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C H A P T E R

FREQUENCY RESPONSE

1 4

One machine can do the work of fifty ordinary men. No machine can do
the work of one extraordinary man.

— Elbert G. Hubbard

Enhancing Your Career
Career in Control Systems Control systems are another
area of electrical engineering where circuit analysis is used.
A control system is designed to regulate the behavior of
one or more variables in some desired manner. Control
systems play major roles in our everyday life. Household
appliances such as heating and air-conditioning systems,
switch-controlled thermostats, washers and dryers, cruise
controllers in automobiles, elevators, traffic lights, manu-
facturing plants, navigation systems—all utilize control sys-
tems. In the aerospace field, precision guidance of space
probes, the wide range of operational modes of the space
shuttle, and the ability to maneuver space vehicles remotely
from earth all require knowledge of control systems. In
the manufacturing sector, repetitive production line opera-
tions are increasingly performed by robots, which are pro-
grammable control systems designed to operate for many
hours without fatigue.

Control engineering integrates circuit theory and
communication theory. It is not limited to any specific engi-
neering discipline but may involve environmental, chemical,
aeronautical, mechanical, civil, and electrical engineering.
For example, a typical task for a control system engineer
might be to design a speed regulator for a disk drive head.

A thorough understanding of control systems tech-
niques is essential to the electrical engineer and is of great
value for designing control systems to perform the desired
task. A welding robot.

(Courtesy of Shela Terry/Science Photo Library.)
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14.1 INTRODUCTION
In our sinusoidal circuit analysis, we have learned how to find voltages and
currents in a circuit with a constant frequency source. If we let the ampli-
tude of the sinusoidal source remain constant and vary the frequency, we
obtain the circuit’sfrequency response. The frequency response may be
regarded as a complete description of the sinusoidal steady-state behavior
of a circuit as a function of frequency.

The frequency response of a circuit is the variation in its
behavior with change in signal frequency.

The frequency response of a circuit may also be
considered as the variation of the gain and phase
with frequency.

The sinusoidal steady-state frequency responses of circuits are of
significance in many applications, especially in communications and con-
trol systems. A specific application is in electric filters that block out or
eliminate signals with unwanted frequencies and pass signals of the de-
sired frequencies. Filters are used in radio, TV, and telephone systems to
separate one broadcast frequency from another.

We begin this chapter by considering the frequency response of sim-
ple circuits using their transfer functions. We then consider Bode plots,
which are the industry-standard way of presenting frequency response.
We also consider series and parallel resonant circuits and encounter im-
portant concepts such as resonance, quality factor, cutoff frequency, and
bandwidth. We discuss different kinds of filters and network scaling. In
the last section, we consider one practical application of resonant circuits
and two applications of filters.

14.2 TRANSFER FUNCTION
The transfer functionH(ω) (also called thenetwork function) is a useful
analytical tool for finding the frequency response of a circuit. In fact, the
frequency response of a circuit is the plot of the circuit’s transfer function
H(ω) versusω, with ω varying fromω = 0 toω = ∞.

A transfer function is the frequency-dependent ratio of a forced
function to a forcing function (or of an output to an input). The idea of a
transfer function was implicit when we used the concepts of impedance
and admittance to relate voltage and current. In general, a linear network
can be represented by the block diagram shown in Fig. 14.1.

Input Output

Linear network

H(v)

Y(v)X(v)

Figure 14.1 A block diagram representation
of a linear network. The transfer function H(ω) of a circuit is the frequency-dependent ratio of a

phasor output Y(ω) (an element voltage or current) to a phasor input
X(ω) (source voltage or current).

In this context, X(ω) and Y(ω) denote the input
and output phasors of a network; they should not
be confused with the same symbolism used for
reactance and admittance. The multiple usage
of symbols is conventionally permissible due to
lack of enough letters in the English language to
express all circuit variables distinctly.

Thus,

H(ω) = Y(ω)
X(ω)

(14.1)
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assuming zero initial conditions. Since the input and output can be either
voltage or current at any place in the circuit, there are four possible transfer
functions:

H(ω) = Voltage gain = Vo(ω)
Vi (ω)

(14.2a)

H(ω) = Current gain = Io(ω)
Ii (ω)

(14.2b)

H(ω) = Transfer Impedance = Vo(ω)
Ii (ω)

(14.2c)

H(ω) = Transfer Admittance = Io(ω)
Vi (ω)

(14.2d)

where subscripts i and o denote input and output values. Being a complex
quantity, H(ω) has a magnitude H(ω) and a phase φ; that is, H(ω) =
H(ω) φ.

To obtain the transfer function using Eq. (14.2), we first obtain
the frequency-domain equivalent of the circuit by replacing resistors,
inductors, and capacitors with their impedances R, jωL, and 1/jωC.
We then use any circuit technique(s) to obtain the appropriate quantity in
Eq. (14.2). We can obtain the frequency response of the circuit by plotting
the magnitude and phase of the transfer function as the frequency varies.
A computer is a real time-saver for plotting the transfer function.

Some authors use H( jω) for transfer instead of
H(ω), since ω and j are an inseparable pair.

The transfer function H(ω) can be expressed in terms of its numer-
ator polynomial N(ω) and denominator polynomial D(ω) as

H(ω) = N(ω)
D(ω)

(14.3)

where N(ω) and D(ω) are not necessarily the same expressions for the
input and output functions, respectively. The representation of H(ω) in
Eq. (14.3) assumes that common numerator and denominator factors in
H(ω) have canceled, reducing the ratio to lowest terms. The roots of
N(ω) = 0 are called the zeros of H(ω) and are usually represented as
jω = z1, z2, . . . . Similarly, the roots of D(ω) = 0 are the poles of H(ω)
and are represented as jω = p1, p2, . . . .

A zero, as a root of the numerator polynomial, is a value that results in a zero
value of the function. A pole, as a root of the denominator polynomial,

is a value for which the function is infinite.

A zero may also be regarded as the value of s =
jω that makes H(s) zero, and a pole as the value
of s = jω that makes H(s) infinite.

To avoid complex algebra, it is expedient to replace jω temporarily
with s when working with H(ω) and replace s with jω at the end.

E X A M P L E 1 4 . 1

For the RC circuit in Fig. 14.2(a), obtain the transfer function Vo/Vs and
its frequency response. Let vs = Vm cosωt .
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Solution:

The frequency-domain equivalent of the circuit is in Fig. 14.2(b). By
voltage division, the transfer function is given by

H(ω) = Vo
Vs

= 1/jωC

R + 1/jωC
= 1

1 + jωRC
Comparing this with Eq. (9.18e), we obtain the magnitude and phase of
H(ω) as

H = 1√
1 + (ω/ω0)2

, φ = − tan−1 ω

ω0

where ω0 = 1/RC. To plot H and φ for 0 < ω < ∞, we obtain their
values at some critical points and then sketch.

vs(t) vo(t)

R

(a) (b)

C+
− Vs Vo

R

jvC
1+

−

+

−

+

−

Figure 14.2 For Example 14.1: (a) time-domain RC circuit,
(b) frequency-domain RC circuit.

At ω = 0, H = 1 and φ = 0. At ω = ∞, H = 0 and φ = −90◦.
Also, at ω = ω0, H = 1/

√
2 and φ = −45◦. With these and a few more

points as shown in Table 14.1, we find that the frequency response is as
shown in Fig. 14.3. Additional features of the frequency response in Fig.
14.3 will be explained in Section 14.6.1 on lowpass filters.

