AC Circuit Analysis

Module: SE1EA5 Systems and Circuits
Lecturer: James Grimbleby
URL: http://www.personal.rdg.ac.uk/~stsgrimb/
email: j.b.grimbleby@reading.ac.uk
Number of Lectures: 10
Recommended text book:
David Irwin and Mark Nelms
Basic Engineering Circuit Analysis (8th edition) John Wiley and Sons (2005) ISBN: 0-471-66158-9

AC Circuit Analysis

Recommended text book:
David Irwin and Mark Nelms Basic Engineering Circuit Analysis (8th edition)
Paperback 816 pages John Wiley and Sons (2005) ISBN: 0-471-66158-9

Price: £36

AC Circuit Analysis Syllabus

This course of lectures will extend dc circuit analysis to deal with ac circuits

The topics that will be covered include:
AC voltages and currents
Complex representation of sinusoids
Phasors
Complex impedances of inductors and capacitors
Driving-point impedance
Frequency response of circuits - Bode plots
Power in ac circuits
Energy storage in capacitors and inductors
Three-phase power

AC Circuit Analysis Prerequities

You should be familiar with the following topics:
SE1EA5: Electronic Circuits
Ohm's Law
Series and parallel resistances
Voltage and current sources
Circuit analysis using Kirchhoff's Laws
Thévenin and Norton's theorems
The Superposition Theorem

SE1EC5: Engineering Mathematics

Complex numbers

AC Circuit Analysis

Lecture 1

AC Voltages and Currents Reactive Components

AC Waveforms

Sine waveform (sinusoid)

Square waveform

Sawtooth waveform

Audio waveform

The number of cycles per second of an ac waveform is known as the frequency f, and is expressed in Hertz (Hz)

Voltage or

Frequency

Examples:
Electrocardiogram: 1 Hz
Mains power: 50 Hz
Aircraft power: 400 Hz
Audio frequencies: 20 Hz to 20 kHz
AM radio broadcasting: $0.5 \mathrm{MHz}-1.5 \mathrm{MHz}$
FM radio broadcasting: $80 \mathrm{MHz}-110 \mathrm{MHz}$
Television broadcasting: $500 \mathrm{MHz}-800 \mathrm{MHz}$
Mobile telephones: 1.8 GHz

The period T of an ac waveform is the time taken for a complete cycle:

$$
\text { period }=\frac{1}{\text { frequency }}
$$

Voltage or

Why Linear?

We shall consider the steady-state response of linear ac circuits to sinusoidal inputs

Linear circuits contain linear components such as resistors, capacitors and inductors

A linear component has the property that doubling the voltage across it doubles the current through it

Most circuits for processing signals are linear

Analysis of non-linear circuits is difficult and normally requires the use of a computer.

Why Steady-State?

Steady-state means that the input waveform has been present long enough for any transients to die away

Why Sinusoidal?

A linear circuit will not change the waveform or frequency of a sinusoidal input (the amplitude and phase may be altered)

Power is generated as a sinusoid by rotating electrical machinery

Sinusoidal carrier waves are modulated to transmit information (radio broadcasts)

Any periodic waveform can be considered to be the sum of a fundamental pure sinusoid plus harmonics (Fourier Analysis)

Fourier Analysis

A square waveform can be considered to consist of a fundamental sinusoid together with odd harmonic sinusoids

Representation of Sinusoids

A sinusoidal voltage waveform $v(t)$ of amplitude v_{0}, and of frequency f :

$$
\begin{array}{ll}
& v(t)=v_{0} \sin 2 \pi f t=v_{0} \sin \omega t \\
\text { or: } & v(t)=v_{0} \cos 2 \pi f t=v_{0} \cos \omega t
\end{array}
$$

where $\omega=2 \pi f$ is known as the angular frequency

Representation of Sinusoids

The sinusoid can have a phase term φ :

$$
v(t)=v_{0} \sin (\omega t+\varphi)
$$

A phase shift φ is equivalent to a time shift $-\varphi / \omega$

The phase is positive so the red trace leads the green trace

Resistors

Film: carbon metal metal oxide

Resistance R

$$
v=R i
$$

(Ohm's Law)

Resistors

Resistors

R
Ohm's Law: $\quad v=R i$
Suppose that:

$$
v(t)=v_{0} \sin (\omega t)
$$

Then:

$$
\begin{aligned}
i(t) & =\frac{v(t)}{R} \\
& =\frac{v_{0}}{R} \sin (\omega t)
\end{aligned}
$$

Current in phase with voltage

Capacitors

Dielectrics: air
polymer ceramic
$\mathrm{Al}_{2} \mathrm{O}_{3}$ (electrolytic)

Capacitance C

$$
q=C v \quad i=C \frac{d v}{d t}
$$

Capacitors

James Grimbleby
School of Systems Engineering - Electronic Engineering
Slide 21

Capacitors

$$
i=C \frac{d v}{d t}
$$

Suppose that:

$$
i, v
$$

$$
v(t)=v_{0} \sin (\omega t)
$$

Then:

$$
\begin{aligned}
i(t) & =C \frac{d}{d t} v_{0} \sin (\omega t) \\
& =\omega C v_{0} \cos (\omega t) \\
& =\omega C v_{0} \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

Current leads voltage by $\pi / 2\left(90^{\circ}\right)$

Capacitors

Does a capacitor have a "resistance"?

Thus "resistance" varies between $\pm \infty$: not a useful concept

Capacitors

The reactance X_{C} of a capacitor is defined:

$$
X_{C}=\frac{v_{0}}{i_{0}}
$$

where v_{0} is the amplitude of the voltage across the capacitor and i_{0} is the amplitude of the current flowing through it

Thus:

$$
x_{C}=\frac{v_{0}}{\omega C v_{0}}=\frac{1}{\omega C}=\frac{1}{2 \pi f C}
$$

The reactance of a capacitor is inversely proportional to its value and to frequency

Core: air
ferrite
iron
silicon steel

Inductance L

$$
v=L \frac{d i}{d t}
$$

Inductors

James Grimbleby
School of Systems Engineering - Electronic Engineering

$$
v=L \frac{d i}{d t}
$$

Suppose that:

$$
v(t)=v_{0} \sin (\omega t)
$$

Then:

$$
\begin{aligned}
i(t) & =\frac{1}{L} \int v_{0} \sin (\omega t) \\
& =\frac{-v_{0}}{\omega L} \cos (\omega t) \\
& =\frac{v_{0}}{\omega L} \sin \left(\omega t-\frac{\pi}{2}\right)
\end{aligned}
$$

$$
i, v
$$

Current lags voltage by $\pi / 2\left(90^{\circ}\right)$

Inductors

The reactance X_{C} of an inductor is defined:

$$
X_{C}=\frac{v_{0}}{i_{0}}
$$

where v_{0} is the amplitude of the voltage across the inductor and i_{0} is the amplitude of the current flowing through it

Thus:

$$
X_{c}=\frac{v_{0}}{v_{0} / \omega L}=\omega L=2 \pi f L
$$

The reactance of an inductor is directly proportional to its value and to frequency

Resistance and Reactance

	$X=\frac{v_{0}}{i_{0}}$	$f \rightarrow 0$	$f \rightarrow \infty$
Resistance R	R	R	R
Capacitance C	$\frac{1}{\omega C}$	open circuit	short circuit
Inductance L	ωL	short circuit	open circuit

AC Circuit Analysis

Lecture 2

AC Analysis using Differential Equations Complex Numbers Complex Exponential Voltages and Currents

AC Circuit Analysis

The ac response of a circuit is determined by a differential equation:

$$
\begin{aligned}
v_{i n}(t) & =R i(t)+v_{c}(t) \\
i(t) & =C \frac{d v_{C}(t)}{d t} \\
v_{i n}(t) & =R C \frac{d v_{C}(t)}{d t}+v_{c}(t)
\end{aligned}
$$

$$
\frac{d v_{C}(t)}{d t}+\frac{v_{C}(t)}{R C}=\frac{v_{i n}(t)}{R C}
$$

AC Circuit Analysis

Now suppose that the input voltage $v_{i n}$ is a sinusoid of angular frequency ω

The output voltage v_{c} will be a sinusoid of the same freqeuncy, but with different amplitude and phase:

$$
\begin{aligned}
& v_{i n}(t)=v_{0} \cos (\omega t) \\
& v_{c}(t)=v_{1} \cos (\omega t+\varphi)
\end{aligned}
$$

Expanding the expression for v_{c} :

$$
\begin{aligned}
& v_{c}(t)=v_{1} \cos \omega t \cos \varphi-v_{1} \sin \omega t \sin \varphi=A \cos \omega t+B \sin \omega t \\
& \frac{d v_{c}(t)}{d t}=-A \omega \sin \omega t+B \omega \cos \omega t
\end{aligned}
$$

AC Circuit Analysis

The differential equation becomes:

$$
-A \omega \sin \omega t+B \omega \cos \omega t+\frac{A}{R C} \cos \omega t+\frac{B}{R C} \sin \omega t=\frac{v_{0}}{R C} \cos \omega t
$$

Comparing the coefficients of $\sin \omega t$ and $\cos \omega t$ on both sides of the equation:

$$
\begin{aligned}
-A \omega R C+B & =0 \\
B \omega R C+A & =v_{0}
\end{aligned}
$$

Solving these simultaneous linear equations in A and B :

$$
A=\frac{v_{0}}{1+\omega^{2} R^{2} C^{2}} \quad B=\frac{\omega R C v_{0}}{1+\omega^{2} R^{2} C^{2}}
$$

AC Circuit Analysis

$$
A=v_{1} \cos \varphi=\frac{v_{0}}{1+\omega^{2} R^{2} C^{2}} \quad B=-v_{1} \sin \varphi=\frac{\omega R C v_{0}}{1+\omega^{2} R^{2} C^{2}}
$$

Thus:

$$
v_{1}=v_{0} \sqrt{\frac{1}{1+\omega^{2} R^{2} C^{2}}} \quad \tan \varphi=-\omega R C
$$

At an angular frequency $\omega=1 / R C$:

$$
\begin{aligned}
& v_{1}=\frac{v_{0}}{\sqrt{2}} \quad \varphi=-\frac{\pi}{4} \\
& v_{c}(t)=\frac{v_{0}}{\sqrt{2}} \cos \left(\omega t-\frac{\pi}{4}\right)
\end{aligned}
$$

