let

and denote the terms of order in (4.5) and (4.7);
we plan to show that

(4.7)

this will show that (4.3) implies (4.4).
We first work out the consequence of solving .

Since , there is a nonempty subspace of vectors sup-
ported in ; (4.5) and (4.7) show that and are both dif-
ferentiable at . The fact that solves the constrained op-
timization problem , implies (by classical constrained
optimization/Lagrange multiplier ideas) that for some

at

This implies that for vectors supported in we must have
, or

(4.8)

We introduce the notation for inner product in
for inner product restricted to coordinates in , and for
inner product restricted to coordinates in . We introduce the
notation for the norm restricted to , etc. To illus-
trate the notation, we have that, if is a vector supported in

. Then (4.8) says that, for all

(4.9)

We now show that is the unique global optimum of
—i.e., the original problem, without the support con-

straint. We write

then from (4.9)

while

Hence, implies and also

Hence, (4.7) follows from

(4.10)

Later we will show that

(4.11)

Thus, (4.10) follows from

(4.12)

Recalling (4.9), and choosing , shows that

Using and the definition (4.2) of

and so

(4.13)

In short, for (4.12) and hence (4.10) to follow, we should re-
quire

(4.14)

which can be rearranged to

(4.15)

This holds because our definition of makes this an equality.
It only remains to demonstrate (4.11). Write ,

where is the component of not in the span of ,
which has norm , while is the component of in the span
of the , with norm . Hence,

and

(4.16)

where are entries of the Gram matrix
(known to be in the range ) and is the submatrix of

with columns from only. The definition of yields

and since , (4.16) gives

giving (4.11).

V. LOCAL STABILITY OF THE OGA

Observe that both and refer to global optimiza-
tion problems, while the OGA described in the Introduction is
based on greedy stagewise approximation. Paralleling this dis-
tinction, the stability result we now develop for OGA is a local
one, valid only for sufficiently small , depending on
the representation coefficients.

For ease of exposition, we shall hereafter assume that the
order of the columns in the overcomplete system
matrix has been chosen so that in the ideal noiseless signal

, the first entries in are the nonzero entries, and
that these are ordered

(5.1)
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Theorem 5.1: Suppose the ideal noiseless signal has a
representation satisfying1

(5.2)

Denote by the result of greedy stepwise least-squares
fitting applied on the noisy signal , which stops as soon as the
representation error . Then

a) has the correct sparsity pattern

(5.3)

b) approximates the ideal noiseless representa-
tion

(5.4)

Note that the argument assumes the noise level is known,
to enable the stopping rule in the algorithm. This parallels the
assumption , which we relaxed in Theorems 2.1 and 3.1
by using .

The general idea—that the support properties of and
are the same—seems worthy of its own study. In the

Technical Report [12] on which this paper is based, we call this
the trapping property, and develop it further.

We break our analysis in two stages, considering claims (5.3)
and (5.4) in turn.

A. Getting the “Correct” Support

Lemma 5.2: Suppose that we have a signal satisfying
where admits sparse synthesis using at

most atoms, where

(5.5)

and where . Then the first step of the greedy algorithm
selects an atom index from among the nonzeros in .

Proof: The greedy algorithm operates by projecting onto
each atom in turn, selecting an atom index where the projec-
tion magnitude is largest. The lemma will follow from

(5.6)

We now develop a lower bound on the left-hand side and an
upper bound on the right-hand side which guarantees this. As-
suming that the largest amplitude entry in occurs in slot ,
the left-hand side of (5.6) is bounded below by

(5.7)

1This inequality is equivalent to the one posed in (1.11).

We used for all for
and the ordering of the . The right-hand side of (5.6) can
be bounded above by the same approach, leading to, for

(5.8)

Imposing (5.5) and using the two bounds (5.7) and (5.8), we see
that

(5.9)

Relation (5.6) follows; the greedy algorithm therefore chooses
at Stage 1 one of the nonzeros in the ideal representation of the
noiseless signal.

To continue to later stages, we need the following.

Lemma 5.3: Let and with
. Let be a set of indices in being

the number of columns in . Let be a vector of coefficients
with nonzeros located at the indices in . Define a new signal

by subtracting atoms with nonzero coefficients in

Similarly, define

Then

• if , where has a
unique sparsest representation made of at most

atoms; these are all atoms originally appearing in the
representation of ;

• the new signal can be viewed as a superposition of
and noise , with noise level .