TABLE 14.1 For Example 14.1.

ω/ω0 H φ ω/ω0 H φ

0 1 0 10 0.1 −84◦

1 0.71 −45◦ 20 0.05 −87◦

2 0.45 −63◦ 100 0.01 −89◦

3 0.32 −72◦ ∞ 0 −90◦

0

0.707

H

1

v0 = 1
RC

v0 = 1
RC

v

0 v

−90°

−45°

(a)

(b)
f

Figure 14.3 Frequency response of the
RC circuit: (a) amplitude response,
(b) phase response.

P R A C T I C E P R O B L E M 1 4 . 1

Obtain the transfer function Vo/Vs of the RL circuit in Fig. 14.4, assuming
vs = Vm cosωt . Sketch its frequency response.

Answer: jωL/(R + jωL); see Fig. 14.5 for the response.
vs vo

R

L+
−

+

−

Figure 14.4 RL circuit
for Practice Prob. 14.1.
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1

H

0.707

0 v0 = R
L v0 = R

L
v

(a) (b)

90°

45°

f

0 v

Figure 14.5 Frequency response of the RL circuit in Fig. 14.4.

E X A M P L E 1 4 . 2

For the circuit in Fig. 14.6, calculate the gain Io(ω)/Ii (ω) and its poles
and zeros.

ii (t)

io(t)

0.5 F

2 H

4 Ω

Figure 14.6 For Example 14.2.

Solution:

By current division,

Io(ω) = 4 + j2ω

4 + j2ω + 1/j0.5ω
Ii (ω)

or

Io(ω)
Ii (ω)

= j0.5ω(4 + j2ω)

1 + j2ω + (jω)2 = s(s + 2)

s2 + 2s + 1
, s = jω

The zeros are at

s(s + 2) = 0 �⇒ z1 = 0, z2 = −2

The poles are at

s2 + 2s + 1 = (s + 1)2 = 0

Thus, there is a repeated pole (or double pole) at p = −1.

P R A C T I C E P R O B L E M 1 4 . 2

Find the transfer function Vo(ω)/Ii (ω) for the circuit of Fig. 14.7. Obtain
its poles and zeros.

vo(t)

ii(t)

0.1 F 2 H

3 Ω5 Ω
+
−

Figure 14.7 For Practice Prob. 14.2.

Answer:
5(s + 2)(s + 1.5)

s2 + 4s + 5
, s = jω; poles: −2,−1.5; zeros: −2±j .
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†14.3 THE DECIBEL SCALE
It is not always easy to get a quick plot of the magnitude and phase
of the transfer function as we did above. A more systematic way of
obtaining the frequency response is to use Bode plots. Before we begin
to construct Bode plots, we should take care of two important issues: the
use of logarithms and decibels in expressing gain.

Since Bode plots are based on logarithms, it is important that we
keep the following properties of logarithms in mind:

1. logP1P2 = logP1 + logP2

2. logP1/P2 = logP1 − logP2

3. logPn = n logP

4. log 1 = 0

In communications systems, gain is measured in bels. Historically,
the bel is used to measure the ratio of two levels of power or power gain
G; that is,

G = Number of bels = log10
P2

P1
(14.4)

The decibel (dB) provides us with a unit of less magnitude. It is 1/10th
of a bel and is given by

GdB = 10 log10
P2

P1
(14.5)

When P1 = P2, there is no change in power and the gain is 0 dB. If
P2 = 2P1, the gain is

GdB = 10 log10 2 = 3 dB (14.6)

and when P2 = 0.5P1, the gain is

GdB = 10 log10 0.5 = −3 dB (14.7)

Equations (14.6) and (14.7) show another reason why logarithms are
greatly used: The logarithm of the reciprocal of a quantity is simply
negative the logarithm of that quantity.

Historical note: The bel is named after Alexander
Graham Bell, the inventor of the telephone.

V2

−

+

V1 R2Network

I1 I2

P1 P2

R1

+

−

Figure 14.8 Voltage-current relationships
for a four-terminal network.

Alternatively, the gain G can be expressed in terms of voltage or
current ratio. To do so, consider the network shown in Fig. 14.8. If P1 is
the input power, P2 is the output (load) power, R1 is the input resistance,
and R2 is the load resistance, then P1 = 0.5V 2

1 /R1 and P2 = 0.5V 2
2 /R2,

and Eq. (14.5) becomes

GdB = 10 log10
P2

P1
= 10 log10

V 2
2 /R2

V 2
1 /R1

= 10 log10

(
V2

V1

)2

+ 10 log10
R1

R2

(14.8)

GdB = 20 log10
V2

V1
− 10 log10

R2

R1
(14.9)
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For the case when R2 = R1, a condition that is often assumed when
comparing voltage levels, Eq. (14.9) becomes

GdB = 20 log10
V2

V1
(14.10)

Instead, if P1 = I 2
1R1 and P2 = I 2

2R2, for R1 = R2, we obtain

GdB = 20 log10
I2

I1
(14.11)

Two things are important to note from Eqs. (14.5), (14.10), and (14.11):

1. That 10 log is used for power, while 20 log is used for voltage
or current, because of the square relationship between them
(P = V 2/R = I 2R).

2. That the dB value is a logarithmic measurement of the ratio of
one variable to another of the same type. Therefore, it applies
in expressing the transfer function H in Eqs. (14.2a) and
(14.2b), which are dimensionless quantities, but not in
expressing H in Eqs. (14.2c) and (14.2d).

With this in mind, we now apply the concepts of logarithms and decibels
to construct Bode plots.

14.4 BODE PLOTS
Obtaining the frequency response from the transfer function as we did in
Section 14.2 is an uphill task. The frequency range required in frequency
response is often so wide that it is inconvenient to use a linear scale for
the frequency axis. Also, there is a more systematic way of locating
the important features of the magnitude and phase plots of the transfer
function. For these reasons, it has become standard practice to use a
logarithmic scale for the frequency axis and a linear scale in each of the
separate plots of magnitude and phase. Such semilogarithmic plots of
the transfer function—known as Bode plots—have become the industry
standard.

Historical note: Named after Hendrik W. Bode
(1905–1982), an engineerwith the Bell Telephone
Laboratories, for his pioneeringwork in the 1930s
and 1940s.

Bode plots are semilog plots of the magnitude (in decibels) and phase (in degrees)
of a transfer function versus frequency.

Bode plots contain the same information as the nonlogarithmic plots dis-
cussed in the previous section, but they are much easier to construct, as
we shall see shortly.

The transfer function can be written as

H = H φ = Hejφ (14.12)

Taking the natural logarithm of both sides,

ln H = lnH + ln ejφ = lnH + jφ (14.13)
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Thus, the real part of ln H is a function of the magnitude while the imag-
inary part is the phase. In a Bode magnitude plot, the gain

HdB = 20 log10H (14.14)

is plotted in decibels (dB) versus frequency. Table 14.2 provides a few
values of H with the corresponding values in decibels. In a Bode phase
plot, φ is plotted in degrees versus frequency. Both magnitude and phase
plots are made on semilog graph paper.

TABLE 14.2 Specific gains
and their decibel values.