The output voltage lags the input voltage by $\pi / 4\left(45^{\circ}\right)$

AC Circuit Analysis

Complex Numbers: Rectangular Form

Complex numbers can be represented in rectangular, polar or exponential form

Rectangular form:

$$
z=x+j y
$$

where x is the real part, y is the imaginary part (x and y are both real numbers), and

$$
j^{2}=-1 \quad j=\sqrt{-1}
$$

Complex numbers are often the solutions of real problems, for example quadratic equations

Complex Numbers: Argand Diagram

Imaginary part

Complex Numbers: Polar Form

Polar form:

$$
z=r \angle \theta
$$

where r is the magnitude, and θ is the angle measured from the real axis:

Complex Numbers: Exponential Form

Exponential form:

$$
z=r e^{j \theta}
$$

Euler's identity:

$$
e^{j \theta}=\cos \theta+j \sin \theta
$$

The polar and exponential forms are therefore equivalent

Complex Numbers: Conversion

Rectangular to polar:

$$
r=|z|=\sqrt{x^{2}+y^{2}}
$$

$$
\theta=\angle z \quad \tan \theta=\frac{y}{x}
$$

Polar to Rectangular:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Complex Numbers: Inversion

If the complex number is in rectangular form:

$$
\begin{aligned}
& z=\frac{1}{x+j y} \\
& =\frac{x-j y}{(x+j y)(x-j y)} \\
& =\frac{x-j y}{x^{2}+y^{2}}
\end{aligned}
$$

If the complex number is in polar or exponential form:

$$
z=\frac{1}{A e^{j \varphi}}=\frac{1}{A} e^{-j \varphi}
$$

Complex Numbers: Conversion

When using the inverse tangent to obtain θ from x and y it is necessary to resolve the ambiguity of π :

Complex Numbers: Conversion

When using the inverse tangent to obtain θ from x and y it is necessary to resolve the ambiguity of π

1. Calculate θ using inverse tangent:

$$
\theta=\tan ^{-1} \frac{y}{x}
$$

This should give a value in the range: $-\pi / 2 \leq \theta \leq+\pi / 2$ $\left(-90^{\circ} \leq \theta \leq+90^{\circ}\right)$
2. If the real part x is negative then add $\pi\left(180^{\circ}\right)$:

$$
\theta=\pi+\tan ^{-1} \frac{y}{x}
$$

Complex Numbers: Conversion

Convert $\quad z=2 \angle \frac{\pi}{3} \quad$ to rectangular form

Real part:

$$
x=2 \cos \left(\frac{\pi}{3}\right)=2 \times \frac{1}{2}=1
$$

Imaginary part: $\quad y=2 \sin \left(\frac{\pi}{3}\right)=2 \times \frac{\sqrt{3}}{2}=\sqrt{3}$

Thus:

$$
z=1+j \sqrt{3}
$$

Complex Numbers: Conversion

Complex Numbers: Conversion

Convert $\quad z=\frac{1}{1+j} \quad$ to polar or exponential form:
Magnitude: $\quad r=|z|=\frac{\sqrt{1^{2}+0^{2}}}{\sqrt{1^{2}+1^{2}}}=\frac{1}{\sqrt{2}}$

Angle:

$$
\begin{aligned}
\theta & =\angle z=\angle 1-\angle(1+j) \\
& =\tan ^{-1}\left(\frac{0}{1}\right)-\tan ^{-1}\left(\frac{1}{1}\right)=0-\frac{\pi}{4}=-\frac{\pi}{4}
\end{aligned}
$$

Thus:

$$
z=\frac{1}{\sqrt{2}} \angle-\frac{\pi}{4} \quad \text { or } \quad z=\frac{1}{\sqrt{2}} e^{-j \frac{\pi}{4}}
$$

Complex Numbers: Conversion

Complex Exponential Voltages

We shall be using complex exponential voltages and currents to analyse ac circuits:

$$
v(t)=V e^{j \omega t}
$$

This is a mathematical trick for obtaining the ac response without explicitly solving the differential equations

It works because differentiating a complex exponential leaves it unchanged, apart from a multiplying factor:

$$
\frac{d}{d t} V e^{j \omega t}=j \omega V e^{j \omega t}
$$

Complex Exponential Voltages

Suppose that a complex exponential voltage is applied across a resistor:

$$
\begin{aligned}
i(t) & =\frac{v(t)}{R} \\
& =\frac{V}{R} e^{j \omega t}
\end{aligned}
$$

The current through the resistor is also a complex exponential

Complex Exponential Voltages

Suppose that a complex exponential voltage is applied across a capacitor:

$$
\left.\left.\begin{array}{ll}
\overbrace{C}^{v(t)=V e^{j \omega t}} i(t) & i(t)
\end{array}\right)=C \frac{d v(t)}{d t}\right)
$$

The current through the capacitor is also a complex exponential

Complex Exponential Voltages

Suppose that a complex exponential voltage is applied across an inductor:

$$
\begin{aligned}
i(t) & =\frac{1}{L} \int V(t) d t \\
& =\frac{1}{L} \int V e^{j \omega t} d t \\
& =\frac{1}{j \omega L} V e^{j \omega t}
\end{aligned}
$$

The current through the inductor is also a complex exponential

Complex Exponential Voltages

A complex exponential input to a linear ac circuits results in all voltages and currents being complex exponentials

Of course real voltages are not complex
The real voltages and currents in the circuit are simply the real parts of the complex exponentials

Complex exponential: $\quad v_{c}(t)=e^{j \omega t} \quad(=\cos \omega t+j \sin \omega t)$
Real voltage:
$v_{r}(t)=\cos \omega t$

AC Circuit Analysis

Lecture 3

Phasors
 Impedances
 Gain and Phase Shift Frequency Response

If the input voltage to a circuit is a complex exponential:

$$
v_{c i n}(t)=v_{0} e^{j \omega t}
$$

then all other voltages and currents are also complex exponentials:

$$
\begin{aligned}
& v_{c 1}(t)=v_{1} e^{j\left(\omega t+\varphi_{1}\right)}=v_{1} e^{j \varphi_{1}} e^{j \omega t}=V_{1} e^{j \omega t} \\
& i_{c 2}(t)=i_{2} e^{j\left(\omega t+\varphi_{2}\right)}=i_{2} e^{j \varphi_{2}} e^{j \omega t}=I_{2} e^{j \omega t}
\end{aligned}
$$

where V_{1} and I_{2} are time-independent voltage and current phasors:

$$
\begin{aligned}
& V_{1}=V_{1} e^{j \varphi_{1}} \\
& I_{2}=i_{2} e^{j \varphi_{2}}
\end{aligned}
$$

The complex exponential voltages and currents can now be expressed:

$$
\begin{aligned}
& v_{c 1}(t)=V_{1} \mathrm{e}^{j \omega t} \\
& i_{c 2}(t)=I_{2} \mathrm{e}^{j \omega t}
\end{aligned}
$$

Phasors are independent of time, but in general are functions of $j \omega$ and should be written:

$$
V_{1}(j \omega) \quad I_{2}(j \omega)
$$

However, when there is no risk of ambiguity the dependency will be not be shown explicitly

Note that upper-case letters are used for phasor symbols

The impedance Z of a circuit or component is defined to be the ratio of the voltage and current phasors:

$$
Z=\frac{V}{l}
$$

For a resistor:

$$
\underbrace{V_{C}(t)=V e^{j \omega t}}_{R} i_{C}(t)=I e^{j \omega t} \quad \begin{aligned}
V_{C}(t) & =R i_{C}(t) \\
V e^{j \omega t} & =R I e^{j \omega t} \\
V & =R I
\end{aligned}
$$

So that:

$$
Z_{R}=\frac{V}{l}=R
$$

Impedance

For a capacitor:

$$
\xrightarrow{v_{c}(t)=V e^{j \omega t}} \xrightarrow{i_{C}(t)}=l e^{j \omega t}
$$

$$
\begin{aligned}
I_{C}(t) & =C \frac{d v_{C}(t)}{d t} \\
I e^{j \omega t} & =C \frac{d}{d t} V e^{j \omega t} \\
I e^{j \omega t} & =j \omega C V e^{j \omega t} \\
I & =j \omega C V
\end{aligned}
$$

So that:

$$
Z_{C}=\frac{V}{l}=\frac{1}{j \omega C}
$$

Impedance

For an inductor:

$$
\begin{aligned}
V_{C}(t) & =L \frac{d i_{C}(t)}{d t} \\
V e^{j \omega t} & =L \frac{d}{d t} l e^{j \omega t} \\
V e^{j \omega t} & =j \omega L l e^{j \omega t} \\
V & =j \omega L I
\end{aligned}
$$

So that:

$$
Z_{L}=\frac{V}{l}=j \omega L
$$

	$Z=\frac{V}{l}$	$f \rightarrow 0$	$f \rightarrow \infty$
Resistance R	R	R	R
Capacitance C	$\frac{1}{j \omega C}$	$Z \rightarrow \infty$	$Z \rightarrow 0$
Inductance L	$j \omega L$	$Z \rightarrow 0$	$Z \rightarrow \infty$

Impedance

All the normal circuit theory rules apply to circuits containing impedances

For example impedances in series:

$$
Z=Z_{1}+Z_{2}+Z_{3}+Z_{4}
$$

and impedances in parallel:

$$
\frac{1}{Z}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}}+\frac{1}{Z_{4}}
$$

Other relevant circuit theory rules are: Kirchhoff's laws, Thévenin and Norton's theorems, Superposition

Impedance

Potential divider:

AC Circuit Analysis

Suppose that a circuit has an input $x(t)$ and an output $y(t)$, where x and y can be voltages or currents

The corresponding phasors are $X(j \omega)$ and $Y(j \omega)$
The real input voltage $x(t)$ is a sinusoid of amplitude x_{0} :

$$
x(t)=x_{0} \cos (\omega t)=r e\left(x_{0} e^{j \omega t}\right)=r e\left(X e^{j \omega t}\right)
$$

and the real output voltage $y(t)$ is the real part of the complex exponential output:

$$
y(t)=y_{0} \cos (\omega t+\varphi)=r e\left(y_{0} e^{j \varphi} e^{j \omega t}\right)=r e\left(Y e^{j \omega t}\right)
$$