Proof: Define the vector

Then clearly . Also, . Since
then

we conclude that is the unique sparsest representation of .
Moreover

Hence we have established the two claims.

The impact of the preceding two lemmas is that selection of
a term, followed by the formation of the residual signal, leads
us to a situation like before, where the ideal noiseless signal has
no more atoms than before, and the noise level is the same.
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We wish to repeatedly apply these lemmas. Starting with
, we will get an and an ; we then hope to apply the

observations again, getting and , etc. If we are allowed
to continue invoking these lemmas for steps, we produce in
this way series , and . Naturally, the sets

are nested.
Note, however, that a series of conditions must be satisfied

for the repeated use of the first lemma. At the th iteration, we
need the following analog of (5.5):

(5.10)

This will follow from our original assumption (5.2) and the fact
that if differs from in at most places, and is ordered
as in (5.1), then

The above, along with the ordering assumption on the coeffi-
cients in , show that for , and
so the sequence of conditions (5.10) is implied by the final one
at , which is a consequence of (5.2). Hence, assumption
(5.2) allows us to repeatedly apply Lemmas 5.2 and 5.3, and
conclude that atom indices selected at stages obey

: only correct atoms are selected.
In fact, we can say much more. The coefficient sequence

generated at stage solves the least-squares problem

(5.11)

This ensures that the signal is actually orthogonal to each
atom selected at stages . Hence, OGA is forced to select
from among the atom indices in always one of the
previously unselected ones. It therefore by stage selects all
atom indices in . Now by assumption, the residual at
that stage has norm . Hence, the stopping criterion must
be reached by stage . At the same time, by inspecting (5.9) we
see that at stages , each selected term . This
implies that the stopping criterion cannot be met before stage

, as . Thus, we have proved the
following.

Lemma 5.4: OGA stops after precisely steps.

This, in turn, proves Claim a) of the theorem, (5.3).

B. Stability Result

Now we turn to Claim b) of Theorem 5.1. We may partition
, where denotes the first columns in and

the remainder. The OGA solves (5.11) with ,
or

(5.12)

where denotes the Moore–Penrose generalized inverse of
. Recall that the signal has a representation with

. Thus, using the formula above we have

(5.13)

We may partition where contains the first
entries of , and similarly . We obtain

(5.14)

The vector represents reconstruction error, and we have
the error bound

(5.15)

where we bounded the norm of in terms , the smallest
singular value of . Lemma 2.2 gives .
Expression (5.4) follows.

C. Relation to -Term Approximation

There has recently been a great deal of interest in the greedy
algorithm as a method to generate near-best -term approxi-
mations. Relevant literature includes [17], [35], [36], [38], [39].
The questions asked in this literature concern the quality of

-term approximations , where , to
approximate a general object . More specifically, let
be the -term approximation to a vector by the orthogonal
greedy algorithm run through steps, and be the optimal

-term approximation, obtained by

The central question is to compare the approximation errors of
the two approaches

In this direction, the first result was provided by Gilbert et al.
[17]

This was then improved by Tropp to [39]

These results show that, at least in its initial stages, the greedy
algorithm performs quite well compared to the optimal algo-
rithm.

The results we developed in this section have only indirect
connection to this problem. Note that all our estimates concern
errors such as on the representation scale, rather
than errors such as , that are measured on the re-
construction scale. Nevertheless, in an incoherent dictionary, the
two are connected for small . It follows that the ideas in this
paper are very similar to ideas underlying the -term approxi-
mation results cited above.

VI. EXCESSIVE PESSIMISM?

The conditions for stability developed here are unduly restric-
tive. We used worst case reasoning exclusively, deriving condi-
tions which must apply to every dictionary, every sparse repre-
sentation, and every bounded noise vector. The bounds we have
proven are consequently very loose and do not describe typical
behavior; the sparsity conditions we have posed are much too
strict. To illustrate this, we conducted numerous experiments to
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Fig. 1. ` method, � = �: Representation error k� � �̂ k versus noise
level �. Solid lines depict the bound from Theorem 3.1. Different panels display
results with support sizes N = 1; 2; 3.

study the stability of various algorithms in concrete cases. We
present several representative results in this section.