Magnitude H 20 log10H (dB)

0.001 −60
0.01 −40
0.1 −20
0.5 −6
1/

√
2 −3

1 0√
2 3
2 6

10 20
20 26

100 40
1000 60

A transfer function in the form of Eq. (14.3) may be written in terms
of factors that have real and imaginary parts. One such representation
might be

H(ω) = K(jω)±1(1 + jω/z1)[1 + j2ζ1ω/ωk + (jω/ωk)2] · · ·
(1 + jω/p1)[1 + j2ζ2ω/ωn + (jω/ωn)2] · · · (14.15)

which is obtained by dividing out the poles and zeros in H(ω). The
representation of H(ω) as in Eq. (14.15) is called the standard form. In
this particular case, H(ω) has seven different factors that can appear in
various combinations in a transfer function. These are:

The origin is where ω = 1 or log ω = 0 and the
gain is zero.

1. A gain K

2. A pole (jω)−1 or zero (jω) at the origin

3. A simple pole 1/(1 + jω/p1) or zero (1 + jω/z1)

4. A quadratic pole 1/[1 + j2ζ2ω/ωn + (jω/ωn)2] or zero
[1 + j2ζ1ω/ωk + (jω/ωk)2]

In constructing a Bode plot, we plot each factor separately and then com-
bine them graphically. The factors can be considered one at a time and
then combined additively because of the logarithms involved. It is this
mathematical convenience of the logarithm that makes Bode plots a pow-
erful engineering tool.

We will now make straight-line plots of the factors listed above. We
shall find that these straight-line plots known as Bode plots approximate
the actual plots to a surprising degree of accuracy.

Constant term: For the gain K , the magnitude is 20 log10K and the
phase is 0◦; both are constant with frequency. Thus the magnitude and
phase plots of the gain are shown in Fig. 14.9. If K is negative, the
magnitude remains 20 log10 |K| but the phase is ±180◦.

(a)

0.1 1 10 100 v

20 log10K

H

(b)

0.1 1 10 100 v

0

f

Figure 14.9 Bode plots for gain K: (a) magnitude plot, (b) phase plot.
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Pole/zero at the origin: For the zero (jω) at the origin, the magnitude
is 20 log10 ω and the phase is 90◦. These are plotted in Fig. 14.10, where
we notice that the slope of the magnitude plot is 20 dB/decade, while the
phase is constant with frequency.

A decade is an interval between two frequen-
cies with a ratio of 10; e.g., between ω0
and 10ω0, or between 10 and 100 Hz. Thus,
20 dB/decade means that the magnitude changes
20 dB whenever the frequency changes tenfold
or one decade.

The special case of dc (ω = 0) does not appear
on Bode plots because log 0 = −∞, implying
that zero frequency is infinitely far to the left of
the origin of Bode plots.

The Bode plots for the pole (jω)−1 are similar except that the slope
of the magnitude plot is −20 dB/decade while the phase is −90◦. In
general, for (jω)N , where N is an integer, the magnitude plot will have
a slope of 20N dB/decade, while the phase is 90N degrees.

Simple pole/zero: For the simple zero (1 + jω/z1), the magnitude is
20 log10 |1 + jω/z1| and the phase is tan−1 ω/z1. We notice that

HdB = 20 log10

∣∣∣∣1 + jω

z1

∣∣∣∣ �⇒ 20 log10 1 = 0

as ω → 0
(14.16)

HdB = 20 log10

∣∣∣∣1 + jω

z1

∣∣∣∣ �⇒ 20 log10
ω

z1

as ω → ∞
(14.17)

showing that we can approximate the magnitude as zero (a straight line
with zero slope) for small values of ω and by a straight line with slope
20 dB/decade for large values of ω. The frequency ω = z1 where the two
asymptotic lines meet is called the corner frequency or break frequency.
Thus the approximate magnitude plot is shown in Fig. 14.11(a), where
the actual plot is also shown. Notice that the approximate plot is close
to the actual plot except at the break frequency, where ω = z1 and the
deviation is 20 log10 |(1 + j1)| = 20 log10

√
2 = 3 dB.

(a)

(b)

0.1 1.0

Slope = 20 dB/decade

10 v
0

20

–20

H

0.1 1.0 10 v

90°

0°

f

Figure 14.10 Bode plot for a zero (jω) at
the origin: (a) magnitude plot, (b) phase plot.

The phase tan−1(ω/z1) can be expressed as

φ = tan−1

(
ω

z1

)
=




0, ω = 0
45◦, ω = z1

90◦, ω → ∞
(14.18)

As a straight-line approximation, we let φ � 0 for ω ≤ z1/10, φ � 45◦

for ω = z1, and φ � 90◦ for ω ≥ 10z1. As shown in Fig. 14.11(b) along
with the actual plot, the straight-line plot has a slope of 45◦ per decade.

The Bode plots for the pole 1/(1 + jω/p1) are similar to those in
Fig. 14.11 except that the corner frequency is at ω = p1, the magnitude

(a)

Approximate

Exact

3 dB0.1z1 10z1z1 v

20

H

(b)

Approximate

Exact

45°/decade

0.1z1 10z1z1 v

45°

0°

90°
f

Figure 14.11 Bode plots of zero (1 + jω/z1): (a) magnitude plot, (b) phase plot.
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has a slope of −20 dB/decade, and the phase has a slope of −45◦ per
decade.

Quadratic pole/zero: The magnitude of the quadratic pole 1/[1 +
j2ζ2ω/ωn + (jω/ωn)

2] is −20 log10 |1 + j2ζ2ω/ωn + (jω/ωn)
2| and

the phase is − tan−1(2ζ2ω/ωn)/(1 − ω/ω2
n). But

HdB = −20 log10

∣∣∣∣∣1 + j2ζ2ω

ωn
+

(
jω

ωn

)2
∣∣∣∣∣ �⇒ 0

as ω → 0

(14.19)

and

HdB = −20 log10

∣∣∣∣∣1 + j2ζ2ω

ωn
+

(
jω

ωn

)2
∣∣∣∣∣ �⇒ −40 log10

ω

ωn

as ω → ∞
(14.20)

Thus, the amplitude plot consists of two straight asymptotic lines: one
with zero slope for ω < ωn and the other with slope −40 dB/decade
for ω > ωn, with ωn as the corner frequency. Figure 14.12(a) shows
the approximate and actual amplitude plots. Note that the actual plot
depends on the damping factor ζ2 as well as the corner frequencyωn. The
significant peaking in the neighborhood of the corner frequency should
be added to the straight-line approximation if a high level of accuracy
is desired. However, we will use the straight-line approximation for the
sake of simplicity.

(a)

0.01vn 100vn10vn0.1vn

z2 = 0.05
z2 = 0.2
z2 = 0.4

z2 = 0.707
z2 = 1.5

vn v

20

0

–20

–40

H

–40 dB/dec

(b)

0.01vn 100vn10vn0.1vn

z2 = 0.4

z2 = 1.5

z2 = 0.2
z2 = 0.05

vn v

0°

–90°

–180° 

f

–90°/dec

z2 = 0.707

Figure 14.12 Bode plots of quadratic pole [1 + j2ζω/ωn − ω2/ω2
n]−1: (a) magnitude plot, (b) phase plot.

