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AC Circuit Analysis Syllabus

This course of lectures will extend dc circuit analysis to deal

AC Circuit Analysis Syllabus

This course of lectures will extend dc circuit analysis to deal 
with ac circuits

The topics that will be covered include:
AC voltages and currents
Complex representation of sinusoids
Phasors
Complex impedances of inductors and capacitors
Driving-point impedance
Frequency response of circuits – Bode plots
Power in ac circuits
E t i it d i d tEnergy storage in capacitors and inductors
Three-phase power
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AC Circuit Analysis PrerequitiesAC Circuit Analysis Prerequities

You should be familiar with the following topics:

SE1EA5: Electronic CircuitsSE1EA5:  Electronic Circuits
Ohm’s Law
Series and parallel resistancesp
Voltage and current sources
Circuit analysis using Kirchhoff’s Lawsy g
Thévenin and Norton's theorems
The Superposition Theorem

SE1EC5: Engineering Mathematics
Complex numbers
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AC Circuit AnalysisAC Circuit Analysis

Lecture 1

AC Voltages and Currents
Reactive Components
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AC WaveformsAC Waveforms

Sine waveform
(sinusoid)

Square waveformSquare waveform

Sawtooth waveform

Audio waveformAudio waveform
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Frequency
The number of cycles per second of an ac waveform is known 

Frequency
y p

as the frequency f, and is expressed in Hertz (Hz)

Voltage or 
Current 6 cycles → f = 6 Hzy

Time
0 1s
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Frequency
Examples:

Frequency
p

Electrocardiogram: 1 Hz

Mains power: 50 Hz

Aircraft power: 400 HzAircraft power: 400 Hz

Audio frequencies: 20 Hz to 20 kHz 

AM radio broadcasting: 0.5 MHz – 1.5 MHz

FM di b d ti 80 MH 110 MHFM radio broadcasting: 80 MHz – 110 MHz

Television broadcasting: 500 MHz – 800 MHzg

Mobile telephones: 1.8 GHz

School of Systems Engineering - Electronic Engineering Slide 8James Grimbleby



Period
The period T of an ac waveform is the time taken for a 

Period

complete cycle:

frequency
period 1

=
frequency

Voltage or 
Current T = 0.167 sT  0.167 s

Time
0 1s

School of Systems Engineering - Electronic Engineering Slide 9James Grimbleby



Why Linear?

We shall consider the steady-state response of linear ac

Why Linear?

We shall consider the steady state response of linear ac 
circuits to sinusoidal inputs

Linear circuits contain linear components such as resistors, 
capacitors and inductorsp

A linear component has the property that doubling the voltage 
across it doubles the current through it

Most circuits for processing signals are linear

Analysis of non-linear circuits is difficult and normally requires 
the use of a computer.
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Why Steady-State?
Steady-state means that the input waveform has been 

Why Steady State?
y p

present long enough for any transients to die away 

Output V

VVin Time
t

Vin

Vin=0  for  t≤0
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Why Sinusoidal?Why Sinusoidal?

A linear circuit will not change the waveform or frequency of a 
sinusoidal input (the amplitude and phase may be altered)

Power is generated as a sinusoid by rotating electrical 
machinery

Si id l i d l d iSinusoidal carrier waves are modulated to transmit 
information (radio broadcasts)

Any periodic waveform can be considered to be the sum of a 
fundamental pure sinusoid plus harmonics (Fourier Analysis)fundamental pure sinusoid plus harmonics (Fourier Analysis)
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Fourier Analysis
A square waveform can be considered to consist of a 
f d t l i id t th ith dd h i i id

Fourier Analysis

fundamental sinusoid together with odd harmonic sinusoids

Square wave Sum

FundamentalFundamental

3 d h i3rd harmonic

5th harmonic
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Representation of Sinusoids
A sinusoidal voltage waveform v(t) of amplitude v0, and of 

Representation of Sinusoids
g ( ) p 0

frequency f :
tvftvtv ωsinπ2sin)( 00 ==

or: tvftvtv ωcosπ2cos)( 00 ==

where ω=2πf is known as the angular frequency

v fT /1=v fT /1=

t
v0
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Representation of Sinusoids
The sinusoid can have a phase term φ:

Representation of Sinusoids

A phase shift φ is equivalent to a time shift φ/ω

( )φω += tvtv sin)( 0

A phase shift φ is equivalent to a time shift -φ/ω

φτ
v

( )φω +tv sin0

ω
τ =

t

( )φω +tv sin0

( )tv ωsin0

t

( )0

The phase is positive so the red trace leads the green trace
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Resistors

Ceramic tube

Resistors

Ceramic tube
coated with
Conductive filmConductive film

Metal end
i

v

Metal end 
cap

R i t RFil b

v

Resistance R
Riv =

Film: carbon
metal

t l id
(Ohm’s Law)

metal oxide
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ResistorsResistors
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Resistors
v

i

Resistors

Riv =Ohm’s Law:
i

R
Suppose that: 

( )tvtv ωsin)(
i, v

i v( )tvtv ωsin)( 0=

Then:

i v

R
tvti )()( =

Then: 
t

( )t
R
v
R

ωsin0=
R

Current in phase with voltage
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Capacitors

i

Capacitors

Insulating 

i

Conducting

dielectric
v

Conducting 
electrodes

Di l t i i C it C
dvCiCvq

Dielectrics: air
polymer

i

Capacitance C

dt
CiCvq ==ceramic

Al203 (electrolytic)
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CapacitorsCapacitors
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Capacitors
v

i d

Capacitors

i

C dt
dvCi =

Suppose that: 
( )tvtv ωsin)( 0=

i, v

)(t)(ti( )tvtv ωsin)( 0

Then: 
)(tv)(ti

( )= sin)( 0 ωtv
dt
dCti t

( )
⎞⎛

= cos0
π

ωω tCv

⎟
⎠
⎞

⎜
⎝
⎛ +=

2
sin0

πωω tCv
Current leads voltage by π/2 (90°)
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Capacitors
Does a capacitor have a “resistance”?
Capacitors

v, i ( )tvtv ωsin)( 0= ( )tCvti ωω cos)( 0=

t
1t 2t1t 2t

∞==
0)(

)( 01 v
ti
tv 00

)(
)(

02
2 ==

iti
tv

Thus “resistance” varies between ±∞: not a useful concept

0)( 1ti )( 02 iti

School of Systems Engineering - Electronic Engineering Slide 23James Grimbleby

p



Capacitors

The reactance XC of a capacitor is defined:

Capacitors

The reactance XC of a capacitor is defined:

0
i
vXC =

where v0 is the amplitude of the voltage across the capacitor 
0i

C

0 p g p
and i0 is the amplitude of the current flowing through it

Thus:

fCCC
vXC 2

110 ===
fCCCvC πωω 20

The reactance of a capacitor is inversely proportional to its 
value and to frequency
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InductorsInductors

Magnetisable
corecore

Copper 
wire

v

i

C i

v

I d t L

diL

Core: air
ferrite
i

Inductance L

dt
diLv =iron

silicon steel
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InductorsInductors
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Inductors
v

i di

Inductors

Suppose that:
L dt

diLv =

Suppose that: 
( )tvtv ωsin)( 0=

i, v

)(t )(ti

1
Then: 

)(tv )(ti

( )∫= sin1)( 0 ω

v

tv
L

ti t

( )

⎞⎛

−
= cos0 ω
ω

t
L

v

⎟
⎠
⎞

⎜
⎝
⎛ −=

2
sin0 πω

ω
t

L
v

Current lags voltage by π/2 (90°)
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Inductors
The reactance XC of an inductor is defined:

Inductors

C

0

0
i
vXC =

where v0 is the amplitude of the voltage across the inductor 

0i

and i0 is the amplitude of the current flowing through it

Thus:
fLL

Lv
vXc πω
ω

2
/
0 ===

The reactance of an ind ctor is directl proportional to its

Lv ω/0

The reactance of an inductor is directly proportional to its 
value and to frequency
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Resistance and ReactanceResistance and Reactance

0
i
vX = 0→f ∞→f
0i

0→f ∞→f

Resistance R R R R

Capacitance C
Cω
1 short

circuit
open
circuit

Inductance L Lω open
i it

short
i itInductance L Lω circuitcircuit
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AC Circuit AnalysisAC Circuit Analysis

L t 2Lecture 2

AC Analysis using Differential Equations
Complex NumbersComplex Numbers

Complex Exponential Voltages and Currents
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AC Circuit Analysis
The ac response of a circuit is determined by a differential 

AC Circuit Analysis
p y

equation:

R
)()()( tvtRitv cin +=

)(

R )(ti

dt
tdvCti c )()( =)(tvin C )(tvc

)()()( tv
dt

tdvRCtv c
c

in +=
dt

tvtvtdv i )()()(
RC

tv
RC

tv
dt

tdv incc )()()(
=+
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AC Circuit Analysis
Now suppose that the input voltage vin is a sinusoid of angular 

AC Circuit Analysis

frequency ω

Th t t lt ill b i id f th fThe output voltage vc will be a sinusoid of the same freqeuncy, 
but with different amplitude and phase:

( )
( )φω
ω
+=

=

tvtv
tvtvin

cos)(
cos)(

1

0

Expanding the expression for vc:

( )φω += tvtvc cos)( 1

c

tBtAtvtvtvc ωωφωφω sincossinsincoscos)( 11 +=−=

tBtA
dt

tdvc ωωωω cossin)(
+−=
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AC Circuit Analysis

The differential equation becomes:

AC Circuit Analysis

The differential equation becomes:

tvtBtAtBtA ωωωωωωω cossincoscossin 0=+++−

Comparing the coefficients of sinωt and cosωt on both sides of 

t
RC

t
RC

t
RC

tBtA ωωωωωωω cossincoscossin +++

p g
the equation:

0BRCA =+− ω

0vARCB =+ω

Solving these simultaneous linear equations in A and B:

222
0

222
0

11 CR
RCvB

CR
vA

ω
ω

ω +
=

+
=
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AC Circuit Analysis

00 sincos RCvvBvvA ωφφ

AC Circuit Analysis

Thus:

222
0

1222
0

1
1

sin
1

cos
CR

vB
CR

vA
ω

φ
ω

φ
+

=−=
+

==

Thus:
RC

CR
vv ωφ

ω
−=

+
= tan

1
1

22201

At an angular frequency ω=1/RC:
CRω+1 222

−==
42

0
1

πφvv

⎟
⎠
⎞

⎜
⎝
⎛ −=

4
cos

2
)(

42
0 πωtvtvc

The output voltage lags the input voltage by π/4 (45°)

⎠⎝ 42
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AC Circuit AnalysisAC Circuit Analysis

1.0

0.7071

v 1
/v

0
e 

ga
in

 
Vo

lta
ge

0 0

V

Angular frequency ω (rad/s)

0.0
1/RC 10/RC 100/RC0.1/RC0.01/RC
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Complex Numbers:Complex Numbers: 
Rectangular Form

Complex numbers can be represented in rectangular, polar or 
exponential form

Rectangular form:

h i h l i h i i ( d

jyxz +=

where x is the real part, y is the imaginary part (x and y are 
both real numbers), and

112 −=−= jj

Complex numbers are often the solutions of real problems, 
for example quadratic equations
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Complex Numbers:Complex Numbers: 
Argand Diagram

Imaginary part

jyxz +=

Imaginary
axis

y
axis

Real partp
O x

Real axis
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Complex Numbers: Polar Form
Polar form:

θ∠rz

Complex Numbers: Polar Form

where r is the magnitude, and θ is the angle measured from 
th l i

θ∠= rz

the real axis:

I i

z

Imaginary
axis r

θ
Real axis

O

θ
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Complex Numbers:Complex Numbers: 
Exponential Form
Exponential form:

θjrez =

Euler’s identity:
θθθ ijj θθθ sincos je j +=

1
sin θ

θ
O

cos θ

The polar and exponential forms are therefore equivalent

cos θ
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Complex Numbers: Conversion

z

Complex Numbers: Conversion

z

r

θ
y

O

22

xO

Rectangular to polar:
yz

yxzr

∠

+==

θθ tan

22

θP l t R t l

x
yz =∠= θθ tan

θ
θ

sin
cos

ry
rx

=
=Polar to Rectangular:
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Complex Numbers: Inversion
If the complex number is in rectangular form: 

Complex Numbers: Inversion
p g

1
jyx

z
+

=

))(( jyxjyx
jyx

jyx

+
−

=

+

))((
jyx

jyxjyx
−

=

−+

If th l b i i l ti l f

22 yx +

If the complex number is in polar or exponential form:

j11 φ
φ

j
j e

AAe
z −==

11
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Complex Numbers: Conversion
When using the inverse tangent to obtain θ from x and y it is 

Complex Numbers: Conversion
g g y

necessary to resolve the ambiguity of π:

yy jyxz +=

y θ+
−

y
x

+
+

y
x

x
y

=θtan
θ

+x−x
x

−
+

y
x

−y
x

jyxw −−=
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Complex Numbers: Conversion
When using the inverse tangent to obtain θ from x and y it is 

Complex Numbers: Conversion
g g y

necessary to resolve the ambiguity of π

1. Calculate θ using inverse tangent: 

y1

/ θ /
x
y1tan−=θ

This should give a value in the range:  -π/2 ≤ θ ≤ +π/2 
(-90º ≤ θ ≤ +90º)

2. If the real part x is negative then add π (180º) : 

x
y1tan−+=πθ
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Complex Numbers: Conversion

C t t t l f2 π
∠

Complex Numbers: Conversion

Convert                           to rectangular form
3

2 π
∠=z

Real part: 1
2
12

3
cos2 =×=⎟

⎠
⎞

⎜
⎝
⎛=
πx

23 ⎠⎝

Imaginary part: 3
2
32

3
sin2 =×=⎟

⎠
⎞

⎜
⎝
⎛=
πy

Thus: 31 jz +=
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Complex Numbers: ConversionComplex Numbers: Conversion

2

1 732
31 jz +=

Imaginary

1.732

2=r
axis

1

R l i
)60(

3
oπθ =

Real axis
O 1 2
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Complex Numbers: Conversion

C t t l ti l f1

Complex Numbers: Conversion

Convert                     to polar or exponential form:
j

z
+

=
1

1

Magnitude:
2

1

11

01
22

22
=

+
== zr

211 22 +

Angle: 

01t0t

)1(1

11 ππ
θ

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛

+∠−∠=∠=

−−

jz

44
0

1
1tan

1
0tan 11 ππ

−=−=⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛= −−

π

Thus: or 4
2

1
42

1
π

π j
ezz
−

=−∠=
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Complex Numbers: ConversionComplex Numbers: Conversion

Real axis
O π

0.5

O

Imaginary

)45(
4

oπθ −=

Imaginary
axis

0.5 11 j−
2

1
1

1 j
j

z =
+

=
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Complex Exponential Voltages

We shall be using complex exponential voltages and currents

Complex Exponential Voltages

We shall be using complex exponential voltages and currents 
to analyse ac circuits:

tj

Thi i th ti l t i k f bt i i th

tjVetv ω=)(

This is a mathematical trick for obtaining the ac response 
without explicitly solving the differential equations

It works because differentiating a complex exponential leaves 
it unchanged apart from a multiplying factor:it unchanged, apart from a multiplying factor:

tjtjd tjtj VejVe
dt
d ωω ω=
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Complex Exponential Voltages

S th t l ti l lt i li d

Complex Exponential Voltages

Suppose that a complex exponential voltage is applied 
across a resistor:

tv )(tjVt ω)(

tjV
R
tvti =
)()(

tjVetv ω=)(
)(ti

tje
R
V ω=R

The current through the resistor is also a complexThe current through the resistor is also a complex 
exponential
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Complex Exponential Voltages

S th t l ti l lt i li d

Complex Exponential Voltages

Suppose that a complex exponential voltage is applied 
across a capacitor:

dt
tdvCti =
)()(tjVetv ω=)(

tjVe
dt
dC

dt
ω=

jVetv =)(
)(ti

tjCVej
dt

ωω=
C

The current through the capacitor is also a complexThe current through the capacitor is also a complex 
exponential
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Complex Exponential Voltages

S th t l ti l lt i li d

Complex Exponential Voltages

Suppose that a complex exponential voltage is applied 
across an inductor:

dttv
L

ti )(1)( ∫=
tjVetv ω=)(

tj dtVe
L

ω1
∫=

jVetv =)(
)(ti

tjVe
Lj

L
ω

ω
1

=
L

The current through the inductor is also a complex

Ljω

The current through the inductor is also a complex 
exponential
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Complex Exponential VoltagesComplex Exponential Voltages

A complex exponential input to a linear ac circuits results in all 
voltages and currents being complex exponentials

Of course real voltages are not complex

The real voltages and currents in the circuit are simply the real 
parts of the complex exponentialsparts of the complex exponentials

Complex exponential: )sincos()( tjtetv tj ωωω +==Complex exponential:

Real voltage:

)sincos()( tjtetvc ωω +==

ttv ωcos)( =Real voltage: ttvr ωcos)( =
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AC Circuit AnalysisAC Circuit Analysis

L t 3Lecture 3

Phasors
ImpedancesImpedances

Gain and Phase Shift
Frequency Response
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Phasors
If the input voltage to a circuit is a complex exponential:

Phasors

then all other voltages and currents are also complex

tj
cin evtv ω

0)( =

then all other voltages and currents are also complex 
exponentials:

tjtjjtj

tjtjjtj
c

Iiiti

eVeevevtv
ωωφφω

ωωφφω

)(
11

)(
11

22

11

)(

)( ===
+

+

tjtjjtj
c eIeeieiti ωωφφω

22
)(

22 22)( === +

where V1 and I2 are time-independent voltage and current 
phasors:

111
φjevV =

222

11
φjeiI

evV

=

=
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Phasors
The complex exponential voltages and currents can now be 

Phasors

expressed:

tj

tj
c eVtv

ω

ω
11 )( =

Ph i d d t f ti b t i l f ti

tj
c eIti ω

22 )( =

Phasors are independent of time, but in general are functions 
of jω and should be written:

( ) ( )ωω jIjV 21

However, when there is no risk of ambiguity the dependency 
will be not be shown explicitly

Note that upper-case letters are used for phasor symbols
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Impedance

The impedance Z of a circuit or component is defined to be the

Impedance

The impedance Z of a circuit or component is defined to be the 
ratio of the voltage and current phasors:

I
VZ =

For a resistor:
tRitv cc = )()(tjVetv ω)(

RIeVe

tRitv
tjtj

cc

= ωω

)()(j
c Vetv =)(

tj
c Ieti ω=)(

RIV =R

So that: R
I
VZR ==
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Impedance

F it

Impedance

For a capacitor:
tdvCti c=
)()(

VedCIe

dt
Cti

tjtj

c

ωω

=)(
tj

c Vetv ω=)(
tjIeti ω=)(

CVejIe

Ve
dt

CIe

tjtj

tjtj

ω ωω

ωω

=

=

C

c Ieti =)(

CVjI
CVejIe jj

ω
ω

=
=

So that: VZ 1
CjI

VZC ω
1

==
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Impedance

F i d t

Impedance

For an inductor:
tdiLtv c=
)()(

IedLVe

dt
Ltv

tjtj

c

ωω

=)(
tj

c Vetv ω=)(
tjIeti ω=)(

LIejVe

Ie
dt

LVe

tjtj

tjtj

ω ωω

ωω

=

=c Ieti =)(

L

LIjV
LIejVe jj

ω
ω

=
=

So that:
V Lj
I
VZL ω==
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ImpedanceImpedance

I
VZ = ∞→f0→f

Resistance R R R R

I

Resistance R R R R

1
Capacitance C Cjω

1
∞→Z 0→Z

Inductance L Ljω ∞→Z0→Z
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Impedance
All the normal circuit theory rules apply to circuits containing 

Impedance
y pp y g

impedances

For example impedances in series:

4321 ZZZZZ +++=

and impedances in parallel:

4321 ZZZZZ +++=

and impedances in parallel:

11111
+++=

Other rele ant circ it theor r les are Kirchhoff’s la s

4321 ZZZZZ
+++

Other relevant circuit theory rules are: Kirchhoff’s laws, 
Thévenin and Norton's theorems, Superposition
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ImpedanceImpedance

Potential divider:

Vin

21
IZV

ZZ
VI in
+

=
I1Z

2

2
ZV

IZV

in

out

=

=

VV

2

21
ZV

ZZ

out

+
=

outV2ZinV

21
2
ZZ

Z
V
V

in

out
+

=
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AC Circuit Analysis
Suppose that a circuit has an input x(t) and an output y(t), 

AC Circuit Analysis
pp p ( ) p y( )

where x and y can be voltages or currents

The corresponding phasors are X(jω) and Y(jω)

The real input voltage x(t) is a sinusoid of amplitude x0:

)()()cos()( tjtj Xereexretxtx ωωω

and the real output voltage y(t) is the real part of the complex

)()()cos()( 00
tjtj Xereexretxtx ωωω ===

and the real output voltage y(t) is the real part of the complex 
exponential output:

)()()cos()( 00
tjtjj Yereeeyretyty ωωφφω ==+=
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AC Circuit Analysis

Thus:

AC Circuit Analysis

Thus:

X
Y

x
ey j

=
0

0
φ

The voltage gain g is the ratio of the output amplitude to the

Xx0

The voltage gain g is the ratio of the output amplitude to the 
input amplitude:

Yy0
Xx

yg ==
0

0

and the phase shift is:

⎞⎛Y
⎟
⎠
⎞

⎜
⎝
⎛∠=

X
Yφ

School of Systems Engineering - Electronic Engineering Slide 65James Grimbleby



AC Circuit AnalysisAC Circuit Analysis

Using the potential divider formula:

ZV CcR

Cj
ZZ

Z
V
V

RC

C

in

c

ω
+

=

/1

R

RCj
Cj

ω
ω
+

=
/1

/1CinV cV

CRjω+
=

1
1
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AC Circuit Analysis
R

AC Circuit Analysis

Vc 1V V
CRjV

V
in

c
ω+

=
1

1
CinV cV

1V
Voltage gain:

2221

1

RCV
Vg

in

c

ω+
==

Phase shift: CR
V
V

i

c ωφ 11 tan0tan −− −=⎟
⎠

⎞
⎜
⎝

⎛
∠=

CR

Vin

ω1tan−−=

⎠⎝
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Frequency Response (RC = 1)Frequency Response (RC  1)
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Frequency Response (RC = 1)

Angular Frequency (rad/s)

Frequency Response (RC  1)

Angular Frequency (rad/s)

0
1 10 1000.1

 s
hi

ft

π

P
ha

se )45(
4

°−−
π

P

)90(
2

°−−
π
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Frequency ResponseFrequency Response

CRωφ 1tan−−=2221

1

RC
g

ω+
=

0→ω 1→g )0(0 °→φ→g

1 1 π

)(φ

CR
1

=ω
2

1
=g )45(

4
°−−=

πφ

∞→ω 0→g )90(
2

°−−→
πφ

This is a low-pass response
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Frequency ResponseFrequency Response

0→ω ∞→ω

0→CVinC VV →
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AC Circuit AnalysisAC Circuit Analysis

ZVV R

C

R
ZZ

VV
CR

R
inR +

=

RinV RV

CRj
CjR

RVin ω+
=

/1

CRj
CRjVV inR ω

ω
+

=
1

CRj
CRj

V
V

i

R
ω

ω
+

=
1 CRjVin ω+1
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AC Circuit Analysis
C

AC Circuit Analysis

CRj
CRj

V
VR ω

=
1RinV RV CRjVin ω+1Rin R

V lt i CRVR ωVoltage gain:
2221 RC

CR
V
Vg

in

R

ω

ω

+
==

⎞⎛Phase shift : CR
V
V

in

R ωφ 11 tantan −− −∞=⎟
⎠

⎞
⎜
⎝

⎛
∠=

CRωπ 1tan
2

−−=

⎠⎝
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Frequency Response (RC = 1)Frequency Response (RC  1)
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Frequency Response (RC = 1)Frequency Response (RC  1)

)90(
2

°
π

ift

)45(
4

°
π
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P
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Frequency ResponseFrequency Response

CRωπφ 1tan
2

−−=2221 RC

CRg
ω

ω

+
=

0→ω 0→g )90(
2

°→
πφ→g

1 1 π

)(
2

φ

CR
1

=ω
2

1
=g )45(

4
°=

πφ

∞→ω )0(0 °→φ1→g

This is a high-pass response
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Frequency ResponseFrequency Response

0→ω ∞→ω0→ω ∞→ω

inR VV →0→RV
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AC Circuit AnalysisAC Circuit Analysis

L t 4Lecture 4

Driving-Point Impedance
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Impedance

The impedance Z of a circuit or component is defined to be the

Impedance

The impedance Z of a circuit or component is defined to be the 
ratio of the voltage and current phasors:

)( ωjI

)()( ωω jVjZ =AC Circuit)( ωjV

)( ωjI

)(
)(

ω
ω

jI
jZ =AC Circuit)( ωjV

Impedance Z is analogous to resistance in dc circuits and its 
units are ohms

When Z applies to a 2-terminal circuit (rather than simple 
component) it is known as the driving-point impedance
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Impedance

Z can be written in rectangular form:

Impedance

Z can be written in rectangular form:

)()()( ωωω jjXjRjZ +=

where R is the resistance and X is the reactance

Thus: XRZ 22 +=

R
XZ 1tan−=∠

and:
ZZR ∠= cos

ZZX ∠= sin
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Symbolic and Numeric FormsSymbolic and Numeric Forms

CRj
RZ
ω+

=
1

Symbolic Form

Substitute component 
values

Numeric Form
31081

80
−

=
ωj

Z

Substitute frequency 
value

31081 ××+ ωj

Value at a given frequency

value

4024 jZ +=Value at a given frequency 4024 jZ +
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Example 1
Determine the driving-point impedance of the circuit at a 

Example 1
g p p

frequency of 40 kHz:

1
ZZZ CR +=

1
Cj

R +=
ω

C = 200nF

1020010402
125 93j ××××

+=
−π

R = 25Ω

050270
125

j

j

+=

Ω89.1925
05027.0

j
j

−=
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Example 1Example 1

89.1925 −= jZ Ω

89.1925 22 +=Z C = 200nF

93.31
89.1925

=

+Z
Ω

R = 25Ω

89.19tan 1−=∠ −Z

R = 25Ω

)5.38(6720.0
25

tan

°−−=

=∠Z

)(
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Example 1
What will be the voltage across the circuit when a current of 

Example 1
g

5 A, 40 kHz flows through it?

)89.1925(5 j
IZV

−×=
=

f

V45.99125
)89.1925(5

j
j

−=
×

In polar form:

)5.38(6720.0)93.315( °−−∠×=
= IZV

)5.38(6720.0159.7V
)()(

°−−∠=
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Example 2
Determine the driving-point impedance of the circuit at a 

Example 2
g p p

frequency of 20 Hz:

ZZZ CR
+=

111

Cj
R

ZZZ CR

ω+=
1 R = 80Ω C = 100μF

Z

j
R

=
1

μ

R
CjR

Z
ω+/1

CRjω+
=

1
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Example 2Example 2

1 CRj
RZ

+
=

ω
C = 100μF

80
1

6

CRj

=

+ ω

R = 80Ω80
80101002021 6j ××××+ −π

)00511(80
005.11
j

j
−

+
=

Ω00407939
005.11

)005.11(80
22

j

j
+

−

Ω00.4079.39 j−=
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Example 2Example 2

00.4079.39 −= jZ Ω

00.4079.39 22 +=Z
42.56= Ω R = 80Ω C = 100μF

00.40tan 1
⎬
⎫

⎨
⎧−=∠ −Z

)245(78800

79.39
tan

o−−=

⎭
⎬

⎩
⎨∠Z

)2.45(7880.0=
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Example 2

What c rrent ill flo if an ac oltage of 24 V 20 H is applied

Example 2

What current will flow if an ac voltage of 24 V, 20 Hz is applied 
to the circuit?