We worked with a dictionary , concatenating two
orthonormal bases—the standard and Hadamard bases for sig-
nals of length each, yielding . We used
randomly generated ideal representations satisfying the con-
ditions of Theorem 3.1; since , we use

. The nonzero entries of were located in
uniform random positions, and the values of those entries were
drawn from a normal distribution with zero mean and unit vari-
ance. The ideal noiseless signal was normalized to
have a unit -norm, so as to guarantee fixed signal-to-noise
ratio (SNR) in our experiments. The signal was contami-
nated with zero-mean white Gaussian noise , rescaled to en-
force a specified noise level , obtaining .
The noise power values tested are . We
performed 1000 trials at each combination of and —all to-
gether, 30 000 such realizations were generated, and to each we
applied both and OGA.

A. Experiments With Penalization

We solved numerically; thus, we assume the noise
level is known and this knowledge is exploited in the recovery
process. We used the IRLS algorithm [23] with a line search for
the proper Lagrange multiplier. For each trial we calculated i)
the representation error , for comparison to the-
oretical bounds; ii) the denoising effect , for
comparison to the input noise power; and iii) the support match,
measured as the relative energy in on the true support of .
This measure is robust against disagreements over the definition
of “zero” entries in a numerical solution.

Fig. 1 presents the representation error results. For every
value, the results are presented by plotting the tenths (11 points,
starting from the minimum, and jumping by 100 sorted experi-
ments’ result, till the maximum). The results show a consistent
stability with linearly growing error as a function of the noise
level. The bounds of Theorem 3.1 are shown as solid lines, and
the input noise amplitude is indicated by a dotted line. As ex-
pected, there is a large gap between the bound and the actual
results. Accumulated marks near the axis imply that most of the
experiments show stronger stability.

Fig. 2. ` method, � = �: Signal error k���� �����̂ k as a function of the
noise level �. Dotted lines indicate input noise level.

Fig. 3. ` method, � = �: Support recovery success in percent.

Fig. 2 presents the signal error results, showing the effect of
denoising achieved. The results, organized similar to the ones in
Fig. 1, show a very effective denoising.

Fig. 3 presents results on support recovery. The vertical axes
describe the range [75, 100]%. As can be seen, has nearly
perfect success in recovering the support. Our tests probe the
region beyond the range covered by Theorem 4.1. We have used

, rather than , and for
, respectively.

B. Experiments With Greedy Optimization

We now compare reconstruction errors for OGA with the
above results, and with the bounds in Theorem 5.1 (inequality
(5.4)). Paralleling the experiment for with , we dis-
play theoretical bounds and empirical errors in Fig. 4. Evidently,
OGA behaves stably with results somewhat weaker than those
obtained by the penalization. Again, the upper bounds pro-
vided in Theorem 5.1 are seen to be exactly that—overestimates
of the reconstruction error. Note that in this experiment we have
used , totally disregarding the condition as posed in
(5.2), tying the allowed sparsity to the coefficients’ amplitude.
Yet, the results show stability.

Fig. 5 shows the denoising effect, and as can be seen, the
results resemble those found in the representation errors. Fig. 6
presents the support recovery success rates. Those are weaker
than in the case; as the noise strengthens, we violate the
condition (5.2), and eventually see breakdown in the support
recovery.
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Fig. 4. OGA: Representation error k� � �̂ k versus noise level �. Solid
lines depict bounds in Theorem 5.1.

Fig. 5. OGA: Signal error k���� �����̂ k versus noise level �. Dotted lines
depict input noise level. Different panels display results for support sizes N =
1; 2; 3.

Fig. 6. OGA: Support recovery success in percent.

C. Geometric Heuristics

As indicated above, our very general reasoning is to blame
for the looseness of our theoretical bounds; by developing
bounds valid for a wide range of dictionaries and a wide range
of sparsely represented signals, we are forced to consider the
behavior for the worst possible combination of dictionary,
signal, and noise.

We might get tighter results, by developing tools adapted to
each specific combination. Unfortunately, the closer we
get to case-by-case analysis, the more difficult it becomes to get
an intellectually digestible overview of the situation. At least for

minimization, it seems clear to the authors that, even at values

Fig. 7. Geometry favorable to unique ` decomposition. Intersection of A
with B (R ) in a unique point. This point is the unique solution �̂ .

far greater than those covered in Theorem 3.1 the following
will generally be true.

• A sparse vector generating will be the
unique solution of and

• the solution of based on noisy data with
noise level will stably recover .

It is less clear to us that we can expect the solution to the
problem to agree with the solution to the problem with the
same degree of generality.