AC Circuit Analysis

Thus:

$$
\frac{y_{0} e^{j \varphi}}{x_{0}}=\frac{Y}{X}
$$

The voltage gain g is the ratio of the output amplitude to the input amplitude:

$$
g=\frac{y_{0}}{x_{0}}=\left|\frac{Y}{X}\right|
$$

and the phase shift is:

$$
\varphi=\angle\left(\frac{Y}{X}\right)
$$

AC Circuit Analysis

Using the potential divider formula:

$$
\begin{aligned}
\frac{V_{C}}{V_{i n}} & =\frac{Z_{C}}{Z_{C}+Z_{R}} \\
& =\frac{1 / j \omega C}{1 / j \omega C+R} \\
& =\frac{1}{1+j \omega C R}
\end{aligned}
$$

AC Circuit Analysis

$$
\frac{V_{c}}{V_{i n}}=\frac{1}{1+j \omega C R}
$$

Voltage gain: $\quad g=\left|\frac{V_{c}}{V_{\text {in }}}\right|=\frac{1}{\sqrt{1+\omega^{2} C^{2} R^{2}}}$
Phase shift:

$$
\begin{aligned}
\varphi & =\left\langle\left(\frac{V_{c}}{V_{i n}}\right)=\tan ^{-1} 0-\tan ^{-1} \omega C R\right. \\
& =-\tan ^{-1} \omega C R
\end{aligned}
$$

Frequency Response (RC = 1)

Frequency Response (RC = 1)

Frequency Response

	$g=\frac{1}{\sqrt{1+\omega^{2} C^{2} R^{2}}}$	$\varphi=-\tan ^{-1} \omega C R$
$\omega \rightarrow 0$	$g \rightarrow 1$	$\varphi \rightarrow 0\left(0^{\circ}\right)$
$\omega=\frac{1}{C R}$	$g=\frac{1}{\sqrt{2}}$	$\varphi=-\frac{\pi}{4}\left(-45^{\circ}\right)$
$\omega \rightarrow \infty$	$g \rightarrow 0$	$\varphi \rightarrow-\frac{\pi}{2}\left(-90^{\circ}\right)$

This is a low-pass response

Frequency Response

AC Circuit Analysis

$$
\frac{V_{R}}{V_{i n}}=\frac{j \omega C R}{1+j \omega C R}
$$

AC Circuit Analysis

$$
\frac{V_{R}}{V_{i n}}=\frac{j \omega C R}{1+j \omega C R}
$$

Voltage gain: $\quad g=\left|\frac{V_{R}}{V_{i n}}\right|=\frac{\omega C R}{\sqrt{1+\omega^{2} C^{2} R^{2}}}$
Phase shift : $\quad \varphi=\left\langle\left(\frac{V_{R}}{V_{i n}}\right)=\tan ^{-1} \infty-\tan ^{-1} \omega C R\right.$

$$
=\frac{\pi}{2}-\tan ^{-1} \omega C R
$$

Frequency Response (RC = 1)

Frequency Response (RC = 1)

Frequency Response

	$g=\frac{\omega C R}{\sqrt{1+\omega^{2} C^{2} R^{2}}}$	$\varphi=\frac{\pi}{2}-\tan ^{-1} \omega C R$
$\omega \rightarrow 0$	$g \rightarrow 0$	$\varphi \rightarrow \frac{\pi}{2}\left(90^{\circ}\right)$
$\omega=\frac{1}{C R}$	$g=\frac{1}{\sqrt{2}}$	$\varphi=\frac{\pi}{4}\left(45^{\circ}\right)$
$\omega \rightarrow \infty$	$g \rightarrow 1$	$\varphi \rightarrow 0\left(0^{\circ}\right)$

This is a high-pass response

Frequency Response

AC Circuit Analysis

Lecture 4

Driving-Point Impedance

Impedance

The impedance Z of a circuit or component is defined to be the ratio of the voltage and current phasors:

$$
Z(j \omega)=\frac{V(j \omega)}{I(j \omega)}
$$

Impedance Z is analogous to resistance in dc circuits and its units are ohms

When Z applies to a 2-terminal circuit (rather than simple component) it is known as the driving-point impedance

Impedance

Z can be written in rectangular form:

$$
Z(j \omega)=R(j \omega)+j X(j \omega)
$$

where R is the resistance and X is the reactance
Thus:

$$
\begin{aligned}
|Z| & =\sqrt{R^{2}+X^{2}} \\
\angle Z & =\tan ^{-1} \frac{X}{R}
\end{aligned}
$$

and:

$$
\begin{aligned}
& R=Z \mid \cos \angle Z \\
& X=Z \mid \sin \angle Z
\end{aligned}
$$

Symbolic and Numeric Forms

Example 1

Determine the driving-point impedance of the circuit at a frequency of 40 kHz :

$$
\begin{aligned}
Z & =Z_{R}+Z_{C} \\
& =R+\frac{1}{j \omega C} \\
& =25+\frac{1}{j 2 \pi \times 40 \times 10^{3} \times 200 \times 10^{-9}} \\
& =25+\frac{1}{j 0.05027} \\
& =25-j 19.89 \Omega
\end{aligned}
$$

Example 1

$$
\begin{aligned}
Z & =25-j 19.89 \Omega \\
|Z| & =\sqrt{25^{2}+19.89^{2}} \\
& =31.93 \Omega \\
\angle Z & =\tan ^{-1} \frac{-19.89}{25} \\
& =-0.6720\left(-38.5^{\circ}\right)
\end{aligned}
$$

Example 1

What will be the voltage across the circuit when a current of $5 \mathrm{~A}, 40 \mathrm{kHz}$ flows through it?

$$
\begin{aligned}
V & =I Z \\
& =5 \times(25-j 19.89) \\
& =125-j 99.45 \mathrm{~V}
\end{aligned}
$$

In polar form:

$$
\begin{aligned}
V & =I Z \\
& =(5 \times 31.93) \angle-0.6720\left(-38.5^{\circ}\right) \\
& =159.7 \mathrm{~V} \angle-0.6720\left(-38.5^{\circ}\right)
\end{aligned}
$$

Example 2

Determine the driving-point impedance of the circuit at a frequency of 20 Hz :

$$
\begin{aligned}
\frac{1}{Z} & =\frac{1}{Z_{R}}+\frac{1}{Z_{C}} \\
& =\frac{1}{R}+j \omega C \\
Z & =\frac{1}{1 / R+j \omega C} \\
& =\frac{R}{1+j \omega C R}
\end{aligned}
$$

Example 2

$$
Z=\frac{R}{1+j \omega C R}
$$

$$
\begin{aligned}
& =\frac{80}{1+j 2 \pi \times 20 \times 100 \times 10^{-6} \times 80} \\
& =\frac{80}{1+j 1.005} \\
& \frac{80(1-j 1.005)}{1^{2}+1.005^{2}} \\
& =39.79-j 40.00 \Omega
\end{aligned}
$$

Example 2

$$
\begin{aligned}
Z & =39.79-j 40.00 \Omega \\
Z \mid & =\sqrt{39.79^{2}+40.00^{2}} \\
& =56.42 \Omega \\
\angle Z & =\tan ^{-1}\left\{\frac{-40.00}{39.79}\right\} \\
& =-0.7880\left(-45.2^{\circ}\right)
\end{aligned}
$$

Example 2

What current will flow if an ac voltage of $24 \mathrm{~V}, 20 \mathrm{~Hz}$ is applied to the circuit?

$$
\begin{aligned}
I & =\frac{V}{Z} \\
& =\frac{24}{39.79-j 40.00} \\
& =\frac{24(39.79+j 40.00)}{39.79^{2}+40.00^{2}} \\
& =0.3+j 0.3016 \mathrm{~A} \\
& =0.4254 \mathrm{~A} \angle 0.7880\left(45.2^{\circ}\right)
\end{aligned}
$$

Phasor Diagrams

Where voltages or currents are summed the result can be represented by a phasor diagram: $V=V_{1}+V_{2}+V_{3}$

$$
I_{R}=\frac{24}{80}=0.3 \mathrm{~A} \quad I_{C}=j 2 \pi \times 20 \times 100 \times 10^{-6} \times 24=j 0.3016 \mathrm{~A}
$$

Example 3

Determine the driving-point impedance of the circuit at a frequency of 50 Hz :

$$
\begin{aligned}
Z & =Z_{R}+Z_{L}+Z_{C} \\
& =R+j \omega L+\frac{1}{j \omega C}
\end{aligned}
$$

$$
\left.=24+j 2 \pi \times 50 \times 36 \times 10^{-3}+\frac{1}{j 2 \pi \times 50 \times 120 \times 10^{-6}}\right\} 36 \mathrm{mH}
$$

$$
=24+j 11.31-j 26.53 \Omega
$$

$$
=24-j 15.22 \Omega
$$

Example 3

$$
Z=24-j 15.22 \Omega
$$

$$
\begin{aligned}
|Z| & =\sqrt{24^{2}-15.22^{2}} \\
& =28.42 \Omega \\
\angle Z & =\tan ^{-1}\left\{\frac{-15.22}{24}\right\} \\
& =-0.5652\left(-32.4^{\circ}\right)
\end{aligned}
$$

$$
Z=28.42 \Omega \angle-0.5652\left(-32.4^{\circ}\right)
$$

What voltage will be generated across the circuit if an ac current of $10 \mathrm{~A}, 50 \mathrm{~Hz}$ flows though it?

$$
\begin{aligned}
V & =Z I \\
& =10 \mathrm{~A} \times(24-j 15.22) \Omega \\
& =240-j 152.2 \mathrm{~V}
\end{aligned}
$$

In polar form:

$$
\begin{aligned}
V & =Z I \\
& =(10 \times 28.42) \angle-0.5652\left(-32.4^{\circ}\right) \\
& =284.2 \mathrm{~V} \angle-0.5652\left(-32.4^{\circ}\right)
\end{aligned}
$$

Example 3

Example 4

Determine the driving-point impedance of the circuit at a frequency of 400 Hz :

$$
\begin{aligned}
\frac{1}{Z} & =\frac{1}{Z_{R}+Z_{L}}+\frac{1}{Z_{C}} \\
& =\frac{1}{R+j \omega L}+j \omega C \\
Z & =\frac{1}{1 /(R+j \omega L)+j \omega C} \\
& =\frac{R+j \omega L}{1+j \omega C(R+j \omega L)} \\
& =\frac{R+j \omega L}{1+j \omega C R-\omega^{2} L C}
\end{aligned}
$$