Z
VI ==

Z
VI

788004256
24
−∠

=
00407939

24
−

=
j

A3016030
)2.45(7880.0A0.4254

7880.042.56

j+
°∠=

∠
)00.4079.39(24

00.4079.39

22
+

=
j

j

A3016.03.0 j+=

A3016.03.0
00.4079.39 22

+=
+

j
)2.45(7880.00.4254A °∠=
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Phasor Diagrams
Where voltages or currents are summed the result can be 

Phasor Diagrams
g

represented by a phasor diagram: 321 VVVV ++=

Imaginary part

2V

Real
part

O

1V part1V
V

3V
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Example 2

A3.024
==RI A3016.02410100202 6 jjIC =××××= −π

Example 2

80R jjC

0.3A

pa
rt

na
ry

 p

0.2A
CI

CR III +=

Im
ag

in

0 1A

RI R l

I 0.1A

0.2A

RI Real
partO

0.1A 0.3A
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Example 3
Determine the driving-point impedance of the circuit at a 

Example 3

frequency of 50 Hz:

ZZZZ CLR ++= R 
1
Cj

LjR ++=
ω

ω
24 Ω

L

10120502
1103650224 6

3

j
j

j

+×××+=
−

−π
L
36 mH

Ω53.2631.1124
10120502 6

jj
j

−+=
×××π

C
120 μF

Ω22.1524 j−=
120 μF
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Example 3

221524 −= ΩjZ

Example 3

22.1524= ΩjZ

4228
22.1524 22

=

−=

Ω
Z R 

24 Ω42.28

⎫⎧

= Ω 24 Ω

L

24
22.15tan 1

⎭
⎬
⎫

⎩
⎨
⎧−=∠ −Z 36 mH

)4.32(5652.0 °−−= C
120 μF

)4.32(5652.042.28 °−−∠= ΩZ
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Example 3

What voltage will be generated across the circuit if an ac

Example 3

What voltage will be generated across the circuit if an ac 
current of 10 A, 50 Hz flows though it?

)221524(A10 j
ZIV

×=
=

Ω
V2.152240

)22.1524(A10
j

j
−=

−×= Ω

In polar form:

ZIV
)4.32(5652.0)42.2810( °−−∠×=

= ZIV

)4.32(5652.0V2.284 °−−∠=
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Example 3

CLR VVVV ++=

Example 3

200V
I i

CLR VVVV ++=

LV

Imaginary 
part

RV
LV

Real
t200V 400V

V

part

CV
V

-200V
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Example 4
Determine the driving-point impedance of the circuit at a 
f f 400 H

Example 4

frequency of 400 Hz:
111

+=

RC

ZZZZ CLR
1

+
+

=

R
2 Ω

C
Cj

LjR
1

1 ω
ω

+
+

=

L
1 mH

200 μF
CjLjR

Z
)/(1

1
ωω ++

=

1 mH

LjRCj
LjR

)(1 ωω
ω
++

+
=

LCCRj
LjR

21 ωω
ω

+

+
=
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Example 4
LjRZ +

=
ω

Example 4

1040022

1
3

2

j

LCCRj
Z

××+

−+
=

−π

ωω

1020010)4002(21020040021
1040022

6326

3

j
j

××××−××××+

××+
−−− ππ

π

263.1005.11
513.22

j
j

−+
+

=

005126330
513.22
j

j
j

+−
+

=

)005.12633.0()513.22(
005.12633.0

22
jj

j
−−×+

=

+−

474.2852.1
005.12633.0 22

j
j

−=
+
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Example 4

47428521 jZ

Example 4

474.2852.1 −= jZ

R
0913

474.2852.1 22 +=Z

2 Ω
C

200 F

091.3=

L
1 mH

200 μF

852.1
474.2tan 1=∠ −Z

)2.53(9282.0
852.1

°−−=

)2.53(9282.0091.3 °−−∠= ΩZ
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Example 4
What current will flow if an ac voltage of 120 V, 400 Hz is 

Example 4

applied to the circuit?
VI VI

120

=
Z

I

120
Z

I =

)47428521(120
474.2852.1

120

+×
−

=

j
j

92820A8238
9282.0091.3

120

∠
−∠

=

474.2852.1
)474.2852.1(120

22 +

+×
=

j
08.3126.23
9282.0A82.38

j+=
∠=

556.9
0.2974.222 +

=
j

)(53.20.9282A82.38
08.3126.23

°∠=
+= j
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Example 4

Imaginary part

Example 4

III CRL +=
Imaginary part

120IRL =

50A
CI

23.2927.23 j
Z

I
RL

RL

−= I

120

j

Real120
Z

I
C

C =
ea

partO 50A
I32.60j= RLI
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Admittance

The admittance Y of a circuit or component is defined to be

Admittance

The admittance Y of a circuit or component is defined to be 
the ratio of the current and voltage phasors:

)( ωjI

1)()( ωω jIjY ==AC Circuit)( ωjV

)( ωjI

)()(
)(

ωω
ω

jZjV
jY ==AC Circuit)( ωjV

Admittance Y is analogous to conductance in dc circuits and 
its unit is Siemens

)()()( ωωω jjBjGjY +=

where G is the conductance and B is the susceptance

)()()( ωωω jjBjGjY +
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AdmittanceAdmittance

IY = ∞→f0→f
V

Y ∞→f0→f

111
Resistance R

R
1

R
1

R
1

Capacitance C Cjω ∞→Y0→Y

Inductance L Lj
1

∞→Y 0→YInductance L Ljω →Y 0→Y
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Admittance

All the normal circ it theor r les appl to circ its containing

Admittance

All the normal circuit theory rules apply to circuits containing 
admittances

For example admittances in series:

4321

11111
YYYYY

+++=

and admittances in parallel:

Oth l t i it th l Ki hh ff’ l

4321 YYYYY +++=

Other relevant circuit theory rules are: Kirchhoff’s laws, 
Thévenin and Norton's theorems, Superposition
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Example 5

Determine the dri ing point admittance of the circ it at a

Example 5

Determine the driving-point admittance of the circuit at a 
frequency of 400 Hz:

YY
YY C +=

/1/1
1 R

2 Ω

Cj

YY LR
C

ω +=

+

1
/1/1 2 Ω

L

C
200 μF

LjR
Cj

ω
ω

+
+= L

1 mH

μ

School of Systems Engineering - Electronic Engineering Slide 103James Grimbleby



Example 5
Determine the driving-point admittance of the circuit at a 
f f 400 H

Example 5

frequency of 400 Hz:
2104002102004002

3
6 jjY ×××
+×××=

−
− ππ

150270

1040022
102004002 3

j

j
jY

××+
+×××=

−π
π

51322
513.22

15027.0

j
j

j
+

+=

R
513.22
513.225027.0 22

jj
+

−
+= R

2 Ω
C

32.10
513.225027.0 jj −

+= L

C
200 μF

S2590.01939.0
2436.01939.05027.0

j
jj

+=
−+= 1 mH
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AC Circuit AnalysisAC Circuit Analysis

L t 5Lecture 5

Resonant Circuits
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Resonant CircuitsResonant Circuits

Passive resonant circuits must contain a resistor, capacitor 
and an inductor

The behaviour of resonant circuits changes rapidly around a 
particular frequency (the resonance frequency)

R i i b h i d bResonant circuits can be characterised by two parameters: 
the resonance frequency and the Q-factor

There are two basic resonant circuit configurations: series and 
parallelparallel
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Resonant CircuitsResonant Circuits

L
g

dt
d θω

−=ωθ
=

dt
d

θ
Ldtdt

θ,ω ω
θθ

t

School of Systems Engineering - Electronic Engineering Slide 107James Grimbleby



Resonant Circuits
iL

Resonant Circuits

LC vC C
i

dt
dv LC −=

L
v

dt
di CL =vC CdtLdt

i, v
Cv

iC
Li

t
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Parallel Resonant CircuitParallel Resonant Circuit