The phase can be expressed as

φ = − tan−1 2ζ2ω/ωn

1 − ω2/ω2
n

=



0, ω = 0
−90◦, ω = ωn

−180◦, ω → ∞
(14.21)

The phase plot is a straight line with a slope of 90◦ per decade starting
at ωn/10 and ending at 10ωn, as shown in Fig. 14.12(b). We see again
that the difference between the actual plot and the straight-line plot is
due to the damping factor. Notice that the straight-line approximations
for both magnitude and phase plots for the quadratic pole are the same
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as those for a double pole, i.e. (1 + jω/ωn)−2. We should expect this
because the double pole (1 + jω/ωn)−2 equals the quadratic pole 1/[1 +
j2ζ2ω/ωn + (jω/ωn)2] when ζ2 = 1. Thus, the quadratic pole can be
treated as a double pole as far as straight-line approximation is concerned.

For the quadratic zero [1+j2ζ1ω/ωk+(jω/ωk)2], the plots in Fig.
14.12 are inverted because the magnitude plot has a slope of 40 dB/decade
while the phase plot has a slope of 90◦ per decade.

Table 14.3 presents a summary of Bode plots for the seven factors.
To sketch the Bode plots for a function H(ω) in the form of Eq. (14.15), for
example, we first record the corner frequencies on the semilog graph pa-
per, sketch the factors one at a time as discussed above, and then combine
additively the graphs of the factors. The combined graph is often drawn
from left to right, changing slopes appropriately each time a corner fre-
quency is encountered. The following examples illustrate this procedure.

There is another procedure for obtaining Bode
plots that is faster and perhaps more efficient
than the one we have just discussed. It consists
in realizing that zeros cause an increase in slope,
while poles cause a decrease. By starting with
the low-frequency asymptote of the Bode plot,
moving along the frequency axis, and increasing
or decreasing the slope at each corner frequency,
one can sketch the Bode plot immediately from
the transfer function without the effort of making
individual plots and adding them. This procedure
can be used once you become proficient in the
one discussed here.

Digital computers have rendered the pro-
cedure discussed here almost obsolete. Several
software packages such as PSpice, Matlab, Math-
cad, and Micro-Cap can be used to generate fre-
quency response plots. We will discuss PSpice
later in the chapter.TABLE 14.3 Summary of Bode straight-line magnitude and phase plots.

Factor Magnitude Phase

K

v

20 log10 K

v

0°

(jω)N

v

20N dB ⁄decade

1 v

90N°

1

(jω)N
v1

−20N dB ⁄decade

v

−90N°

(
1 + jω

z

)N
vz

20N dB ⁄decade

v

90N°

0°
z

10
z 10z

1

(1 + jω/p)N
v

p

−20N dB ⁄decade

v

−90N°

0°

p
10 p 10p
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TABLE 14.3 (continued)

Factor Magnitude Phase

[
1 + 2jωζ

ωn
+

(
jω

ωn

)2
]N

vvn

40N dB ⁄decade

v

180N°

0°
vn vn 10vn
10

1

[1 + 2jωζ/ωk + (jω/ωk)2]N

v

vk

−40N dB ⁄decade

v

−180N°

0°

vk 10vk

vk
10

E X A M P L E 1 4 . 3

Construct the Bode plots for the transfer function

H(ω) = 200jω

(jω + 2)(jω + 10)
Solution:

We first put H(ω) in the standard form by dividing out the poles and zeros.
Thus,

H(ω) = 10jω

(1 + jω/2)(1 + jω/10)

= 10|jω|
|1 + jω/2| |1 + jω/10| 90◦ − tan−1 ω/2 − tan−1 ω/10

Hence the magnitude and phase are

HdB = 20 log10 10 + 20 log10 |jω| − 20 log10

∣∣∣∣1 + jω

2

∣∣∣∣
− 20 log10

∣∣∣∣1 + jω

10

∣∣∣∣
φ = 90◦ − tan−1 ω

2
− tan−1 ω

10

We notice that there are two corner frequencies atω = 2, 10. For both the
magnitude and phase plots, we sketch each term as shown by the dotted
lines in Fig. 14.13. We add them up graphically to obtain the overall plots
shown by the solid curves.
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(a)

1
1 + jv/2 

1 2 10 100

20 log1010

20 log1020 log10

20 log10 jv

200 v
0

20

H (dB)

0.1 20

1
1 + jv/10 

(b)

0.2

0.2 100 200 v

90°
90°

0°

–90°

f

0.1 201 2 10

–tan–1 v
2 –tan–1 v

10

Figure 14.13 For Example 14.3: (a) magnitude plot, (b) phase plot.

P R A C T I C E P R O B L E M 1 4 . 3

Draw the Bode plots for the transfer function

H(ω) = 5(jω + 2)

jω(jω + 10)
Answer: See Fig. 14.14.

(a)

20 log10  1 +

20 log10

20 log101
v

20

0

–20

H (dB)

1001

1

2 10

 jv 

20 log10
1

1+ jv/10 

(b)

90°

−90°

0°

–90°

f

v10010.2 2 10 200.1

tan–1
v
2

–tan–1
v

10

0.1

jv

2

Figure 14.14 For Practice Prob. 14.3: (a) magnitude plot, (b) phase plot.
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E X A M P L E 1 4 . 4

Obtain the Bode plots for

H(ω) = jω + 10

jω(jω + 5)2

Solution:

Putting H(ω) in the standard form, we get

H(ω) = 0.4 (1 + jω/10)

jω (1 + jω/5)2
From this, we obtain the magnitude and phase as

HdB = 20 log10 0.4 + 20 log10

∣∣∣∣1 + jω

10

∣∣∣∣ − 20 log10 |jω|

− 40 log10

∣∣∣∣1 + jω

5

∣∣∣∣
φ = 0◦ + tan−1 ω

10
− 90◦ − 2 tan−1 ω

5
There are two corner frequencies atω = 5, 10 rad/s. For the pole with cor-
ner frequency atω = 5, the slope of the magnitude plot is −40 dB/decade
and that of the phase plot is −90◦ per decade due to the power of 2. The
magnitude and the phase plots for the individual terms (in dotted lines)
and the entire H(jω) (in solid lines) are in Fig. 14.15.

(a)

20

0

–20

–8

–40

H (dB)

v1005010.5 10

–20 dB/decade

–60 dB/decade

–40 dB/decade

5

20 log10

20 log100.4

0.1

1
  jv 

40 log10
1

 1 + jv/5 

20 log10  1 +
jv
10

(b)

90°

0°

–90°

–180°

f

v10050

–90°
10.5 10

–90°/decade

–45°/decade
45°/decade

50.1

tan–1
10
v

–2 tan–1 v
5

Figure 14.15 Bode plots for Example 14.4: (a) magnitude plot, (b) phase plot.
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P R A C T I C E P R O B L E M 1 4 . 4

Sketch the Bode plots for

H(ω) = 50jω

(jω + 4)(jω + 10)2

Answer: See Fig. 14.16.

20

–20

–40

H (dB)

100401 104

(a)

20 log10  jv 

0.1

–20 log108

20 log10
1

 1 + jv/4 

40 log10
1

 1 + jv/10 

v
0

90°

–90°

–180°

f

v

100

90°

4010.4 104

(b)

0.1

– tan–1
4
v

–2 tan–1
v
10

0°

Figure 14.16 For Practice Prob. 14.4: (a) magnitude plot, (b) phase plot.