James Grimbleby
School of Systems Engineering - Electronic Engineering

Example 4

$$
\begin{aligned}
Z & =\frac{R+j \omega L}{1+j \omega C R-\omega^{2} L C} \\
& \frac{2+j 2 \pi \times 400 \times 10^{-3}}{1+j 2 \pi \times 400 \times 200 \times 10^{-6} \times 2-(2 \pi \times 400)^{2} \times 10^{-3} \times 200 \times 10^{-6}} \\
& =\frac{2+j 2.513}{1+j 1.005-1.263} \\
& =\frac{2+j 2.513}{-0.2633+j 1.005} \\
& =\frac{(2+j 2.513) \times(-0.2633-j 1.005)}{0.2633^{2}+j 1.005^{2}} \\
& =1.852-j 2.474
\end{aligned}
$$

Example 4

$$
\begin{aligned}
Z & =1.852-j 2.474 \\
|Z| & =\sqrt{1.852^{2}+2.474^{2}} \\
& =3.091 \\
\angle Z & =\tan ^{-1} \frac{2.474}{1.852} \\
& =-0.9282\left(-53.2^{\circ}\right)
\end{aligned}
$$

$$
Z=3.091 \Omega \angle-0.9282\left(-53.2^{\circ}\right)
$$

Example 4

What current will flow if an ac voltage of $120 \mathrm{~V}, 400 \mathrm{~Hz}$ is applied to the circuit?

$$
\begin{aligned}
I & =\frac{V}{Z} & I & =\frac{V}{Z} \\
& =\frac{120}{1.852-j 2.474} & & =\frac{120}{3.091 \angle-0.9282} \\
& =\frac{120 \times(1.852+j 2.474)}{1.852^{2}+2.474^{2}} & & =38.82 \mathrm{~A} \angle 0.9282 \\
& =\frac{222.4+j 297.0}{9.556} & & =23.26+j 31.08 \\
& =23.26+j 31.08 & & \\
& =38.82 \mathrm{~A} \angle 0.9282\left(53.2^{\circ}\right) & &
\end{aligned}
$$

Example 4

$$
I=I_{R L}+I_{C}
$$

$$
I_{R L}=\frac{120}{Z_{R L}}
$$

$$
=23.27-j 29.23
$$

$$
\begin{aligned}
I_{C} & =\frac{120}{Z_{C}} \\
& =j 60.32
\end{aligned}
$$

Imaginary part

Admittance

The admittance Y of a circuit or component is defined to be the ratio of the current and voltage phasors:

$$
Y(j \omega)=\frac{I(j \omega)}{V(j \omega)}=\frac{1}{Z(j \omega)}
$$

Admittance Y is analogous to conductance in dc circuits and its unit is Siemens

$$
Y(j \omega)=G(j \omega)+j B(j \omega)
$$

where G is the conductance and B is the susceptance

	$Y=\frac{l}{V}$	$f \rightarrow 0$	$f \rightarrow \infty$
Resistance R	$\frac{1}{R}$	$\frac{1}{R}$	$\frac{1}{R}$
Capacitance C	$j \omega C$	$Y \rightarrow 0$	$Y \rightarrow \infty$
Inductance L	$\frac{1}{j \omega L}$	$Y \rightarrow \infty$	$Y \rightarrow 0$

Admittance

All the normal circuit theory rules apply to circuits containing admittances

For example admittances in series:

$$
\frac{1}{Y}=\frac{1}{Y_{1}}+\frac{1}{Y_{2}}+\frac{1}{Y_{3}}+\frac{1}{Y_{4}}
$$

and admittances in parallel:

$$
Y=Y_{1}+Y_{2}+Y_{3}+Y_{4}
$$

Other relevant circuit theory rules are: Kirchhoff's laws, Thévenin and Norton's theorems, Superposition

Example 5

Determine the driving-point admittance of the circuit at a frequency of 400 Hz :

$$
\begin{aligned}
Y & =Y_{C}+\frac{1}{1 / Y_{R}+1 / Y_{L}} \\
& =j \omega C+\frac{1}{R+j \omega L}
\end{aligned}
$$

Example 5

Determine the driving-point admittance of the circuit at a frequency of 400 Hz :

$$
\left.\begin{array}{rl}
Y & =j 2 \pi \times 400 \times 200 \times 10^{-6}+\frac{j 2 \pi \times 400 \times 10^{-3} \times 2}{2+j 2 \pi \times 400 \times 10^{-3}} \\
& =j 0.5027+\frac{1}{2+j 2.513} \\
& =j 0.5027+\frac{2-j 2.513}{2^{2}+2.513^{2}} \\
& =j 0.5027+\frac{2-j 2.513}{10.32} \\
& =j 0.5027+0.1939-j 0.2436 \\
& =0.1939+j 0.2590 \mathrm{~S}
\end{array} \quad \begin{array}{l}
\text { C }
\end{array}\right\}
$$

AC Circuit Analysis

Lecture 5

Resonant Circuits

Resonant Circuits

Passive resonant circuits must contain a resistor, capacitor and an inductor

The behaviour of resonant circuits changes rapidly around a particular frequency (the resonance frequency)

Resonant circuits can be characterised by two parameters: the resonance frequency and the Q -factor

There are two basic resonant circuit configurations: series and parallel

Resonant Circuits

$$
\frac{d \theta}{d t}=\omega \quad \frac{d \omega}{d t}=-\frac{g \theta}{L}
$$

Resonant Circuits

$$
\frac{d i_{L}}{d t}=\frac{v_{C}}{L}
$$

$$
\frac{d v_{C}}{d t}=-\frac{i_{L}}{C}
$$

i, v

Parallel Resonant Circuit

$$
\begin{aligned}
\frac{1}{Z} & =\frac{1}{Z_{R}}+\frac{1}{Z_{C}}+\frac{1}{Z_{L}} & Z & =\frac{j \omega L R}{j \omega L-\omega^{2} L C R+R} \\
& =\frac{1}{R}+j \omega C+\frac{1}{j \omega L} & & =\frac{j \omega L}{j \omega L / R-\omega^{2} L C+1} \\
& =\frac{j \omega L-\omega^{2} L C R+R}{j \omega L R} & & =\frac{j \omega L}{1+j \omega L / R-\omega^{2} L C}
\end{aligned}
$$

Parallel Resonant Circuit

$$
\begin{aligned}
Z & =\frac{j \omega L}{1+j \omega L / R-\omega^{2} L C} \\
& =\frac{j \omega}{1+j \omega \times 2 \times 10^{-4}-\omega^{2} \times 10^{-6}}
\end{aligned}
$$

Impedance is a maximum (resonant frequency) when:

$$
\begin{aligned}
\omega & =\frac{1}{\sqrt{L C}} \\
& =\frac{1}{\sqrt{10^{-6}}} \\
& =10^{3}
\end{aligned}
$$

Parallel Resonant Circuit

Parallel Resonant Circuit

$$
Z=\frac{j \omega L}{1+j \omega L / R-\omega^{2} L C}
$$

$$
\omega \rightarrow 0 \quad Z \rightarrow \frac{j \omega L}{1}=j 0
$$

Resonant frequency: $\omega=\frac{1}{\sqrt{L C}} \quad Z=\frac{j \omega L}{j \omega L / R}=R$

$$
\omega \rightarrow \infty \quad Z \rightarrow \frac{j \omega L}{-\omega^{2} L C}=\frac{-j}{\omega C}=-j 0
$$

Parallel Resonant Circuit

Angular frequency (rad/s)

The standard form for the denominator of a second-order system is:

$$
1+j \omega / \omega_{0} Q-\omega^{2} / \omega_{0}^{2}
$$

Compare this with the impedance Z :

$$
Z=\frac{j \omega L}{1+j \omega L / R-\omega^{2} L C}
$$

So that:

$$
\omega_{0}=\frac{1}{\sqrt{L C}} \quad Q=\frac{R}{\omega_{0} L}
$$

where Q is the quality-factor and ω_{0} is the resonant frequency

Quality Factor

$$
\begin{gathered}
\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{10^{-6}}}=10^{3} \\
Q=\frac{R}{\omega_{0} L}=\frac{5000}{1 \times 10^{3}}=5
\end{gathered}
$$

Quality Factor

Angular frequency (rad/s)

Quality Factor

Angular frequency (rad/s)

Quality Factor

Angular frequency (rad/s)

Parallel Resonant Circuit

Resonance occurs in parallel resonant circuits because the currents in the capacitor and inductor cancel out

$$
\begin{aligned}
& I_{R}=\frac{1}{R}=\frac{1}{5000}=2 \times 10^{-4} \\
& I_{C}=\frac{1}{1 / j \omega C}=j \omega C=j \omega \times 10^{-6} \\
& I_{L}=\frac{1}{j \omega L}=\frac{-j}{\omega L}=\frac{-j}{\omega}
\end{aligned}
$$

Parallel Resonant Circuit

At resonance:

$$
\begin{aligned}
\omega & =10^{3}: \\
I_{R} & =2 \times 10^{-4} \mathrm{~A} \\
I_{C} & =j \omega \times 10^{-6} \\
& =j 10^{-3} \mathrm{~A} \\
I_{L} & =\frac{-j}{\omega} \\
& =-j 10^{-3} \mathrm{~A}
\end{aligned}
$$

Parallel Resonant Circuit

Below resonance:

$$
\begin{aligned}
\omega & =0.5 \times 10^{3}: \\
I_{R} & =2 \times 10^{-4} \mathrm{~A} \\
I_{C} & =j \omega \times 10^{-6} \\
& =j 0.5 \times 10^{-3} \mathrm{~A} \\
I_{L} & =\frac{-j}{\omega} \\
& =-j 2 \times 10^{-3} \mathrm{~A}
\end{aligned}
$$

Parallel Resonant Circuit

Above resonance:

$$
\begin{aligned}
\omega & =2.0 \times 10^{3}: \\
I_{R} & =2 \times 10^{-4} \mathrm{~A} \\
I_{C} & =j \omega \times 10^{-6} \\
& =j 2.0 \times 10^{-3} \mathrm{~A} \\
I_{L} & =\frac{-j}{\omega} \\
& =-j 0.5 \times 10^{-3} \mathrm{~A}
\end{aligned}
$$