R LR L
C

++
1111 LRjZ ω

=
ZZZZ LCR

++=

11 Lj
RLCRLj

Z 2

ω
ωω +−

=

Lj
Cj

R ω
ω ++=

2

11
LCRLj

Lj
2 1/ ωω

ω
+−

=

LRj
RLCRLj

ω
ωω +−

=
2

LCRLj
Lj

2/1 ωω
ω
−+

=
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Parallel Resonant CircuitParallel Resonant Circuit

Ω= k5R μF1=C H1=L

Impedance is a 
maximum 
( tΩ= k5R μF1=C H1=L (resonant 
frequency) 

h

1

when:

2/1+
=

ωω
ω

LCRLj
LjZ

1
=

LC
ω

624

/1

=

−+
ω
ωω
j

LCRLj
610

1
=

−
624 101021 −− ×−××+ ωωj 310=
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Parallel Resonant CircuitParallel Resonant Circuit

0→ω ∞→ω0→ω ∞→ω

0→Z0→Z
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Parallel Resonant CircuitParallel Resonant Circuit

R L
LjZ 2

ω
=R L

C
LCRLj 2/1 ωω −+

00 jLjZ ωω

1

0
1

0

RLjZ

jjZ =→→

ω

ω

R t f
/

1

jLj

R
RLj

LjZ
LC

===

ω
ω
ωωResonant frequency:

02 j
C
j

LC
LjZ −=

−
=

−
→∞→

ωω
ωω
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Parallel Resonant Circuit

5kΩ )90( °
π

Parallel Resonant Circuit

5kΩ
Z∠

)90(
2

°

Z Z∠

0

Z

0 0

Z

)90( °−−
π

Angular frequency (rad/s)

0.0
1000 10000100

)90(
2
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Quality Factor

The standard form for the denominator of a second-order

Quality Factor

The standard form for the denominator of a second-order 
system is:

2
0

2
0 //1 ωωωω −+ Qj

Compare this with the impedance Z:

00 //1 ωωωω+ Qj

Compare this with the impedance Z:

LjZ 2
ω

=

So that:
LCRLj

Z 2/1 ωω −+

L
RQ

LC 0
0

1
ω

ω ==

where Q is the quality-factor and ω0 is the resonant frequency

LLC 0ω
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Quality FactorQuality Factor

Ω= k5R μF1=C H1=LΩ= k5R μF1=C H1=L

10
10

11 3
60 ===

−LC
ω

5000

10

R 5
101

5000
30
=

×
==

L
RQ
ω
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Quality Factor

Z

Quality Factor

maxZ

2
maxZ

Q
0ωω =Δ

2 Q

Z

0 0

Angular frequency (rad/s)

0.0
0ω
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Quality Factor

2kΩ )90( °
π

Quality Factor

2kΩ

Z∠

)90(
2

°

Q=2

Z Z∠
Z∠ Q

0

Z

0 0 )90( °−−
π

Angular frequency (rad/s)

0.0
1000 10000100

)(
2
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Quality Factor

10kΩ )90( °
π

Quality Factor

10kΩ
Z∠

)90(
2

°

Q=10

Z Z∠
Q

0

Z

0 0

Z

)90( °−−
π

Angular frequency (rad/s)

0.0
1000 10000100

)(
2
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Parallel Resonant CircuitParallel Resonant Circuit

LICIRI

V1 Ωk5=R μF1=C H1=LV1

11 4
R

IR ×=== −

1

102
5000

11 4
Resonance occurs in 
parallel resonant circuits

ωω
ω

jCj
Cj

IC ×=== −10
/1

1 6
parallel resonant circuits 
because the currents in 
the capacitor and 

ωωω
j

L
j

Lj
IL

−
=

−
==

1
p

inductor cancel out

School of Systems Engineering - Electronic Engineering Slide 122James Grimbleby



Parallel Resonant Circuit
At resonance:

Parallel Resonant Circuit

:103=ω 1mA
A102 4−×=IR

Imaginary
CI

10 6−×= jIC ω Real

Imaginary
part

A10 3−= j I partO
1mARI

−
=

jIL
LI

A10 3−−= j

L ω -1mA
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Parallel Resonant CircuitParallel Resonant Circuit

Below resonance:
R l

CI
RI

:105.0
4

3×=ω
I

Real
part

Imaginary
O 1mA

RI

10

A102
6

4

−

−

×=

×=

jI

I

C

R

ω

IImaginary
part

A105.0

10
3−×=

×=

j

jIC ω
-1mA

−
=

jIL ω
LI

A102 3−×−= j
ω

-2mA
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Parallel Resonant CircuitParallel Resonant Circuit

Above resonance:
2mA
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−
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jI

I

C

R

ω I i

1mA

A100.2

10
3−×=

×=

j

jIC ω
I

Imaginary
part

−
=

jIL ω
Real
partO 1mARI

A105.0 3−×−= j
ω

LI
1mAR

School of Systems Engineering - Electronic Engineering Slide 125James Grimbleby



Series Resonant CircuitSeries Resonant Circuit

ZZZZ LCR ++=

Lj
Cj

R

LCR

ω
ω
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++=
R

LCCRj
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ωω

ω
21−+

= L

LCCRj
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ωω
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=

Cj
LCCRj

ω
ωω1 −+
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Series Resonant CircuitSeries Resonant Circuit

Cj
LCCRjZ

ω
ωω 21 −+

=
Cjω R
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Series Resonant CircuitSeries Resonant Circuit

21 LCCRj 21 −+
=

ω
ωω

Cj
LCCRjZ R = 200 Ω

6
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10102001
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−− ×−××+
=

ω
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j
j

L = 1H
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101021

10
−− ×−××+

×
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j

j L  1H
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=

ωj C = 1μF
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Series Resonant Circuit

1kΩ )90( °
π

Series Resonant Circuit
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Series Resonant Circuit

The standard form for the denominator of a second-order

Series Resonant Circuit

The standard form for the denominator of a second order 
system is:

2
0

2
0 //1 ωωωω −+ Qj

Compare this with the admittance Y (= 1/Z):

00 //1 ωωωω+ Qj

p ( )

CjY 2
ω

=

So that:
LCCRj

Y 21 ωω −+

CR
Q

LC 0
0

11
ω

ω ==

where Q is the quality-factor and ω0 is the resonant frequency

CRLC 0ω
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Series Resonant CircuitSeries Resonant Circuit

1

1

1
0 =

LC
ω

1101

1
6 ××

=
−

R = 200 Ω
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C 1 F

20010110
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63 ×××
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−

C = 1μF
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20010110
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Series Resonant CircuitSeries Resonant Circuit

Resonance occurs in 
series resonant circuits 

R = 200 ΩRV

1A

because the voltages 
across the capacitor and 

L = 1HLV

1Ap
inductor cancel out

L  1HLV

jj

RVR =×=

101

2001
6

C = 1μFCVωωω
j

C
j

Cj
VC

−
=

−
==

101

ωω jLjVL =×= 1
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Series Resonant Circuit
At resonance:

Series Resonant Circuit

:103=ω 1kV
V200VR =

LV

106jVC
−

= Real
Imaginary

part

V103j

C

−=

ω partO RV 1kV

jVL = ω
CV

V103j

jVL

=

= ω -1kV
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Crystal ResonatorCrystal Resonator
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Crystal ResonatorCrystal Resonator
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Crystal Resonator

Equivalent circuit:

Crystal Resonator

f0 = 8.0 MHz
R = 3 4 Ω

Equivalent circuit:

R

R = 3.4 Ω
L1 = 0.086 mH
C = 4 6 pFC1 = 4.6 pF
C0 = 42 pF

L C0
11

0 == Qω

C1 127010035 7
0

0

=×=

CR
Q

LC ω
ω

12701003.5 =×=
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AC Circuit AnalysisAC Circuit Analysis

L t 6Lecture 6
Frequency-Response FunctionFrequency Response Function

First-Order Circuits
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Frequency-Response FunctionFrequency Response Function

Input OutputYX

)()( ωω jYjHFrequency-response function:
)(

)(
ω

ω
jX

jH =Frequency-response function:

Voltage gain g: )(
)(
)( ω

ω
ω jH
jX
jYg ==

)( ωjX

)( jY ⎞⎛Phase shift φ: )(
)(
)( ω

ω
ωφ jH
jX
jY

∠=⎟
⎠
⎞

⎜
⎝
⎛∠=
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Frequency-Response Function
The order of a frequency-response function is the highest 

Frequency Response Function

power of jω in  the denominator:

Fi t d 1First order:
0/1

1)(
ωω

ω
j

jH
+

=

Second order: 2
00 )/(/21

1)(
ωωωω

ω
jj

jH
++

=

Third order:

00 )/(/21 ωωωω jj ++

1)( ωjH =Third order: 3
0

2
00 )/()/(/1

)(
ωωωωωω

ω
jjj

jH
+++

=

The order is normally equal to (and cannot exceed) the 
number of reactive components
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Example 1

Using the potential divider formula:

Example 1

Using the potential divider formula:

R

ZZ
Z

V
V

RC

C
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c
+

=
R

RCj
Cj

ZZV RCin

/1
/1

+
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+

ω
ω CinV cV
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RCj
1)(
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ω

ω
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1:where1
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)(
+

ω

ω
ω

RCj
:where

/1 0
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=
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= ω
ωω
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Example 1

R

Example 1

0/1
1)(
ωω

ω
+

=
j

jH
R

22
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ωω
ωω

+

−
=

j
j

CinV cV
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2 /1 ωω+

Gain: 2
0
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1)(
ωω

ω
+

== jHg
0/1 ωω+

Ph hift /tan)( ωωφωφ ∠ jHPhase shift: 0/tan)( ωωφωφ −=∠= jH
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Example 1Example 1

0→ω ∞→ω

0→g1→g

School of Systems Engineering - Electronic Engineering Slide 142James Grimbleby



Decibel
The decibel is a measure of the ratio of two powers P1, P2 :

Decibel
p 1 2

1
10log10dB P

=
2

10log10dB
P

=

It can also be used to measure the ratio of two voltages V1, V2:

2

2
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102
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10 log10
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2
2

2
2
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Decibel

DecibelsPower ratio

Decibel

DecibelsPower ratio
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Decibel

DecibelsVoltage ratio

Decibel

DecibelsVoltage ratio
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Example 1
Circuit is a first-order low-pass filter:

Example 1

1 /
1

=g

p

0
1 /tan ωωφ −= −2

0
2 /1 ωω+

=g

0ωω << )dB0(1≈g )0(0 °≈φ

0ωω = )dB3(
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1
−=g )45(
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πφ
2 4

0ωω >> )oct/dB6(0ωg )90( °−−≈
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ω
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Example 1

R = 1kΩ

Example 1

0
1

=
RC

ω
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63 1010
1
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1010
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Phase shift: 310/tan)( ωφωφ ∠ jHPhase shift: 310/tan)( ωφωφ −=∠= jH
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Bode Plot
Gain(dB) Phase(rad)

Bode Plot
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Example 2

Using the potential divider formula:

Example 2

Using the potential divider formula:

L

ZZ
Z

V
V
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R
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R
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=
V V
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=
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+
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Example 2Example 2

0→ω ∞→ω0→ω ∞→ω

0→g1→g
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Example 3

Using the potential divider formula:

Example 3

Using the potential divider formula:
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Example 3

/ωωj C

Example 3

0
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+
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Example 3Example 3

0→ω ∞→ω0→ω ∞→ω

1→g0→g

School of Systems Engineering - Electronic Engineering Slide 154James Grimbleby



Example 4

Using the potential divider formula:

Example 4

Using the potential divider formula:

R

ZZ
Z

V
V

RL

L

in

L
+

=

R

RLj
Lj
ZZV RLin

+
=

+

ω
ω LinV LV

RLjjH

RLj

=

+
/)( ωω

ω

Rj
RLj

jH
+

0 :where/
/1

)(

ωωω
ω

ω

Lj
=

+
= 0

0

0 :where
/1

ω
ωω

School of Systems Engineering - Electronic Engineering Slide 155James Grimbleby



Example 4Example 4

0→ω ∞→ω0→ω ∞→ω

1→g0→g
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Example 4

Circuit is a first-order high-pass filter:

Example 4

1
1g

Circuit is a first order high pass filter:

ωωφ /tan 0
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0 /1 ωω+
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Bode Plot
Gain(dB) Phase(rad)

Bode Plot
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Example 5
Using the potential divider formula:

Example 5
g p
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Example 5Example 5
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Example 5Example 5

00→ω ∞→ω
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Example 5

Assuming that :21 ωω <<

Example 5

2
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Example 5

/1 2+ j ωω

Example 5
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Bode Plot
Gain(dB) Phase(rad)

Bode Plot
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AC Circuit AnalysisAC Circuit Analysis

L t 7Lecture 7

Second-Order Circuits
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Example 1

R R

Example 1

V V

R R

inV cVC C

This circuit must be simplified before the frequency response 
f i b d i dfunction can be determined

A Thé i i l t i it i t d f th t tA Thévenin equivalent circuit is created of the components to 
the left of the red line
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Example 1
Thévenin equivalent circuit:

Example 1

R Z
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Example 1

RCRj
R
ω+1

Example 1

V
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Example 1
Frequency-response function:

Example 1

1

1
1 CRjCRjCRj

VV in
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×
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1
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R = 1 kΩ, C = 1μF:μ
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Example 1Example 1

0→ω ∞→ω

0→g1→g
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Bode Plot
Gain(dB) Phase(rad)

Bode Plot
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Example 2

R C

Example 2

R

V V

C

inV RVRC

This circuit must be simplified before the frequency response s c cu us be s p ed be o e e eque cy espo se
function can be determined

A Thévenin equivalent circuit is created of the components to 
the left of the red line
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Example 2

CRj
R
ω+1 C

Example 2

CRjω+1

Vin

C

CRj
Vin
ω+1 RVR

RCjR

R
CRj

VV in
R

ωω ++
×

+
=

/11

CRjV
CRj

CjRj

in ω
ω

ω
+

++
1

/1

CRj
CRjCRj

CRj
CRj

Vin

ω
ωω

ω
ω

+
++

×
+

=

1
11

School of Systems Engineering - Electronic Engineering Slide 173James Grimbleby

CRjω+1



Example 2
Frequency-response function:

Example 2
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Example 2Example 2

0→ω ∞→ω

0→g0→g
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Bode Plot
Gain(dB) Phase(rad)

Bode Plot
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Example 3
Using the potential divider formula:

Example 3

CjVC /1 ω
RL
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Example 3Example 3

0→ω ∞→ω

0→g1→g
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Example 3
Circuit is a second-order low-pass filter:

Example 3
p

1)( jH )( jH2
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Example 3

Ω200RmH400L

Example 3

Ω200=RmH400=L

inV CVμF5.2=C
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Bode Plot
Gain(dB)

Bode Plot
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Bode Plot
Phase(rad)

Bode Plot
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Example 4
Using the potential divider formula:

Example 4
g p

LjVL ω
C R
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Example 4Example 4

0→ω ∞→ω

1→g0→g
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Example 4
Circuit is a second-order high-pass filter:

Example 4
g p

)( jH
2
0

2 /)( ωω−jH )( ωjHg =
2
0

2
0

0
/)/(1

/)(
ωωωω

ωωω
−+

=
Qj

jH

2 2

0ωω << 2
0

2
)(

ω
ωω −

≈jH )oct/dB12(2
0

2

ω
ω

≈g

0ωω = jQjH =)( ω

0

Qg =

0

jQj )( Qg

0ωω >> 1)( ≈ωjH )dB0(1=g

School of Systems Engineering - Electronic Engineering Slide 185James Grimbleby



Bode Plot
Gain(dB)

Bode Plot

20 dB
2=Q 10=Q

0 dB0 dB

2
1

=Q

-20 dB
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2

12 dB / octave
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Bode Plot
Phase(rad)

Bode Plot

π 10=Q

2=Q
1Q

2
π 2

1
=Q

2
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1000 10000 10000010010
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Example 5
Using the potential divider formula:

Example 5

RV
C L

RLjCj
R

V
V

in

R
/1 ++

=
ωω inV RVR

LCCRj
CRjjH

1
)( 2−+
=

ωω
ωω

Qj
Qj

j

/)/(1
)/(

22
0

+
=

ωωωω
ωω

LQ

Qj
11:and1:where

/)/(1

0

2
0

2
0

===

−+

ω

ωωωω

CRCR
Q

LC
:and:where

0
0 ===

ω
ω
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Example 5Example 5

0→ω ∞→ω

0→g0→g
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Example 5
Circuit is a second-order band-pass filter:

Example 5

)( jH0 )/()( ωω QjjH )( ωjHg =2
0

2
0

0
/)/(1

)()(
ωωωω

ω
−+

=
Qj

QjjH

0ωω <<
Q

jjH
0

)(
ω
ωω ≈ )oct/dB6(

0Q
g

ω
ω

≈

0ωω = 1)( =ωjH

0

)dB0(1=g

0

jjH ω0)( −

1)( ωjH )dB0(1=g

)t/dB6(0ω0ωω >>
Q

jjH
ω
ωω 0)( ≈ )oct/dB6(0 −≈

Q
g

ω
ω
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Bode Plot
Gain(dB)

Bode Plot

0 dB

2Q
10=Q

2=Q

1Q

-20 dB
2

=Q
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1000 10000 10000010010
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Bode Plot
Phase(rad)
π

Bode Plot

2
π

10=Q

2=Q
1Q

0
2

1
=Q

π

Frequency (rad/s)
1000 10000 100000100102

π
−
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Example 6
Using the potential divider formula: R

Example 6

LjCjVC /1 + ωω

LC

RLjCj
jj

Vin

C

1

/1
2

++
=

ωω inV cVL

LCCRj
LCjH

1
1)( 2

2

−+

−
=

ωω
ωω C

Qj
LC

/)/(1
1

22

2−
=

ω

LQ

Qj
11:and1:where

/)/(1 2
0

2
0 −+

ω

ωωωω

CRCR
Q

LC
:and:where

0
0 ===

ω
ω
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Example 6Example 6

0→ω ∞→ω

1→g1→g
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Example 6
Circuit is a second-order band-stop filter:

Example 6

)( jH
2
0

2 /1)( ωω−jH )( ωjHg =2
0

2
0

0
/)/(1

/1)(
ωωωω

ωωω
−+

=
Qj

jH

0ωω << 1)( ≈ωjH )dB0(1≈g

0ωω = 0)( =ωjH )dB(0 −∞=g

1)( ωjH

)(g

0ωω >> 1)( ≈ωjH )dB0(1≈g

School of Systems Engineering - Electronic Engineering Slide 195James Grimbleby



Bode Plot
Gain(dB)

Bode Plot

0 dB

2Q 2=Q 10=Q

-20 dB 2
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=Q
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Bode Plot
Phase(rad)
π

Bode Plot

2
π

2
1

=Q

10=Q

2

0

10=Q

2=Q

π

Q

Frequency (rad/s)
1000 10000 100000100102
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AC Circuit AnalysisAC Circuit Analysis

L t 8Lecture 8

Power in AC Circuits
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Power in AC Circuits
To calculate the power in a circuit we shall need to make 

Power in AC Circuits

use of some trigonometric identities:

BABABA ii)(
BABABA
BABABA

sinsincoscos)cos(
sinsincoscos)cos(

+=−
−=+

Adding:

{ })cos()cos(1coscos

coscos2)cos()cos(

BABABA

BABABA

++

=−++

so that:

{ })cos()cos(
2

coscos BABABA −++=

{ } AAA 2cos
2
1

2
10cos2cos

2
1cos2 +=+=
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rms Voltages and Currents
The average power in a resistor is given by:

rms Voltages and Currents

∫
T

)()(1
∫=

T

dttitv
T

P

2
0

)()(1
)(ti

∫=
T

dt
R

tv
T 0

2 )(1 )(tv R

∫=
T

dttv
TR

2

0

)(11

∫

∫

T
rms dttVV

TR

2
2

0

)(1h ∫== rms
rms dttv

T
V

R 0

2 )(:where
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rms Voltages and Currents

The root-mean-square voltage V determines the power

rms Voltages and Currents

The root-mean-square voltage Vrms determines the power 
dissipated in a circuit:

2

R
VP rms

2
=

There is a similar expression for the power dissipated when e e s a s a e p ess o o t e po e d ss pated e
a current Irms flows through a circuit:

22
rmsRIP =

These expressions apply to any waveform
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rms Voltages and Currents
The rms value of a sinusoid of amplitude (peak) value v0:

rms Voltages and Currents

)(1 2 dttvV
T
∫

p (p ) 0

1

)(
0

dttv
T

V

T

rms ∫=

)(cos1

0

22
0 dttv

T

T
∫= ω

)2cos(
2
1

2
112

0 dtt
T

v
T
∫ += ω

22

0
2
0

0

vv

T
Averages to zero over 

l t l
22
00 == a complete cycle:

T = 2π/ω
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rms Voltages and Currents

The UK mains power was until recently supplied at 240 V rms

rms Voltages and Currents

The UK mains power was until recently supplied at 240 V rms 
and that in Europe 220 V rms

On 1 January 1995 the nominal voltage across Europe was 
harmonised at 230 V rms.harmonised at 230 V rms. 

This corresponds to an amplitude of:s co espo ds to a a p tude o

2 V
2302

20

×=

×= rmsVv

V325=

School of Systems Engineering - Electronic Engineering Slide 203James Grimbleby



rms Voltages and Currents
A mains power (230 V rms) electric fire has a resistance of 

rms Voltages and Currents

kW017123022VP rms

52 Ω:

kW017.1
52

230
===

R
VP rms

An audio amplifier which drives a 4 Ω loudspeaker at up to 
150 W must supply a sinusoidal output voltage:pp y p g

6004150.2 =×==rms RPV

V5.24

6004150.

=

×

rms

rms

V

RPV

This corresponds to a sinusoid of peak value 34.6 V
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rms Voltages and Currents
Square wave of amplitude ±v0:

rms Voltages and Currents

v0

-v0

T
T/2

22/ 22 )(11)(1 dtvdtvdttvV
TTT
∫+∫∫

T

2/
0

0
0

0

1

)()( dtv
T

dtv
T

dttv
T

V

T
T

rms ∫ −+∫=∫=

0
2
0

0

2
0

1 vvdt
T

v
T

==∫=
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Crest Factor
The ratio between the peak voltage and the rms voltage is 
k th t f t

Crest Factor

known as the crest factor:

peakV
cf

rms

p
V

cf =

For a sinusoid the crest factor is √2; for a square wave the 
crest factor is 1

For audio signals the crest factor depends on the source but 
is commonly 2 or higher

150 W f di i t 4 Ω l d k ld th f i150 W of audio into 4 Ω loudspeakers would therefore require 
peak voltages of 50 V or greater
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Power in a Reactive Load
Capacitors and inductors store energy, but do not dissipate 
power

Power in a Reactive Load

power

ICIR

R C
100 V rms

50 Hz

100

25Ω 200μF

100

A4
25

100

6

==RI

A6.28A10200502100100 6 =××××== −π
C

C Z
I

W400
25

100 P
2
==
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Instantaneous Power

)(ti
For sinusoidal voltages and currents:

Instantaneous Power

)(ti
( )
( )
ω=

titi
tvtv

)(
cos)( 0

)(tv Z( )φω += titi cos)( 0

Instantaneous power:

( ) ( )φωω coscos
)()()(

00 +=
×=

titv
titvtp
( ) ( )
( ) ( )φωω

φωω
coscos
coscos

00

00
+=

+=

ttiv
titv

{ }φφω cos)2cos(
2
1

00 ++= tiv
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Average Power
Average power:

T1

Average Power

∫=
T

dttp
T

P
0

)(1

( ) ( )∫ +=
T

dttitv
T 0

00 coscos1 φωω

∫+∫ +=
TT

dtivdttiv

T

0000

0

cos11)2cos(11 φφω ∫+∫ + dt
T

ivdtt
T

iv
0

00
0

00 cos
2

)2cos(
2

φφω

If T >> 1/ω: TIf T >> 1/ω:
φcos1

2
1

0
00 dt

T
ivP

T
∫=

φcos
2
1

00

0

iv=
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Average PowerAverage Power

φcos
2
1

00ivP =
)(ti

φ
2 00

)(tv Zφcos
2
1 2

0
Z
v

=

φcos
2
1
2

2
0 Zi

Z

=
2 0

School of Systems Engineering - Electronic Engineering Slide 210James Grimbleby



Average Power

Average power:

Average Power

Average power:
φcos

2
1

00ivP =

For a resistor:
2
0

2
0

00
1110 RivivP ===→=φ

For a capacitor:

000 222
0 Ri

R
ivP ===→=φ

o a capac to

0
2

=→= Pπφ

For an inductor:
2

π 0
2

=→−= Pπφ
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rms Voltages and Currents
Power expressed in terms of rms voltages and currents:

rms Voltages and Currents

φcos
2
1

00ivP =

φ

φ

cos221
2 00

IV rmsrms=

φ

φ

)W(cos

cos
2

IV rmsrms

rmsrms

=

2V φcos
Z

VP rms=

φcos2 ZIP rms=
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Example 1
Determine the average power dissipated in the circuit:

Example 1

Ω80R

F20C

Ω80=R230 V rms
50 Hz

1

μF20=C

1

1
+=

Cj
RZ

ω

1020502
180 6×××

+=
−j π

Ω)( 63 31 105178 1

Ω2.15980
o∠=

−= j
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Example 1Example 1

Ω80=R230 V rms
50 H

μF20=C
50 Hz

2
cos

2
= φ

Z
VP rms

105.1cos
1178

2302
−=

W4.133
1.178

=
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Example 2
Determine the average power dissipated in the circuit:
Example 2

RR
2 Ω

C
80 V rms

L
1 mH

C
200 μF

400 Hz

1 mH

The driving-point impedance of this circuit at 400 Hz 
(calculated previously) is:(calculated previously) is:

9282.0091.3 −∠= ΩZ
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Example 2

928200913 −∠Ω=Z

Example 2

9282.0091.3 −∠Ω=Z

R
2 Ω

80 V

L
C

200 μF

80 V rms
400 Hz2V L

1 mH
200 μF

cos

2

= φ
Z

VP rms

9283.0cos
091.3

802
−=

W1241=
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Example 2
Determine the average power dissipated in the circuit

Example 2

Since no power is dissipated in the capacitor we only need 
to calculate the power in the inductor resistor legto calculate the power in the inductor-resistor leg

+= LjRZLR ω R
80 V rms
400 Hz

1040022 3××+=

+
−j

LjRZLR

π

ω
2 Ω

C

400 Hz

8986.0212.3
513.22
∠=

+= j L
1 mH

200 μF
898603
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Example 2Example 2

8986.0212.3 ∠=LRZ

R
2 Ω2 Ω

C
200 F

80 V rms
400 Hzcos

2
= φVP rms

L
1 mH

200 μF

80

cos

2

φ
Z

P

W1241

8986.0cos
212.3

80
=

W1241=
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AC Circuit AnalysisAC Circuit Analysis

L t 9Lecture 9

Power Factor
Th Ph El t i PThree-Phase Electric Power
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True and Apparent Power

The apparent power P in a circuit is:

True and Apparent Power

The apparent power Pa in a circuit is:

rmsrmsa IVP =

Apparent power is measured in VA

rmsrmsa IVP =

Apparent power is measured in VA

The true power P dissipated in a circuit is:

φcosrmsrms IVP =

True power is measured in W

School of Systems Engineering - Electronic Engineering Slide 220James Grimbleby



Power Factor
The power factor is the ratio of the true power to the apparent 

Power Factor
p p pp

power:

IVP φφ coscos
===

rmsrms

rmsrms

a IV
IV

P
Ppf

where ø is the phase difference between voltage and currentwhere ø is the phase difference between voltage and current.