E X A M P L E 1 4 . 5

Draw the Bode plots for

H(s) = s + 1

s2 + 60s + 100
Solution:

We express H(s) as

H(ω) = 1/100(1 + jω)
1 + jω6/10 + (jω/10)2

For the quadratic pole, ωn = 10 rad/s, which serves as the corner fre-
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quency. The magnitude and phase are

HdB = −20 log10 100 + 20 log10 |1 + jω|

− 20 log10

∣∣∣∣1 + jω6

10
− ω2

100

∣∣∣∣
φ = 0◦ + tan−1 ω − tan−1

[
ω6/10

1 − ω2/100

]

Figure 14.17 shows the Bode plots. Notice that the quadratic pole is
treated as a repeated pole at ωk , that is, (1 + jω/ωk)2, which is an ap-
proximation.

20

0

–20

–40

H (dB)

v1001 10

(a)

20 log10 1 + jv 

0.1
20 log10

–20 log10 100

1
 1 + j6v/10 – v2/100 

90°

0°

–90°

–180°

f

v1001

6v/10

1 – v2/100

10

(b)

0.1

–tan–1 

tan–1 v

Figure 14.17 Bode plots for Example 14.5: (a) magnitude plot, (b) phase plot.

P R A C T I C E P R O B L E M 1 4 . 5

Construct the Bode plots for

H(s) = 10

s(s2 + 80s + 400)
Answer: See Fig. 14.18.
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20

0

–20

–40
–32

H (dB)

v100 2001 2010

(a)

0.1

20 log10

–20 log10 40

–20 dB/decade

–60 dB/decade

1
 1 + jv0.2 – v2/400 

20 log10
1

  jv 

–90°
–90°

0°

–180°

–270°

f

v1 2 2010

(b)

0.1

–tan–1 v

 1 – v2/400 

2

100 200

Figure 14.18 For Practice Prob. 14.5: (a) magnitude plot, (b) phase plot.

E X A M P L E 1 4 . 6

Given the Bode plot in Fig. 14.19, obtain the transfer function H(ω).

0.1 1 5 10 20 100

–20 dB/decade

v

40 dB

0

H

+20 dB/decade

–40 dB/decade

Figure 14.19 For Example 14.6.

Solution:

To obtain H(ω) from the Bode plot, we keep in mind that a zero always
causes an upward turn at a corner frequency, while a pole causes a down-
ward turn. We notice from Fig. 14.19 that there is a zero jω at the origin
which should have intersected the frequency axis at ω = 1. This is indi-
cated by the straight line with slope +20 dB/decade. The fact that this
straight line is shifted by 40 dB indicates that there is a 40-dB gain; that
is,

40 = 20 log10K �⇒ log10K = 2
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or

K = 102 = 100

In addition to the zero jω at the origin, we notice that there are three
factors with corner frequencies at ω = 1, 5, and 20 rad/s. Thus, we have:

1. A pole at p = 1 with slope −20 dB/decade to cause a down-
ward turn and counteract the pole at the origin. The pole at
z = 1 is determined as 1/(1 + jω/1).

2. Another pole at p = 5 with slope −20 dB/decade causing a
downward turn. The pole is 1/(1 + jω/5).

3. A third pole at p = 20 with slope −20 dB/decade causing a
further downward turn. The pole is 1/(1 + jω/20).

Putting all these together gives the corresponding transfer function
as

H(ω) = 100jω

(1 + jω/1)(1 + jω/5)(1 + jω/20)

= jω104

(jω + 1)(jω + 5)(jω + 20)

or

H(s) = 104s

(s + 1)(s + 5)(s + 20)
, s = jω

P R A C T I C E P R O B L E M 1 4 . 6

Obtain the transfer function H(ω) corresponding to the Bode plot in Fig.
14.20.

0.1 10.5 10 100

–40 dB/decade

v

0 dB

0

H
+20 dB/decade

Figure 14.20 For Practice Prob. 14.6.

Answer: H(ω) = 200(s + 0.5)

(s + 1)(s + 10)2
.

14.5 SERIES RESONANCE
The most prominent feature of the frequency response of a circuit may be
the sharp peak (or resonant peak) exhibited in its amplitude characteristic.
The concept of resonance applies in several areas of science and engi-
neering. Resonance occurs in any system that has a complex conjugate
pair of poles; it is the cause of oscillations of stored energy from one form
to another. It is the phenomenon that allows frequency discrimination in
communications networks. Resonance occurs in any circuit that has at
least one inductor and one capacitor.
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Resonance is a condition in an RLC circuit in which the capacitive and inductive
reactances are equal in magnitude, thereby resulting in a purely resistive impedance.

Resonant circuits (series or parallel) are useful for constructing filters, as
their transfer functions can be highly frequency selective. They are used
in many applications such as selecting the desired stations in radio and
TV receivers.

R jvL

jvC
1I+

−Vs = Vm     u

Figure 14.21 The series resonant circuit.

Consider the series RLC circuit shown in Fig. 14.21 in the fre-
quency domain. The input impedance is

Z = H(ω) = Vs
I

= R + jωL+ 1

jωC
(14.22)

or

Z = R + j
(
ωL− 1

ωC

)
(14.23)

Resonance results when the imaginary part of the transfer function is
zero, or

Im(Z) = ωL− 1

ωC
= 0 (14.24)

The value ofω that satisfies this condition is called the resonant frequency
ω0. Thus, the resonance condition is

ω0L = 1

ω0C
(14.25)

or

ω0 = 1√
LC

rad/s (14.26)

Since ω0 = 2πf0,

f0 = 1

2π
√
LC

Hz (14.27)

Note that at resonance:

Note No. 4 becomes evident from the fact that

|VL| = Vm

R
ω0L = QVm

|VC | = Vm

R
1
ω0C

= QVm

whereQ is the quality factor, defined in Eq. (14.38).

1. The impedance is purely resistive, thus, Z = R. In other
words, the LC series combination acts like a short circuit, and
the entire voltage is across R.

2. The voltage Vs and the current I are in phase, so that the power
factor is unity.

3. The magnitude of the transfer function H(ω) = Z(ω) is
minimum.

4. The inductor voltage and capacitor voltage can be much more
than the source voltage.
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The frequency response of the circuit’s current magnitude

I = |I| = Vm√
R2 + (ωL− 1/ωC)2

(14.28)

is shown in Fig. 14.22; the plot only shows the symmetry illustrated in
this graph when the frequency axis is a logarithm. The average power
dissipated by the RLC circuit is

P(ω) = 1

2
I 2R (14.29)

The highest power dissipated occurs at resonance, when I = Vm/R, so
that

P(ω0) = 1

2

V 2
m

R
(14.30)

At certain frequencies ω = ω1, ω2, the dissipated power is half the
maximum value; that is,

P(ω1) = P(ω2) = (Vm/
√

2)2

2R
= V 2

m

4R
(14.31)

Hence, ω1 and ω2 are called the half-power frequencies.

0

Bandwidth B

vv1 v0 v2

I

Vm/R

0.707Vm/R

Figure 14.22 The current amplitude versus
frequency for the series resonant circuit of
Fig. 14.21.

The half-power frequencies are obtained by settingZ equal to
√

2R,
and writing √

R2 +
(
ωL− 1

ωC

)2

=
√

2R (14.32)

Solving for ω, we obtain

ω1 = − R

2L
+

√(
R

2L

)2

+ 1

LC

ω2 = R

2L
+

√(
R

2L

)2

+ 1

LC

(14.33)

We can relate the half-power frequencies with the resonant frequency.
From Eqs. (14.26) and (14.33),

ω0 = √
ω1ω2 (14.34)

showing that the resonant frequency is the geometric mean of the half-
power frequencies. Notice that ω1 and ω2 are in general not symmetrical
around the resonant frequency ω0, because the frequency response is not
generally symmetrical. However, as will be explained shortly, symmetry
of the half-power frequencies around the resonant frequency is often a
reasonable approximation.