Series Resonant Circuit

$$
\begin{aligned}
Z & =Z_{R}+Z_{C}+Z_{L} \\
& =R+\frac{1}{j \omega C}+j \omega L \\
& =\frac{j \omega C R+1-\omega^{2} L C}{j \omega C} \\
& =\frac{1+j \omega C R-\omega^{2} L C}{j \omega C}
\end{aligned}
$$

Series Resonant Circuit

$Z=\frac{1+j \omega C R-\omega^{2} L C}{j \omega C}$
$\omega \rightarrow 0 \quad Z \rightarrow \frac{1}{j \omega C}=\frac{-j}{\omega C}=-j \infty$
$\omega=\frac{1}{\sqrt{L C}} \quad Z=\frac{j \omega C R}{j \omega C}=R$
$\omega \rightarrow \infty \quad Z \rightarrow \frac{-\omega^{2} L C}{j \omega C}=j \omega L=j \infty$

Series Resonant Circuit

$$
\begin{aligned}
Z & =\frac{1+j \omega C R-\omega^{2} L C}{j \omega C} \\
& =\frac{1+j \omega \times 200 \times 10^{-6}-\omega^{2} \times 10^{-6}}{j \omega \times 10^{-6}} \\
& =\frac{1+j \omega \times 2 \times 10^{-4}-\omega^{2} \times 10^{-6}}{j \omega \times 10^{-6}}
\end{aligned}
$$

Series Resonant Circuit

Angular frequency (rad/s)

Series Resonant Circuit

The standard form for the denominator of a second-order system is:

$$
1+j \omega / \omega_{0} Q-\omega^{2} / \omega_{0}^{2}
$$

Compare this with the admittance $Y(=1 / Z)$:

$$
Y=\frac{j \omega C}{1+j \omega C R-\omega^{2} L C}
$$

So that:

$$
\omega_{0}=\frac{1}{\sqrt{L C}} \quad Q=\frac{1}{\omega_{0} C R}
$$

where Q is the quality-factor and ω_{0} is the resonant frequency

Series Resonant Circuit

$$
\begin{aligned}
\omega_{0} & =\frac{1}{\sqrt{L C}} \\
& =\frac{1}{\sqrt{1 \times 10^{-6} \times 1}} \\
& =10^{3} \mathrm{rad} / \mathrm{s} \\
Q & =\frac{1}{\omega_{0} C R} \\
& =\frac{1}{10^{3} \times 1 \times 10^{-6} \times 200} \\
& =5
\end{aligned}
$$

Series Resonant Circuit

Resonance occurs in series resonant circuits because the voltages across the capacitor and inductor cancel out

$$
\begin{aligned}
& V_{R}=1 \times R=200 \\
& V_{C}=\frac{1}{j \omega C}=\frac{-j}{\omega C}=\frac{-j 10^{6}}{\omega} \\
& V_{L}=1 \times j \omega L=j \omega
\end{aligned}
$$

Series Resonant Circuit

At resonance:

$$
\begin{aligned}
\omega & =10^{3}: \\
V_{R} & =200 \mathrm{~V} \\
V_{C} & =\frac{-j 10^{6}}{\omega} \\
& =-j 10^{3} \mathrm{~V} \\
V_{L} & =j \omega \\
& =j 10^{3} \mathrm{~V}
\end{aligned}
$$

Crystal Resonator

Crystal Resonator

Crystal Resonator

Equivalent circuit:

$$
\begin{gathered}
f_{0}=8.0 \mathrm{MHz} \\
R=3.4 \Omega \\
L_{1}=0.086 \mathrm{mH} \\
C_{1}=4.6 \mathrm{pF} \\
C_{0}=42 \mathrm{pF} \\
\omega_{0}=\frac{1}{\sqrt{L C}} \quad Q=\frac{1}{\omega_{0} C R} \\
=5.03 \times 10^{7} \quad=1270
\end{gathered}
$$

AC Circuit Analysis

Lecture 6

Frequency-Response Function First-Order Circuits

Frequency-Response Function

Frequency-response function: $\quad H(j \omega)=\frac{Y(j \omega)}{X(j \omega)}$
Voltage gain $g: \quad g=\left|\frac{Y(j \omega)}{X(j \omega)}\right|=|H(j \omega)|$
Phase shift $\varphi: \quad \varphi=\angle\left(\frac{Y(j \omega)}{X(j \omega)}\right)=\angle H(j \omega)$

Frequency-Response Function

The order of a frequency-response function is the highest power of $j \omega$ in the denominator:

First order:

$$
H(j \omega)=\frac{1}{1+j \omega / \omega_{0}}
$$

Second order: $H(j \omega)=\frac{1}{1+\sqrt{2} j \omega / \omega_{0}+\left(j \omega / \omega_{0}\right)^{2}}$
Third order:

$$
H(j \omega)=\frac{1}{1+j \omega / \omega_{0}+\left(j \omega / \omega_{0}\right)^{2}+\left(j \omega / \omega_{0}\right)^{3}}
$$

The order is normally equal to (and cannot exceed) the number of reactive components

Example 1

Using the potential divider formula:

$$
\begin{aligned}
\frac{V_{c}}{V_{i n}} & =\frac{Z_{C}}{Z_{C}+Z_{R}} \\
& =\frac{1 / j \omega C}{1 / j \omega C+R} \quad V_{i n} \\
H(j \omega) & =\frac{1}{1+j \omega C R} \\
& =\frac{1}{1+j \omega / \omega_{0}} \quad \text { where }: \quad \omega_{0}=\frac{1}{R C}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
H(j \omega) & =\frac{1}{1+j \omega / \omega_{0}} \\
& =\frac{1-j \omega / \omega_{0}}{1+\omega^{2} / \omega_{0}^{2}}
\end{aligned}
$$

Gain:

$$
g=|H(j \omega)|=\frac{1}{\sqrt{1+\omega^{2} / \omega_{0}^{2}}}
$$

Phase shift: $\quad \varphi=\angle H(j \omega) \quad \tan \varphi=-\omega / \omega_{0}$

Example 1

$g \rightarrow 1$

$g \rightarrow 0$

The decibel is a measure of the ratio of two powers P_{1}, P_{2} :

$$
\mathrm{dB}=10 \log _{10} \frac{P_{1}}{P_{2}}
$$

It can also be used to measure the ratio of two voltages V_{1}, V_{2} :

$$
\begin{aligned}
& \mathrm{dB}=10 \log _{10} \frac{V_{1}^{2} / R}{V_{2}^{2} / R}=10 \log _{10} \frac{V_{1}^{2}}{V_{2}^{2}} \\
& \mathrm{~dB}=20 \log _{10} \frac{V_{1}}{V_{2}}
\end{aligned}
$$

Power ratio	Decibels
1000000	60 dB
100	20 dB
10	10 dB
4	6 dB
2	3 dB
1	0 dB
$1 / 2$	-3 dB
$1 / 4$	-6 dB
0.01	-20 dB
0.000001	-60 dB

Voltage ratio	Decibels
1000	60 dB
10	20 dB
$\sqrt{ } 10=3.162$	10 dB
2	6 dB
$\sqrt{2}=1.414$	3 dB
1	0 dB
$1 / \sqrt{ } 2=0.7071$	-3 dB
$1 / 2=0.5$	-6 dB
0.1	-20 dB
0.001	-60 dB

Example 1

Circuit is a first-order low-pass filter:

	$g=\frac{1}{\sqrt{1+\omega^{2} / \omega_{0}^{2}}}$	$\varphi=\tan ^{-1}-\omega / \omega_{0}$
$\omega \ll \omega_{0}$	$g \approx 1(0 \mathrm{~dB})$	$\varphi \approx 0\left(0^{\circ}\right)$
$\omega=\omega_{0}$	$g=\frac{1}{\sqrt{2}}(-3 \mathrm{~dB})$	$\varphi=-\frac{\pi}{4}\left(-45^{\circ}\right)$
$\omega \gg \omega_{0}$	$g \approx \frac{\omega_{0}}{\omega}(-6 \mathrm{~dB} /$ oct $)$	$\varphi \approx-\frac{\pi}{2}\left(-90^{\circ}\right)$

Example 1

$$
\begin{aligned}
\omega_{0} & =\frac{1}{R C} \\
& =\frac{1}{10^{3} \times 10^{-6}} \\
& =10^{3}
\end{aligned}
$$

Gain:

$$
g=|H(j \omega)|=\frac{1}{\sqrt{1+\omega^{2} / 10^{6}}}
$$

Phase shift: $\quad \varphi=\angle H(j \omega) \tan \varphi=-\omega / 10^{3}$

Bode Plot

James Grimbleby
School of Systems Engineering - Electronic Engineering

Example 2

Using the potential divider formula:

$$
\begin{aligned}
\frac{V_{R}}{V_{i n}} & =\frac{Z_{R}}{Z_{R}+Z_{L}} \\
& =\frac{R}{R+j \omega L} \\
H(j \omega) & =\frac{1}{1+j \omega L / R} \\
& =\frac{1}{1+j \omega / \omega_{0}} \quad \text { where : } \quad \omega_{0}=\frac{R}{L}
\end{aligned}
$$

Example 2

Example 3

Using the potential divider formula:

$$
\begin{aligned}
\frac{V_{c}}{V_{i n}} & =\frac{Z_{R}}{Z_{R}+Z_{C}} \\
& =\frac{R}{1 / j \omega C+R} \\
H(j \omega) & =\frac{j \omega C R}{1+j \omega C R} \\
& =\frac{j \omega / \omega_{0}}{1+j \omega / \omega_{0}} \quad \text { where : } \quad \omega_{0}=\frac{1}{R C}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
H(j \omega) & =\frac{j \omega / \omega_{0}}{1+j \omega / \omega_{0}} \\
& =\frac{1}{1-j \omega_{0} / \omega} \\
& =\frac{1+j \omega_{0} / \omega}{1+\omega_{0}^{2} / \omega^{2}}
\end{aligned}
$$

Gain:

$$
g=|H(j \omega)|=\frac{1}{\sqrt{1+\omega_{0}^{2} / \omega^{2}}}
$$

Phase shift: $\quad \varphi=\angle H(j \omega) \quad \tan \varphi=\omega_{0} / \omega$