Some insight may be gleaned by considering the geometry
of minimal decomposition; see Fig. 7 below. The minimal

decomposition in an overcomplete system is the point in the
subspace having the smallest norm.
Denote this norm by . Alternatively, if we con-
sider the collection of balls in

, it is the “first point in ” to “meet” the family of balls
as grows from to . When this meeting occurs, if it is in
a unique point, then the decomposition is unique. Now note
that if has few nonzeros, then it sits in a low-dimensional
face of . Denote by the smallest dimensional face
of containing in its interior.

Fig. 7 shows clearly a situation where is transversal to
—the two subspaces meet nicely in a single point. More

than this: all the faces of touching intersect
tranversally. Now the cleanness of these intersections imply that

is the unique minimizer in .
A key observation is that the faces of the ball run

through a finite list of specific orientations. If we take a generic
, there would never be a fortuitous alignment of any subspace

with any of the low-dimensional faces of ; hence,
transversal intersections should be generic, and we can expect
to have unique minimizers except when and
demand nonuniqueness.

What about stability? A geometric explanation of stability for
is illustrated in Fig. 8. Because of

must belong to the cone with vertex at consisting of all
points such that for small .
On the other hand, because of must



DONOHO et al.: STABLE RECOVERY OF SPARSE OVERCOMPLETE REPRESENTATIONS IN THE PRESENCE OF NOISE 17

Fig. 8. Geometry favorable to stable ` decomposition. Intersection ofA
with B (R ) in a tubular wedge. �̂ must lie in wedge. Small size of the
wedge indicates stability.

belong to the cylinder consisting of all vectors obeying
. In short, for a cone and a cylinder

, we have

Roughly speaking, the size of this intersection is controlled by
the angle between and . That this angle can be positive
we know already; because that is the content of the transversality
we have already discussed.

There is an analytical framework to quantify the above
heuristic notions. There is a stability estimate adapted to a
specific pair

where

Equivalently

where denotes the tangent cone to at , i.e., the col-
lection of vectors such that for all sufficiently
small .

This last display makes the point that we are trying to op-
timize a ratio of quadratic forms subject to membership in a
cone. This makes us say that is akin to the secant of the angle
between and . Unfortunately, to our knowledge, the
problem of finding the angle between a cone and a subspace
does not have a convenient computational solution. Hence, al-
though the bound depends intimately on and , we know of
no way to easily compute this dependence at the moment.

D. Domain of Applicability

An apparent application of the results of this paper concerns
the problem of resolving a spectrum at a resolution finer than the

usual Rayleigh spacing. As a simple model, we could consider
the complex-valued dictionary with atoms

Here , an integer is the superresolution factor, and the im-
plicit constant of proportionality is chosen to enforce the nor-
malization . In this overcomplete system, the fre-
quencies are spaced apart, which is times as closely as
the usual spacing of the Fourier frequencies, hence, the term
superresolution. If we simply chose , we would have an
orthogonal dictionary. If we choose , we get an overcom-
plete system with . It would be very attractive to be able
to solve this problem, getting finer frequency resolution out of
a given signal length. However, Wohlberg [43] showed that in
general this problem will lead to extreme ill-posedness, even
under sparsity constraints.

We remark that, while superresolution is an attractive and im-
portant problem, this is not the setting we envisioned for ap-
plying our results. In the superresolving case, with , the
dictionary has mutual coherence , which
tends to as increases. This is quite large, and the dic-
tionary is coherent rather than incoherent. It yields the sparsity
threshold which allows to disentangle at
most two atoms, at any !

The kind of situation we have in mind for applying our results
is quite different; we are interested in cases where the mutual
incoherence is comparable, for large , to some power , so
that, at least for large , there is the potential to disentangle
fairly complex superpositions of many atoms. Previous work
has given several examples of this type of situation: random
dictionaries [11], Grassmannian frames [33], and dictionaries
for voxel data made of digital points, lines, and planes
[11].

For those interested in supperresolution, we remark that, in
our opinion, the analysis in [43] adopts a framework which is
unduly pessimistic. The careful theoretical work on superreso-
lution [10] explains that stable superresolution is possible using
sparsity; however, the notion of sparsity needs to be adapted to
the setting. Specifically, it becomes important to define sparsity
in terms of “number of nonzeros per Rayleigh interval” rather
than simply “number of nonzeros.” When this definitional con-
vention is adopted, it is possible to prove that sufficient sparsity
again enables superresolution, in agreement with a considerable
body of empirical work, also cited in [10].
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