Although the height of the curve in Fig. 14.22 is determined by
R, the width of the curve depends on other factors. The width of the
response curve depends on the bandwidth B, which is defined as the
difference between the two half-power frequencies,

B = ω2 − ω1 (14.35)
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This definition of bandwidth is just one of several that are commonly used.
Strictly speaking, B in Eq. (14.35) is a half-power bandwidth, because it
is the width of the frequency band between the half-power frequencies.

The “sharpness” of the resonance in a resonant circuit is measured
quantitatively by the quality factor Q. At resonance, the reactive energy
in the circuit oscillates between the inductor and the capacitor. The quality
factor relates the maximum or peak energy stored to the energy dissipated
in the circuit per cycle of oscillation:

Q = 2π
Peak energy stored in the circuit

Energy dissipated by the circuit
in one period at resonance

(14.36)

It is also regarded as a measure of the energy storage property of a circuit
in relation to its energy dissipation property. In the series RLC circuit,
the peak energy stored is 1

2LI
2, while the energy dissipated in one period

is 1
2 (I

2R)(1/f ). Hence,

Q = 2π
1
2LI

2

1
2I

2R(1/f )
= 2πfL

R
(14.37)

or

Q = ω0L

R
= 1

ω0CR
(14.38)

Notice that the quality factor is dimensionless. The relationship between
the bandwidth B and the quality factorQ is obtained by substituting Eq.
(14.33) into Eq. (14.35) and utilizing Eq. (14.38).

B = R

L
= ω0

Q
(14.39)

or B = ω2
0CR. Thus

Although the same symbol Q is used for the reac-
tive power, the two are not equal and should not
be confused. Q here is dimensionless, whereas
reactive power Q is in VAR. This may help distin-
guish between the two.

The quality factor of a resonant circuit is the ratio of its
resonant frequency to its bandwidth.

Keep in mind that Eqs. (14.26), (14.33), (14.38), and (14.39) only apply
to a series RLC circuit.

As illustrated in Fig. 14.23, the higher the value of Q, the more
selective the circuit is but the smaller the bandwidth. The selectivity of
anRLC circuit is the ability of the circuit to respond to a certain frequency
and discriminate against all other frequencies. If the band of frequencies
to be selected or rejected is narrow, the quality factor of the resonant
circuit must be high. If the band of frequencies is wide, the quality factor
must be low.

The quality factor is a measure of the selectivity
(or “sharpness” of resonance) of the circuit.

B3

Q3 (greatest selectivity)

Q2 (medium selectivity)
Q1 (least selectivity)

B2

B1

v

Amplitude

Figure 14.23 The higher the circuitQ, the
smaller the bandwidth.

A resonant circuit is designed to operate at or near its resonant
frequency. It is said to be a high-Q circuit when its quality factor is
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equal to or greater than 10. For high-Q circuits (Q ≥ 10), the half-
power frequencies are, for all practical purposes, symmetrical around the
resonant frequency and can be approximated as

ω1 � ω0 − B

2
, ω2 � ω0 + B

2
(14.40)

High-Q circuits are used often in communications networks.
We see that a resonant circuit is characterized by five related param-

eters: the two half-power frequencies ω1 and ω2, the resonant frequency
ω0, the bandwidth B, and the quality factorQ.

E X A M P L E 1 4 . 7

In the circuit in Fig. 14.24, R = 2 &, L = 1 mH, and C = 0.4 µF.
(a) Find the resonant frequency and the half-power frequencies. (b) Cal-
culate the quality factor and bandwidth. (c) Determine the amplitude of
the current at ω0, ω1, and ω2.20 sin vt

R L

C+
−

Figure 14.24 For Example 14.7.

Solution:

(a) The resonant frequency is

ω0 = 1√
LC

= 1√
10−3 × 0.4 × 10−6

= 50 krad/s

METHOD 1 The lower half-power frequency is

ω1 = − R

2L
+

√(
R

2L

)2

+ 1

LC

= − 2

2 × 10−3
+

√
(103)2 + (50 × 103)2

= −1 + √
1 + 2500 krad/s = 49 krad/s

Similarly, the upper half-power frequency is

ω2 = 1 + √
1 + 2500 krad/s = 51 krad/s

(b) The bandwidth is

B = ω2 − ω1 = 2 krad/s

or

B = R

L
= 2

10−3
= 2 krad/s

The quality factor is

Q = ω0

B
= 50

2
= 25

METHOD 2 Alternatively, we could find

Q = ω0L

R
= 50 × 103 × 10−3

2
= 25

FromQ, we find

B = ω0

Q
= 50 × 103

25
= 2 krad/s
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SinceQ > 10, this is a high-Q circuit and we can obtain the half-power
frequencies as

ω1 = ω0 − B

2
= 50 − 1 = 49 krad/s

ω2 = ω0 + B

2
= 50 + 1 = 51 krad/s

as obtained earlier.
(c) At ω = ω0,

I = Vm

R
= 20

2
= 10 A

At ω = ω1, ω2,

I = Vm√
2R

= 10√
2

= 7.071 A

P R A C T I C E P R O B L E M 1 4 . 7

A series-connected circuit has R = 4 & and L = 25 mH. (a) Calculate
the value of C that will produce a quality factor of 50. (b) Find ω1, ω2,

and B. (c) Determine the average power dissipated at ω = ω0, ω1, ω2.
Take Vm = 100 V.

Answer: (a) 0.625 µF, (b) 7920 rad/s, 8080 rad/s, 160 rad/s,
(c) 1.25 kW, 0.625 kW, 0.625 kW.

14.6 PARALLEL RESONANCE

1
jvCjvLRV

+

−
I = Im     u

Figure 14.25 The parallel resonant circuit.

0

Bandwidth B

vv1 v0 v2

V 

ImR

0.707 ImR

Figure 14.26 The current amplitude versus
frequency for the series resonant circuit of
Fig. 14.25.

The parallel RLC circuit in Fig. 14.25 is the dual of the series RLC
circuit. So we will avoid needless repetition. The admittance is

Y = H(ω) = I
V

= 1

R
+ jωC + 1

jωL
(14.41)

or

Y = 1

R
+ j

(
ωC − 1

ωL

)
(14.42)

Resonance occurs when the imaginary part of Y is zero,

ωC − 1

ωL
= 0 (14.43)

or

ω0 = 1√
LC

rad/s (14.44)

which is the same as Eq. (14.26) for the series resonant circuit. The
voltage |V| is sketched in Fig. 14.26 as a function of frequency. Notice
that at resonance, the parallelLC combination acts like an open circuit, so
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that the entire currents flows through R. Also, the inductor and capacitor
current can be much more than the source current at resonance.We can see this from the fact that

|IL| = ImR
ω0L

= QIm

|IC | = ω0CImR = QIm
whereQ is the quality factor, defined in Eq. (14.47).