Example 3

Example 4

Using the potential divider formula:

$$
\begin{aligned}
\frac{V_{L}}{V_{i n}} & =\frac{Z_{L}}{Z_{L}+Z_{R}} \\
& =\frac{j \omega L}{j \omega L+R} \\
H(j \omega) & =\frac{j \omega L / R}{1+j \omega L / R} \\
& =\frac{j \omega / \omega_{0}}{1+j \omega / \omega_{0}} \quad \text { where : } \quad \omega_{0}=\frac{R}{L}
\end{aligned}
$$

Example 4

Example 4

Circuit is a first-order high-pass filter:

	$g=\frac{1}{\sqrt{1+\omega_{0}^{2} / \omega^{2}}}$	$\varphi=\tan ^{-1} \omega_{0} / \omega$
$\omega \ll \omega_{0}$	$g \approx \frac{\omega}{\omega_{0}}(6 \mathrm{~dB} / \mathrm{oct})$	$\varphi \approx \frac{\pi}{2}\left(90^{\circ}\right)$
$\omega=\omega_{0}$	$g=\frac{1}{\sqrt{2}}(-3 \mathrm{~dB})$	$\varphi=\frac{\pi}{4}\left(45^{\circ}\right)$
$\omega \gg \omega_{0}$	$g \approx 1(0 \mathrm{~dB})$	$\varphi \approx 0\left(0^{\circ}\right)$

Bode Plot

Gain(dB)
Phase(rad)

James Grimbleby
School of Systems Engineering - Electronic Engineering

Example 5

Using the potential divider formula:

$$
\begin{aligned}
\frac{V_{c}}{V_{i n}} & =\frac{R_{2}+1 / j \omega C}{R_{2}+1 / j \omega C+R_{1}} \\
& =\frac{j \omega C R_{2}+1}{j \omega C R_{2}+1+j \omega C R_{1}} \\
H(j \omega) & =\frac{1+j \omega C R_{2}}{1+j \omega C\left(R_{1}+R_{2}\right)} \\
& =\frac{1+j \omega / \omega_{2}}{1+j \omega / \omega_{1}} \quad \text { where : } \quad \omega_{1}=\frac{1}{C\left(R_{1}+R_{2}\right)} \quad \omega_{2}=\frac{1}{C R_{2}}
\end{aligned}
$$

Example 5

$$
\begin{gathered}
H(j \omega)=\frac{1+j \omega / \omega_{2}}{1+j \omega / \omega_{1}} \\
g=|H(j \omega)|=\frac{\sqrt{1+\omega^{2} / \omega_{2}^{2}}}{\sqrt{1+\omega^{2} / \omega_{1}^{2}}}
\end{gathered}
$$

Example 5

Example 5

Assuming that $\omega_{1} \ll \omega_{2}$:

	$g=\frac{\sqrt{1+\omega^{2} / \omega_{2}^{2}}}{\sqrt{1+\omega^{2} / \omega_{1}^{2}}}$
$\omega \ll \omega_{1}$	$g \approx 1(0 \mathrm{~dB})$
$\omega_{1} \ll \omega \ll \omega_{2}$	$g \approx \frac{\omega_{1}}{\omega}(-6 \mathrm{~dB} / \mathrm{oct})$
$\omega \gg \omega 2$	$g \approx \frac{\omega_{1}}{\omega_{2}}=\frac{R_{2}}{R_{2}+R_{1}}$

Example 5

$$
\begin{aligned}
H(j \omega) & =\frac{1+j \omega / \omega_{2}}{1+j \omega / \omega_{1}} \\
\omega_{1} & =\frac{1}{C\left(R_{1}+R_{2}\right)} \\
& =\frac{1}{10^{-6}(900+100)} \\
& =10^{3} \mathrm{rad} / \mathrm{s} \\
\omega_{2} & =\frac{1}{C R_{2}}=\frac{1}{10^{-6} \times 100} \\
& =10^{4} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Bode Plot

AC Circuit Analysis

Lecture 7

Second-Order Circuits

Example 1

This circuit must be simplified before the frequency response function can be determined

A Thévenin equivalent circuit is created of the components to the left of the red line

Example 1

Thévenin equivalent circuit:

$$
\begin{aligned}
V & =V_{\text {in }} \frac{1 / j \omega C}{1 / j \omega C+R} \\
& =\frac{V_{\text {in }}}{1+j \omega C R}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{Z}=\frac{1}{R}+j \omega C=\frac{1+j \omega C R}{R} \\
& Z=\frac{R}{1+j \omega C R}
\end{aligned}
$$

Example 1

$$
V_{C}=\frac{V_{\text {in }}}{1+j \omega C R} \times \frac{1 / j \omega C}{1 / j \omega C+R+\frac{R}{1+j \omega C R}}
$$

$$
=\frac{V_{i n}}{1+j \omega C R} \times \frac{1}{1+j \omega C R+\frac{j \omega C R}{1+j \omega C R}}
$$

Example 1

Frequency-response function:

$$
\begin{aligned}
V_{C} & =\frac{V_{i n}}{1+j \omega C R} \times \frac{1}{1+j \omega C R+\frac{j \omega C R}{1+j \omega C R}} \\
& =\frac{V_{i n}}{(1+j \omega C R) \times(1+j \omega C R)+j \omega C R}
\end{aligned}
$$

$$
H(j \omega)=\frac{1}{1+3 j \omega C R-\omega^{2} C^{2} R^{2}}
$$

$$
R=1 \mathrm{k} \Omega, C=1 \mu \mathrm{~F}:
$$

$$
H(j \omega)=\frac{1}{1+j \omega \times 3 \times 10^{-3}-\omega^{2} \times 10^{-6}}
$$

Example 1

Bode Plot

Phase(rad)

Example 2

This circuit must be simplified before the frequency response function can be determined

A Thévenin equivalent circuit is created of the components to the left of the red line

Example 2

$$
\begin{aligned}
V_{R} & =\frac{V_{i n}}{1+j \omega C R} \times \frac{R}{R+1 / j \omega C+\frac{R}{1+j \omega C R}} \\
& =\frac{V_{i n}}{1+j \omega C R} \times \frac{j \omega C R}{j \omega C R+1+\frac{j \omega C R}{1+j \omega C R}}
\end{aligned}
$$

Example 2

Frequency-response function:

$$
\begin{aligned}
V_{R} & =\frac{V_{i n}}{1+j \omega C R} \times \frac{j \omega C R}{1+j \omega C R+\frac{j \omega C R}{1+j \omega C R}} \\
& =\frac{V_{i n} j \omega C R}{(1+j \omega C R) \times(1+j \omega C R)+j \omega C R} \\
H(j \omega) & =\frac{j \omega C R}{1+3 j \omega C R-\omega^{2} C^{2} R^{2}}
\end{aligned}
$$

$$
R=1 \mathrm{k} \Omega, C=1 \mu \mathrm{~F}:
$$

$$
H(j \omega)=\frac{j \omega \times 10^{-3}}{1+j \omega \times 3 \times 10^{-3}-\omega^{2} \times 10^{-6}}
$$

Example 2

Bode Plot

James Grimbleby
School of Systems Engineering - Electronic Engineering
Slide 176

Example 3

Using the potential divider formula:

$$
\begin{aligned}
\frac{V_{C}}{V_{i n}} & =\frac{1 / j \omega C}{1 / j \omega C+j \omega L+R} \quad V_{i n} \\
H(j \omega) & =\frac{1}{1+j \omega C R-\omega^{2} L C} \\
& =\frac{1}{1+j \omega /\left(\omega_{0} Q\right)-\omega^{2} / \omega_{0}^{2}}
\end{aligned}
$$

where: $\quad \omega_{0}=\frac{1}{\sqrt{L C}}$ and: $Q=\frac{1}{\omega_{0} C R}=\frac{1}{R} \sqrt{\frac{L}{C}}$

Example 3

Circuit is a second-order low-pass filter:

	$H(j \omega)=\frac{1}{1+j \omega /\left(\omega_{0} Q\right)-\omega^{2} / \omega_{0}^{2}}$	$g=\|H(j \omega)\|$
$\omega \ll \omega_{0}$	$H(j \omega) \approx 1$	$g=1(0 \mathrm{~dB})$
$\omega=\omega_{0}$	$H(j \omega)=-j Q$	$g=Q$
$\omega \gg \omega_{0}$	$H(j \omega) \approx \frac{-\omega_{0}^{2}}{\omega^{2}}$	$g \approx \frac{\omega_{0}^{2}}{\omega^{2}}(-12 \mathrm{~dB} /$ oct $)$

Example 3

$$
\begin{gathered}
\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{400 \times 10^{-3} \times 2.5 \times 10^{-6}}}=\frac{1}{\sqrt{10^{-6}}}=10^{3} \\
Q=\frac{1}{R} \sqrt{\frac{L}{C}}=\frac{1}{200} \sqrt{\frac{400 \times 10^{-3}}{2.5 \times 10^{-6}}}=\frac{1}{200} \sqrt{1.6 \times 10^{5}}=2
\end{gathered}
$$

Bode Plot

Bode Plot

Phase(rad)

Example 4

Using the potential divider formula:

$$
\begin{aligned}
\begin{aligned}
\frac{V_{L}}{V_{i n}} & =\frac{j \omega L}{1 / j \omega C+j \omega L+R} \\
H(j \omega) & =\frac{-\omega^{2} L C}{1+j \omega C R-\omega^{2} L C} \\
& =\frac{-\omega^{2} / \omega_{0}^{2}}{1+j \omega /\left(\omega_{0} Q\right)-\omega^{2} / \omega_{0}^{2}} \\
\text { where }: & \omega_{0}=\frac{1}{\sqrt{L C}} \text { and: } Q=\frac{1}{\omega_{0} C R}=\frac{1}{R} \sqrt{\frac{L}{C}}
\end{aligned}, V_{L}^{R}
\end{aligned}
$$

Example 4

Circuit is a second-order high-pass filter:

	$H(j \omega)=\frac{-\omega^{2} / \omega_{0}^{2}}{1+j \omega /\left(\omega_{0} Q\right)-\omega^{2} / \omega_{0}^{2}}$	$g=\|H(j \omega)\|$
$\omega<\omega_{0}$	$H(j \omega) \approx \frac{-\omega^{2}}{\omega_{0}^{2}}$	$g \approx \frac{\omega^{2}}{\omega_{0}^{2}}(12 \mathrm{~dB} /$ oct $)$
$\omega=\omega_{0}$	$H(j \omega)=j Q$	$g=Q$
$\omega \gg \omega_{0}$	$H(j \omega) \approx 1$	$g=1(0 \mathrm{~dB})$