It does not matter whether ø is phase of the current withIt does not matter whether ø is phase of the current with 
respect to the voltage, or voltage with respect to the current, 
since:

φφ −= coscos

School of Systems Engineering - Electronic Engineering Slide 221James Grimbleby



Example 1
Determine the power factor, apparent power and true power 

di i t d i th i it

Example 1

power dissipated in the circuit:

)(75 11 312Ω6051

Ω08.154
o∠=

+= jZ

)(75.11.312Ω60.51 ∠=
Ω4=R

Hz400,0Vrms8

2559.312.1cos ==pf mH6=L

Hz400,0Vrms8

VA3.410
2

=== rms
rmsrmsa Z

VIVP

W0.105=×= aPpfP
Z
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Power Factor Correction

Most industrial loads have a poor (pf << 1) power factor

Power Factor Correction

Most industrial loads have a poor (pf << 1) power factor

Examples are induction motors and inductor-ballast lightingExamples are induction motors and inductor ballast lighting

Power factor can be corrected by connecting a reactance inPower factor can be corrected by connecting a reactance in 
parallel with the load

This reduces the apparent power and the rms current 
without affecting the loadg

This is obviously desirable because it reduces the current y
rating of the power wiring and supply
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Power Factor Correction
Power factor is normally corrected by connecting a reactive 

Power Factor Correction

element ZC in parallel with the load ZL :
SI CI

Supply current: IS
L d t I

LI
VLoad current: IL

Correction current: IC LZ CZSV

A unity overall power factor will be obtained provided that VSu y o e a po e ac o be ob a ed p o ded a S
and IS are in phase:

)real(00 jGG
V
I
S

S +=∠=
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Power Factor Correction

CLS jGIII 0

Power Factor Correction

SI CI

I
S

C

S

L

S

S jG
V
I

V
I

V
I

+=+=

11

0

LZ CZ

LI
SVCL

jG
ZZ

+=+ 011

LZ CZ

imagCimagL ZZ ⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡ 11

imagCimagL ⎦⎣⎦⎣

If IL leads VS then an inductor is used for correction 

If IL lags VS then a capacitor is used for correction
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Power Factor Correction
Correction of a lagging power factor load with a capacitor:

Power Factor Correction

CLS III +=

CI
CLS III +=

SI Current 
(real part)

Current 
(imaginary 

LI

(real part)part)

LI

Note that the magnitude of the supply current IS is less than 
that of the load IL
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Example 2

Choose a suitable power factor correction component for the

Example 2

Choose a suitable power factor correction component for the 
circuit:

Ω4=R
Hz4000Vrms8

mH6=L

Hz400,0Vrms8

081541
Ω08.154

j
jZL +=

06195.001643.0
08.154
08.1541

22 jj
ZL

−=
+

−
=

Thus: 06195.01 j
ZC

+=
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Example 2Example 2

Ω4=R
Hz400,0Vrms8 μF465.2=C

mH6=L

Hz400,0Vrms8 μF465.2C

1 06195.01
=+= ωCjj

ZC

μF465.2
4002

06195.0
=

×
=

π
C
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Example 2
80

=I

Example 2

)061950016430(80 −=

=

j
Z

I
L

L

II I

80
956.4314.1

)06195.001643.0(80
−=

=
j

j
LI

Ω4R

SI CI

80
=

Z
I

c
C

Ω4=R

Hz400
0Vrms8

F4652
=C

956.4
06195.080

=
×=

j
j mH6=L

Hz400 μF465.2

956495643141

956.4
+=

jj
III

j

CLS

314.1
956.4956.4314.1

=
+−= jj
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Example 2

5A

Example 2

5A

Imaginary
CLS III +=

CI
Imaginary 

part

5A
SI Real

part5A part

LI

-5A
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Example 3
An electric motor operating from the 50 Hz mains supply has 

Example 3
p g pp y

a lagging current with a power factor of .80

The rated motor current is 6 A at 230 V so that the magnitude 
of 1/ZL is:

61 I 02609.0
230

61
===

S

L

L V
I

Z

and the phase of 1/ZL is:

6435.08.0cos1 1 ±==
⎭
⎬
⎫

⎩
⎨
⎧

∠ −
Z

Since the current lags the voltage the negative phase is used

⎭⎩ LZ
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Example 3

015650020870643500260901
−=−∠= j

Example 3

0156501

01565.002087.06435.002609.0 =∠=

Cjj

j
ZL

015650

01565.01
=+= ωCjj

ZC

μF82.49
502

01565.0
=

×
=

π
C

Before correction: After correction:

138080
13806230

××

=×=a
PpfP

P
1104

1104== a
P

PP

1104
13808.0

=

×=×= aPpfP 8.4
230

1104
===

S
S V

PI
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Example 3

5A

Example 3

5A

Imaginary 
CLS III +=

5A

CI
g y
part

5A
SI Real

part

LI

p

-5A
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Three-Phase Electric Power
Most ac power transmission systems use a three-phase 

t

Three Phase Electric Power

system

Three phase is also used to power large motors and otherThree-phase is also used to power large motors and other 
heavy industrial loads

Three-phase consists of three sinusoids with phases 2π/3 
(120º) apart(120 ) apart

This allows more power to be transmitted down a givenThis allows more power to be transmitted down a given 
number of conductors than single phase

A three-phase transmission system consists of conductors for 
the three phases and sometimes a conductor for neutral
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Three-Phase Electric PowerThree Phase Electric Power

Three-phase
load

Three-phase
generator
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Three-Phase Electric Power

Phase to ne tral oltage

Three Phase Electric Power

π

Phase-to-neutral voltage v0
Phase-to-phase voltage vp

v0
v

)60(
3

oπ

v0
vp

3
sin2 0vvp =

π

v0
)120(

3
2 oπ

2
32

3

0v=

3
2

0

0

v=
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Three-Phase Electric Power
UK domestic supply uses three -phase with a phase-to-

Three Phase Electric Power
pp y p p

neutral voltage v0 of 230 V rms (325 V peak)

This corresponds to a phase-to-phase voltage vp of 400 V 
rms (563 V peak)

Each property is supplied with one phase and neutral

If the phases are correctly balanced (similar load to neutral on 
h) th th ll t l t ieach) then the overall neutral current is zero

The UK electricit distrib tion net ork operates at 275 kV rmsThe UK electricity distribution network operates at 275 kV rms 
and 400 kV rms

School of Systems Engineering - Electronic Engineering Slide 238James Grimbleby



AC Circuit AnalysisAC Circuit Analysis

L t 10Lecture 10

Energy Storage
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Energy Storage

Reactive components (capacitors and inductors) do not

Energy Storage

Reactive components (capacitors and inductors) do not 
dissipate power when an ac voltage or current is applied

Power is dissipated only in resistors

Instead reactive components store energy

During an ac cycle reactive components alternately store 
energy and then release itgy

Over a complete ac cycle there is no net change in energy y g gy
stored, and therefore no power dissipation
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Energy Storage
The voltage across a capacitor is increased from zero to V

Energy Storage

producing a stored energy E:

v0
)()( dttitvE

T
∫=v(t)

i
0

)( dt
dt
dvCtv

T
∫=

V

C
dv

0
)(

dC

dt
V
∫

∫

dt
dvCi =

0
1

dvvC ∫=

T
t

2
2
1CVE =

T
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Energy StorageEnergy Storage

Example: calculate the energy storage in an electronic flash 
capacitor of 1000 μF charged to 400 V

2
1 2= CVE

400101000
2
1 26 ×××= −

J80
2

=
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Energy Storage
The current in an inductor is increase from zero to I

Energy Storage

producing a stored energy E:

)()( dttitvE
T
∫=

v
i(t)

0

)( dttidiL
T
∫

v
i

L
I

0
)( dtti

dt
L

I

∫= L

diL
0

diiL
I
∫= dt

Lv =

T
t

2
2
1LIE =

T
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Energy StorageEnergy Storage

Example: calculate the energy storage in a 2 mH inductor 
carrying a current of 10 A

2
1 2= LiE

10102
2
1
2

23 ×××= −

J1.0
2

=
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AC Circuit AnalysisAC Circuit Analysis
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