We exploit the duality between Figs. 14.21 and 14.25 by comparing
Eq. (14.42) with Eq. (14.23). By replacingR,L, andC in the expressions
for the series circuit with 1/R, 1/C, and 1/L respectively, we obtain for
the parallel circuit

ω1 = − 1

2RC
+

√(
1

2RC

)2

+ 1

LC

ω2 = 1

2RC
+

√(
1

2RC

)2

+ 1

LC

(14.45)

B = ω2 − ω1 = 1

RC
(14.46)

Q = ω0

B
= ω0RC = R

ω0L
(14.47)

Using Eqs. (14.45) and (14.47), we can express the half-power frequen-
cies in terms of the quality factor. The result is

ω1 =ω0

√
1 +

(
1

2Q

)2

− ω0

2Q
, ω2 =ω0

√
1 +

(
1

2Q

)2

+ ω0

2Q
(14.48)

Again, for high-Q circuits (Q ≥ 10)

ω1 � ω0 − B

2
, ω2 � ω0 + B

2
(14.49)

Table 14.4 presents a summary of the characteristics of the series and
parallel resonant circuits. Besides the series and parallelRLC considered
here, other resonant circuits exist. Example 14.9 treats a typical example.

TABLE 14.4 Summary of the characteristics of resonant RLC circuits.

Characteristic Series circuit Parallel circuit

Resonant frequency, ω0
1√
LC

1√
LC

Quality factor,Q
ω0L

R
or

1

ω0RC

R

ω0L
or ω0RC

Bandwidth, B
ω0

Q

ω0

Q

Half-power frequencies, ω1, ω2 ω0

√
1 +

(
1

2Q

)2

± ω0

2Q
ω0

√
1 +

(
1

2Q

)2

± ω0

2Q

ForQ ≥ 10, ω1, ω2 ω0 ± B

2
ω0 ± B

2
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E X A M P L E 1 4 . 8

In the parallelRLC circuit in Fig. 14.27, letR = 8 k&,L = 0.2 mH, and
C = 8 µF. (a) Calculate ω0, Q, and B. (b) Find ω1 and ω2. (c) Deter-
mine the power dissipated at ω0, ω1, and ω2.

10 sin vt CLR

io

+
−

Figure 14.27 For Example 14.8.

Solution:

(a)

ω0 = 1√
LC

= 1√
0.2 × 10−3 × 8 × 10−6

= 105

4
= 25 krad/s

Q = R

ω0L
= 8 × 103

25 × 103 × 0.2 × 10−3
= 1600

B = ω0

Q
= 15.625 rad/s

(b) Due to the high value of Q, we can regard this as a high-Q circuit.
Hence,

ω1 = ω0 − B

2
= 25,000 − 7.812 = 24,992 rad/s

ω2 = ω0 + B

2
= 25,000 + 7.8125 = 25,008 rad/s

(c) At ω = ω0, Y = 1/R or Z = R = 8 k&. Then

Io = V
Z

= 10 − 90◦

8000
= 1.25 − 90◦ mA

Since the entire current flows through R at resonance, the average power
dissipated at ω = ω0 is

P = 1

2
|Io|2R = 1

2
(1.25 × 10−3)2(8 × 103) = 6.25 mW

or

P = V 2
m

2R
= 100

2 × 8 × 103
= 6.25 mW

At ω = ω1, ω2,

P = V 2
m

4R
= 3.125 mW

P R A C T I C E P R O B L E M 1 4 . 8

A parallel resonant circuit has R = 100 k&, L = 20 mH, and C = 5 nF.
Calculate ω0, ω1, ω2,Q, and B.

Answer: 100 krad/s, 99 krad/s, 101 krad/s, 50, 2 krad/s.

E X A M P L E 1 4 . 9

Determine the resonant frequency of the circuit in Fig. 14.28.
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Solution:

The input admittance is

Y = jω0.1 + 1

10
+ 1

2 + jω2
= 0.1 + jω0.1 + 2 − jω2

4 + 4ω2

At resonance, Im(Y) = 0 and

ω00.1 − 2ω0

4 + 4ω2
0

= 0 �⇒ ω0 = 2 rad/s

Im cos vt 0.1 F 10 Ω
2 H

2 Ω

Figure 14.28 For Example 14.9.

P R A C T I C E P R O B L E M 1 4 . 9

Calculate the resonant frequency of the circuit in Fig. 14.29.

Vm cos vt 10 Ω0.2 F

1 H

+
−

Figure 14.29 For Practice Prob. 14.9.

Answer: 2.179 rad/s.

14.7 PASSIVE FILTERS
The concept of filters has been an integral part of the evolution of electri-
cal engineering from the beginning. Several technological achievements
would not have been possible without electrical filters. Because of this
prominent role of filters, much effort has been expended on the theory,
design, and construction of filters and many articles and books have been
written on them. Our discussion in this chapter should be considered
introductory.

A filter is a circuit that is designed to pass signals with desired frequencies
and reject or attenuate others.

As a frequency-selective device, a filter can be used to limit the frequency
spectrum of a signal to some specified band of frequencies. Filters are the
circuits used in radio and TV receivers to allow us to select one desired
signal out of a multitude of broadcast signals in the environment.

A filter is a passive filter if it consists of only passive elements R,
L, and C. It is said to be an active filter if it consists of active elements
(such as transistors and op amps) in addition to passive elements R, L,
and C. We consider passive filters in this section and active filters in
the next section. Besides the filters we study in these sections, there are
other kinds of filters—such as digital filters, electromechanical filters,
and microwave filters—which are beyond the level of the text.

As shown in Fig. 14.30, there are four types of filters whether
passive or active:
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1. A lowpass filter passes low frequencies and stops high
frequencies, as shown ideally in Fig. 14.30(a).

2. A highpass filter passes high frequencies and rejects low
frequencies, as shown ideally in Fig. 14.30(b).

3. A bandpass filter passes frequencies within a frequency band
and blocks or attenuates frequencies outside the band, as
shown ideally in Fig. 14.30(c).

4. A bandstop filter passes frequencies outside a frequency band
and blocks or attenuates frequencies within the band, as shown
ideally in Fig. 14.30(d).

0
(b)

vvc

H(v) 

1

0
(a)

vvc

H(v) 

1

0
(c)

vv1 v2

H(v) 

1

0
(d)

vv1 v2

H(v) 

1

Figure 14.30 Ideal frequency response
of four types of filter: (a) lowpass filter,
(b) highpass filter, (c) bandpass filter,
(d) bandstop filter.

Table 14.5 presents a summary of the characteristics of these filters. Be
aware that the characteristics in Table 14.5 are only valid for first- or
second-order filters—but one should not have the impression that only
these kinds of filter exist. We now consider typical circuits for realizing
the filters shown in Table 14.5.

TABLE 14.5 Summary of the characteristics of filters.

Type of Filter H(0) H(∞) H(ωc) or H(ω0)

Lowpass 1 0 1/
√

2
Highpass 0 1 1/

√
2

Bandpass 0 0 1
Bandstop 1 1 0

ωc is the cutoff frequency for lowpass and highpass filters; ω0 is
the center frequency for bandpass and bandstop filters.

vi(t)

R

C+
− vo(t)

+

−

Figure 14.31 A lowpass filter.