Bode Plot

Bode Plot

Phase(rad)

[^0]School of Systems Engineering - Electronic Engineering
Slide 187

Example 5

Using the potential divider formula:

$$
\begin{aligned}
\frac{V_{R}}{V_{i n}} & =\frac{R}{1 / j \omega C+j \omega L+R} \quad V_{\text {in }} \\
H(j \omega) & =\frac{j \omega C R}{1+j \omega C R-\omega^{2} L C} \\
& =\frac{j \omega /\left(\omega_{0} Q\right)}{1+j \omega /\left(\omega_{0} Q\right)-\omega^{2} / \omega_{0}^{2}}
\end{aligned}
$$

where: $\quad \omega_{0}=\frac{1}{\sqrt{L C}}$ and: $Q=\frac{1}{\omega_{0} C R}=\frac{1}{R} \sqrt{\frac{L}{C}}$

Example 5

Example 5

Circuit is a second-order band-pass filter:

	$H(j \omega)=\frac{j \omega /\left(\omega_{0} Q\right)}{1+j \omega /\left(\omega_{0} Q\right)-\omega^{2} / \omega_{0}^{2}}$	$g=\|H(j \omega)\|$
$\omega \ll \omega_{0}$	$H(j \omega) \approx \frac{j \omega}{\omega_{0} Q}$	$g \approx \frac{\omega}{\omega_{0} Q}(6 \mathrm{~dB} /$ oct $)$
$\omega=\omega_{0}$	$H(j \omega)=1$	$g=1(0 \mathrm{~dB})$
$\omega \gg \omega_{0}$	$H(j \omega) \approx \frac{-j \omega_{0}}{\omega Q}$	$g \approx \frac{\omega_{0}}{\omega Q}(-6 \mathrm{~dB} /$ oct $)$

Bode Plot

Bode Plot

Phase(rad)

Example 6

Using the potential divider formula:

$$
\begin{aligned}
\frac{V_{C}}{V_{i n}} & =\frac{1 / j \omega C+j \omega L}{1 / j \omega C+j \omega L+R} \\
H(j \omega) & =\frac{1-\omega^{2} L C}{1+j \omega C R-\omega^{2} L C} \\
& =\frac{1-\omega^{2} L C}{1+j \omega /\left(\omega_{0} Q\right)-\omega^{2} / \omega_{0}^{2}}
\end{aligned}
$$

where: $\quad \omega_{0}=\frac{1}{\sqrt{L C}}$ and: $Q=\frac{1}{\omega_{0} C R}=\frac{1}{R} \sqrt{\frac{L}{C}}$

Example 6

Example 6

Circuit is a second-order band-stop filter:

	$H(j \omega)=\frac{1-\omega^{2} / \omega_{0}^{2}}{1+j \omega /\left(\omega_{0} Q\right)-\omega^{2} / \omega_{0}^{2}}$	$g=\|H(j \omega)\|$
$\omega \ll \omega_{0}$	$H(j \omega) \approx 1$	$g \approx 1(0 \mathrm{~dB})$
$\omega=\omega_{0}$	$H(j \omega)=0$	$g=0(-\infty \mathrm{dB})$
$\omega \gg \omega_{0}$	$H(j \omega) \approx 1$	$g \approx 1(0 \mathrm{~dB})$

Bode Plot

Bode Plot

Phase(rad)

AC Circuit Analysis

Lecture 8

Power in AC Circuits

Power in AC Circuits

To calculate the power in a circuit we shall need to make use of some trigonometric identities:

$$
\begin{aligned}
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B
\end{aligned}
$$

Adding:

$$
\begin{aligned}
& \cos (A+B)+\cos (A-B)=2 \cos A \cos B \\
& \cos A \cos B=\frac{1}{2}\{\cos (A+B)+\cos (A-B)\}
\end{aligned}
$$

so that:

$$
\cos ^{2} A=\frac{1}{2}\{\cos 2 A+\cos 0\}=\frac{1}{2}+\frac{1}{2} \cos 2 A
$$

rms Voltages and Currents

The average power in a resistor is given by:

$$
\begin{aligned}
P & =\frac{1}{T} \int_{0}^{T} v(t) i(t) d t \\
& =\frac{1}{T} \int_{0}^{T} \frac{v^{2}(t)}{R} d t \\
& =\frac{1}{R} \frac{1}{T} \int_{0}^{T} v^{2}(t) d t \\
& =\frac{V_{r m s}^{2}}{R} \text { where : } \quad V_{r m s}=\sqrt{\frac{1}{T}} \int_{0}^{T} v^{2}(t) \uparrow
\end{aligned}
$$

rms Voltages and Currents

The root-mean-square voltage $V_{r m s}$ determines the power dissipated in a circuit:

$$
P=\frac{V_{r m s}^{2}}{R}
$$

There is a similar expression for the power dissipated when a current $I_{r m s}$ flows through a circuit:

$$
P=R I_{r m s}^{2}
$$

These expressions apply to any waveform

rms Voltages and Currents

The rms value of a sinusoid of amplitude (peak) value v_{0} :

$$
\begin{aligned}
& V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d t} \\
&=\sqrt{\frac{1}{T} \int_{0}^{T} v_{0}^{2} \cos ^{2}(\omega t) d t} \\
&=\sqrt{v_{0}^{2} \frac{1}{T} \int_{0}^{T} \frac{1}{2}+\frac{1}{2} \cos (2 \omega t) d t} \\
&=\sqrt{\frac{v_{0}^{2}}{2}}=\frac{v_{0}}{\sqrt{2}} \quad \begin{array}{l}
\text { Averages to zero over } \\
\text { a complete cycle: }
\end{array} \\
& T=2 \pi / \omega
\end{aligned}
$$

rms Voltages and Currents

The UK mains power was until recently supplied at 240 V rms and that in Europe 220 V rms

On 1 January 1995 the nominal voltage across Europe was harmonised at 230 V rms.

This corresponds to an amplitude of:

$$
\begin{aligned}
V_{0} & =\sqrt{2} \times V_{r m s} \\
& =\sqrt{2} \times 230 \\
& =325 \mathrm{~V}
\end{aligned}
$$

rms Voltages and Currents

A mains power (230 V rms) electric fire has a resistance of 52Ω :

$$
P=\frac{V_{r m s}^{2}}{R}=\frac{230^{2}}{52}=1.017 \mathrm{~kW}
$$

An audio amplifier which drives a 4Ω loudspeaker at up to 150 W must supply a sinusoidal output voltage:

$$
\begin{aligned}
& V_{r m s}^{2}=P . R=150 \times 4=600 \\
& V_{r m s}=24.5 \mathrm{~V}
\end{aligned}
$$

This corresponds to a sinusoid of peak value 34.6 V

rms Voltages and Currents

Square wave of amplitude $\pm V_{0}$:

$$
\begin{aligned}
& \stackrel{T / 2}{T} \\
& V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d t}=\sqrt{\frac{1}{T}} \int_{0}^{T / 2} v_{0}^{2} d t \\
& \sqrt{\frac{1}{T} \int_{T / 2}^{T}\left(-v_{0}\right)^{2} d t} \\
&=\sqrt{v_{0}^{2} \frac{1}{T} \int_{0}^{T} d t}=\sqrt{v_{0}^{2}}=v_{0}
\end{aligned}
$$

Crest Factor

The ratio between the peak voltage and the rms voltage is known as the crest factor:

$$
c f=\frac{V_{\text {peak }}}{V_{r m s}}
$$

For a sinusoid the crest factor is $\sqrt{ } 2$; for a square wave the crest factor is 1

For audio signals the crest factor depends on the source but is commonly 2 or higher

150 W of audio into 4Ω loudspeakers would therefore require peak voltages of 50 V or greater

Power in a Reactive Load

Capacitors and inductors store energy, but do not dissipate power

$$
\begin{aligned}
& 100 \mathrm{Vrms} \uparrow 50 \mathrm{~Hz} \\
& I_{R}=\frac{100}{25}=4 \mathrm{~A} \\
& I_{C}=\frac{100}{\left|Z_{C}\right|}=100 \times 2 \pi \times 50 \times 200 \times 10^{-6} \mathrm{~A}=6.28 \mathrm{~A} \\
& \mathrm{P}=\frac{100^{2}}{25}=400 \mathrm{~W}
\end{aligned}
$$

Instantaneous Power

For sinusoidal voltages and currents:

$$
\begin{aligned}
& v(t)=v_{0} \cos (\omega t) \\
& i(t)=i_{0} \cos (\omega t+\varphi)
\end{aligned}
$$

Instantaneous power:

$$
\begin{aligned}
p(t) & =v(t) \times i(t) \\
& =v_{0} \cos (\omega t) i_{0} \cos (\omega t+\varphi) \\
& =v_{0} i_{0} \cos (\omega t) \cos (\omega t+\varphi) \\
& =\frac{1}{2} v_{0} i_{0}\{\cos (2 \omega t+\varphi)+\cos \varphi\}
\end{aligned}
$$

Average Power

Average power:

$$
\begin{aligned}
P & =\frac{1}{T} \int_{0}^{T} p(t) d t \\
& =\frac{1}{T} \int_{0}^{T} v_{0} \cos (\omega t) i_{0} \cos (\omega t+\varphi) d t \\
& =\frac{1}{2} v_{0} i_{0} \frac{1}{T} \int_{0}^{T} \cos (2 \omega t+\varphi) d t+\frac{1}{2} v_{0} i_{0} \frac{1}{T} \int_{0}^{T} \cos \varphi d t
\end{aligned}
$$

If $T \gg 1 / \omega$:

$$
\begin{aligned}
P & =\frac{1}{2} v_{0} i_{0} \frac{1}{T} \int_{0}^{T} \cos \varphi d t \\
& =\frac{1}{2} v_{0} i_{0} \cos \varphi
\end{aligned}
$$

Average Power

$$
\begin{aligned}
& P=\frac{1}{2} v_{0} i_{0} \cos \varphi \\
& =\frac{1}{2} \frac{v_{0}^{2}}{|Z|} \cos \varphi \\
& =\frac{1}{2} i_{0}^{2}|Z| \cos \varphi
\end{aligned}
$$

Average Power

Average power:

$$
P=\frac{1}{2} v_{0} i_{0} \cos \varphi
$$

For a resistor:

$$
\varphi=0 \quad \rightarrow \quad P=\frac{1}{2} v_{0} i_{0}=\frac{1}{2} \frac{v_{0}^{2}}{R}=\frac{1}{2} R i_{0}^{2}
$$

For a capacitor:

For an inductor:

$$
\varphi=\frac{\pi}{2} \quad \rightarrow \quad P=0
$$

$$
\varphi=-\frac{\pi}{2} \quad \rightarrow \quad P=0
$$

rms Voltages and Currents

Power expressed in terms of rms voltages and currents:

$$
\begin{aligned}
P & =\frac{1}{2} v_{0} i_{0} \cos \varphi \\
& =\frac{1}{2} V_{r m s} \sqrt{2} I_{r m s} \sqrt{2} \cos \varphi \\
& =V_{r m s} I_{r m s} \cos \varphi \quad(\mathrm{~W}) \\
P & =\frac{V_{r m s}^{2}}{|Z|} \cos \varphi \\
P & =I_{r m s}^{2}|Z| \cos \varphi
\end{aligned}
$$

Determine the average power dissipated in the circuit:

$$
\begin{aligned}
& 230 \mathrm{Vrms} \\
& \mathrm{Z}=R+\frac{1}{j \omega C} \\
&=80+\frac{1}{j 2 \pi \times 50 \times 20 \times 10^{-6}} \\
&=80-j 159.2 \Omega \\
&=178.1 \angle-1.105\left(-63.3^{\circ}\right) \Omega
\end{aligned}
$$

Example 1

$$
\begin{aligned}
P & =\frac{V_{r m s}^{2}}{|Z|} \cos \varphi \\
& =\frac{230^{2}}{178.1} \cos -1.105 \\
& =133.4 \mathrm{~W}
\end{aligned}
$$

Example 2

Determine the average power dissipated in the circuit:

The driving-point impedance of this circuit at 400 Hz (calculated previously) is:

$$
Z=3.091 \Omega \angle-0.9282
$$

Example 2

$$
Z=3.091 \Omega \angle-0.9282
$$

Example 2

Determine the average power dissipated in the circuit

Since no power is dissipated in the capacitor we only need to calculate the power in the inductor-resistor leg

Example 2

$$
Z_{L R}=3.212 \angle 0.8986
$$

$$
\begin{aligned}
P & =\frac{V_{r m s}^{2}}{|Z|} \cos \varphi \\
& =\frac{80^{2}}{3.212} \cos 0.8986 \\
& =1241 \mathrm{~W}
\end{aligned}
$$

AC Circuit Analysis

Lecture 9

Power Factor Three-Phase Electric Power

True and Apparent Power

The apparent power P_{a} in a circuit is:

$$
P_{a}=V_{r m s} I_{r m s}
$$

Apparent power is measured in VA

The true power P dissipated in a circuit is:

$$
P=V_{r m s} I_{r m s} \cos \varphi
$$

True power is measured in W

The power factor is the ratio of the true power to the apparent power:

$$
p f=\frac{P}{P_{a}}=\frac{V_{r m s} I_{r m s} \cos \varphi}{V_{r m s} I_{r m s}}=\cos \varphi
$$

where \varnothing is the phase difference between voltage and current.
It does not matter whether \varnothing is phase of the current with respect to the voltage, or voltage with respect to the current, since:

$$
\cos \varphi=\cos -\varphi
$$

Example 1

Determine the power factor, apparent power and true power power dissipated in the circuit:

$$
\begin{aligned}
Z & =4+j 15.08 \Omega \\
& =15.60 \Omega \angle 1.312\left(75.1^{\circ}\right) \\
p f & =\cos 1.312=.2559 \\
P_{a} & =V_{r m s} I_{r m s}=\frac{V_{r m s}^{2}}{|Z|}=410.3 \mathrm{VA} \\
P & =p f \times P_{a}=105.0 \mathrm{~W}
\end{aligned}
$$

Power Factor Correction

Most industrial loads have a poor (pf $\ll 1$) power factor
Examples are induction motors and inductor-ballast lighting
Power factor can be corrected by connecting a reactance in parallel with the load

This reduces the apparent power and the rms current without affecting the load

This is obviously desirable because it reduces the current rating of the power wiring and supply

Power Factor Correction

Power factor is normally corrected by connecting a reactive element Z_{C} in parallel with the load Z_{L} :

Supply current: I_{S} Load current: I_{L} Correction current: I_{C}

A unity overall power factor will be obtained provided that V_{S} and I_{s} are in phase:

$$
\left.\frac{I_{S}}{V_{S}}=G \angle 0=G+j 0 \quad \text { (real }\right)
$$

Power Factor Correction

$$
\begin{aligned}
& \frac{I_{S}}{V_{S}}=\frac{I_{L}}{V_{S}}+\frac{I_{C}}{V_{S}}=G+j 0 \\
& \frac{1}{Z_{L}}+\frac{1}{Z_{C}}=G+j 0 \\
& {\left[\frac{1}{Z_{L}}\right]_{i m a g}=-\left[\frac{1}{Z_{C}}\right]_{i m a g}}
\end{aligned}
$$

If I_{L} leads V_{S} then an inductor is used for correction
If I_{L} lags V_{S} then a capacitor is used for correction

Power Factor Correction

Correction of a lagging power factor load with a capacitor:

Note that the magnitude of the supply current I_{S} is less than that of the load I_{L}

Choose a suitable power factor correction component for the circuit:

Example 2

Example 2

$$
\begin{aligned}
I_{L} & =\frac{80}{Z_{L}} \\
& =80(0.01643-j 0.06195) \\
& =1.314-j 4.956 \\
I_{C} & =\frac{80}{Z_{C}} \\
& =80 \times j 0.06195 \quad 400 \mathrm{~Hz} \\
& =j 4.956 \\
I_{S} & =I_{L}+I_{C} \\
& =1.314-j 4.956+j 4.956 \\
& =1.314
\end{aligned}
$$

Example 2

Example 3

An electric motor operating from the 50 Hz mains supply has a lagging current with a power factor of .80

The rated motor current is 6 A at 230 V so that the magnitude of $1 / Z_{L}$ is:

$$
\left|\frac{1}{Z_{L}}\right|=\frac{I_{L}}{V_{S}}=\frac{6}{230}=0.02609
$$

and the phase of $1 / Z_{L}$ is:

$$
\angle\left\{\frac{1}{Z_{L}}\right\}=\cos ^{-1} 0.8= \pm 0.6435
$$

Since the current lags the voltage the negative phase is used

Example 3

$$
\begin{aligned}
\frac{1}{Z_{L}} & =0.02609 \angle-0.6435=0.02087-j 0.01565 \\
\frac{1}{Z_{C}} & =+j 0.01565=j \omega C \\
C & =\frac{0.01565}{2 \pi \times 50}=49.82 \mu \mathrm{~F}
\end{aligned}
$$

Before correction:

$$
\begin{aligned}
P_{a} & =230 \times 6=1380 \\
P & =p f \times P_{a}=0.8 \times 1380 \\
& =1104
\end{aligned}
$$

After correction:

$$
\begin{aligned}
& P=P_{a}=1104 \\
& I_{S}=\frac{P}{V_{S}}=\frac{1104}{230}=4.8
\end{aligned}
$$

Example 3

Three-Phase Electric Power

Most ac power transmission systems use a three-phase system

Three-phase is also used to power large motors and other heavy industrial loads

Three-phase consists of three sinusoids with phases $2 \pi / 3$ (120 ${ }^{\circ}$) apart

This allows more power to be transmitted down a given number of conductors than single phase

A three-phase transmission system consists of conductors for the three phases and sometimes a conductor for neutral

Three-Phase Electric Power

Three-phase generator

Three-Phase Electric Power

Phase-to-neutral voltage v_{0} Phase-to-phase voltage v_{p}

$$
\begin{aligned}
v_{p} & =2 v_{0} \sin \frac{\pi}{3} \\
& =2 v_{0} \frac{\sqrt{3}}{2} \\
& =v_{0} \sqrt{3}
\end{aligned}
$$

Three-Phase Electric Power

UK domestic supply uses three -phase with a phase-toneutral voltage v_{0} of 230 V rms (325 V peak)

This corresponds to a phase-to-phase voltage v_{p} of 400 V rms (563 V peak)

Each property is supplied with one phase and neutral
If the phases are correctly balanced (similar load to neutral on each) then the overall neutral current is zero

The UK electricity distribution network operates at 275 kV rms and 400 kV rms

AC Circuit Analysis

Lecture 10

Energy Storage

Energy Storage

Reactive components (capacitors and inductors) do not dissipate power when an ac voltage or current is applied

Power is dissipated only in resistors
Instead reactive components store energy
During an ac cycle reactive components alternately store energy and then release it

Over a complete ac cycle there is no net change in energy stored, and therefore no power dissipation

Energy Storage

The voltage across a capacitor is increased from zero to V producing a stored energy E :

$$
\begin{aligned}
E & =\int_{0}^{T} v(t) i(t) d t \\
& =\int_{0}^{T} v(t) C \frac{d v}{d t} d t \\
& =C \int_{0}^{V} v d v \\
E & =\frac{1}{2} C v^{2}
\end{aligned}
$$

$i=C \frac{d v}{d t}$

Energy Storage

Example: calculate the energy storage in an electronic flash capacitor of $1000 \mu \mathrm{~F}$ charged to 400 V

$$
\begin{aligned}
E & =\frac{1}{2} C V^{2} \\
& =\frac{1}{2} \times 1000 \times 10^{-6} \times 400^{2} \\
& =80 \mathrm{~J}
\end{aligned}
$$

Energy Storage

The current in an inductor is increase from zero to I producing a stored energy E :

$$
\begin{aligned}
E & =\int_{0}^{T} v(t) i(t) d t \\
& =\int_{0}^{T} L \frac{d i}{d t} i(t) d t \\
& =L \int_{0}^{1} i d i \\
E & =\frac{1}{2} L I^{2}
\end{aligned}
$$

Energy Storage

Example: calculate the energy storage in a 2 mH inductor carrying a current of 10 A

$$
\begin{aligned}
E & =\frac{1}{2} L i^{2} \\
& =\frac{1}{2} \times 2 \times 10^{-3} \times 10^{2} \\
& =0.1 \mathrm{~J}
\end{aligned}
$$

AC Circuit Analysis

© J. B. Grimbleby 18 February 2009

[^0]: James Grimbleby