14 . 7 . 1 Lowpa s s F i l t e r
A typical lowpass filter is formed when the output of an RC circuit is
taken off the capacitor as shown in Fig. 14.31. The transfer function (see
also Example 14.1) is

H(ω) = Vo
Vi

= 1/jωC

R + 1/jωC

H(ω) = 1

1 + jωRC (14.50)

Note that H(0) = 1, H(∞) = 0. Figure 14.32 shows the plot of |H(ω)|,
along with the ideal characteristic. The half-power frequency, which is
equivalent to the corner frequency on the Bode plots but in the context of
filters is usually known as the cutoff frequency ωc, is obtained by setting
the magnitude of H(ω) equal to 1/

√
2, thus

H(ωc) = 1√
1 + ω2

cR
2C2

= 1√
2

or

ωc = 1

RC
(14.51)



610 PART 2 AC Circuits

vc v

0.707

Ideal

Actual

1

0

 H(v)

Figure 14.32 Ideal and actual fre-
quency response of a lowpass filter.

The cutoff frequency is also called the rolloff frequency.The cutoff frequency is the frequency at which
the transfer function H drops in magnitude to
70.71% of its maximum value. It is also regarded
as the frequency at which the power dissipated
in a circuit is half of its maximum value.

A lowpass filter is designed to pass only frequencies from dc up
to the cutoff frequency ωc.

A lowpass filter can also be formed when the output of an RL
circuit is taken off the resistor. Of course, there are many other circuits
for lowpass filters.

vi(t) R

C

+
− vo(t)

+

−

Figure 14.33 A highpass filter.

14 . 7 . 2 H i ghpa s s F i l t e r
A highpass filter is formed when the output of an RC circuit is taken off
the resistor as shown in Fig. 14.33. The transfer function is

H(ω) = Vo
Vi

= R

R + 1/jωC

H(ω) = jωRC

1 + jωRC (14.52)

Note that H(0) = 0, H(∞) = 1. Figure 14.34 shows the plot of |H(ω)|.
Again, the corner or cutoff frequency is

ωc = 1

RC
(14.53)

vc v

0.707

Ideal

Actual

1

0

 H(v)

Figure 14.34 Ideal and actual fre-
quency response of a highpass filter.

A highpass filter is designed to pass all frequencies above its cutoff frequency ωc.

vi(t) R

C

+
− vo(t)

L

+

−

Figure 14.35 A bandpass filter.

A highpass filter can also be formed when the output of an RL
circuit is taken off the inductor.

14 . 7 . 3 Bandpa s s F i l t e r
The RLC series resonant circuit provides a bandpass filter when the out-
put is taken off the resistor as shown in Fig. 14.35. The transfer function
is

H(ω) = Vo
Vi

= R

R + j (ωL− 1/ωC)
(14.54)
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We observe that H(0) = 0, H(∞) = 0. Figure 14.36 shows the plot of
|H(ω)|. The bandpass filter passes a band of frequencies (ω1 < ω < ω2)
centered on ω0, the center frequency, which is given by

ω0 = 1√
LC

(14.55)

A bandpass filter is designed to pass all frequencies within a band
of frequencies, ω1 < ω < ω2.

Since the bandpass filter in Fig. 14.35 is a series resonant circuit, the half-
power frequencies, the bandwidth, and the quality factor are determined
as in Section 14.5. A bandpass filter can also be formed by cascading
the lowpass filter (where ω2 = ωc) in Fig. 14.31 with the highpass filter
(where ω1 = ωc) in Fig. 14.33.

v0v1 v2 v

0.707

Ideal

Actual

1

0

 H(v)

Figure 14.36 Ideal and actual frequency
response of a bandpass filter.

14 . 7 . 4 Band s top F i l t e r
A filter that prevents a band of frequencies between two designated values
(ω1 and ω2) from passing is variably known as a bandstop, bandreject,
or notch filter. A bandstop filter is formed when the output RLC series
resonant circuit is taken off the LC series combination as shown in Fig.
14.37. The transfer function is

H(ω) = Vo
Vi

= j (ωL− 1/ωC)

R + j(ωL− 1/ωC)
(14.56)

Notice that H(0) = 1, H(∞) = 1. Figure 14.38 shows the plot of |H(ω)|.
Again, the center frequency is given by

ω0 = 1√
LC

(14.57)

while the half-power frequencies, the bandwidth, and the quality factor are
calculated using the formulas in Section 14.5 for a series resonant circuit.
Here, ω0 is called the frequency of rejection, while the corresponding
bandwidth (B = ω2 −ω1) is known as the bandwidth of rejection. Thus,

vi(t)

R

C
+
−

–

+

vo(t)
L

Figure 14.37 A bandstop filter.
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0.707

Ideal

Actual

1
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 H(v)

Figure 14.38 Ideal and actual frequency
response of a bandstop filter.

A bandstop filter is designed to stop or eliminate all frequencies within
a band of frequencies, ω1 < ω < ω2.

Notice that adding the transfer functions of the bandpass and the
bandstop gives unity at any frequency for the same values of R, L, and
C. Of course, this is not true in general but true for the circuits treated
here. This is due to the fact that the characteristic of one is the inverse of
the other.

In concluding this section, we should note that:

1. From Eqs. (14.50), (14.52), (14.54), and (14.56), the maximum
gain of a passive filter is unity. To generate a gain greater than
unity, one should use an active filter as the next section shows.
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2. There are other ways to get the types of filters treated in this
section.

3. The filters treated here are the simple types. Many other filters
have sharper and complex frequency responses.

E X A M P L E 1 4 . 1 0

Determine what type of filter is shown in Fig. 14.39. Calculate the corner
or cutoff frequency. Take R = 2 k&, L = 2 H, and C = 2 µF.

vi(t) CR+
− vo(t)

L

+

−

Figure 14.39 For Example 14.10.

Solution:

The transfer function is

H(s) = Vo
Vi

= R ‖ 1/sC

sL+ R ‖ 1/sC
, s = jω (14.10.1)

But

R

∥∥∥∥ 1

sC
= R/sC

R + 1/sC
= R

1 + sRC
Substituting this into Eq. (14.10.1) gives

H(s) = R/(1 + sRC)
sL+ R/(1 + sRC) = R

s2RLC + sL+ R , s = jω
or

H(ω) = R

−ω2RLC + jωL+ R (14.10.2)

Since H(0) = 1 and H(∞) = 0, we conclude from Table 14.5 that the
circuit in Fig. 14.39 is a second-order lowpass filter. The magnitude of
H is

H = R√
(R − ω2RLC)2 + ω2L2

(14.10.3)

The corner frequency is the same as the half-power frequency, i.e., where
H is reduced by a factor of 1

√
2. Since the dc value of H(ω) is 1, at the

corner frequency, Eq. (14.10.3) becomes after squaring

H 2 = 1

2
= R2

(R − ω2
cRLC)

2 + ω2
cL

2

or

2 = (1 − ω2
cLC)

2 +
(
ωcL

R

)2

Substituting the values of R, L, and C, we obtain

2 = (
1 − ω2

c 4 × 10−6
)2 + (ωc 10−3)2

Assuming that ωc is in krad/s,

2 = (1 − 4ωc)
2 + ω2

c or 16ω4
c − 7ω2

c − 1 = 0

Solving the quadratic equation in ω2
c , we get ω2

c = 0.5509, or

ωc = 0.742 krad/s = 742 rad/s
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P R A C T I C E P R O B L E M 1 4 . 1 0

For the circuit in Fig. 14.40, obtain the transfer function Vo(ω)/Vi (ω).
Identify the type of filter the circuit represents and determine the corner
frequency. Take R1 = 100 & = R2, L = 2 mH.

vi(t)

R1

R2
+
− vo(t)L

+

−

Figure 14.40 For Practice Prob. 14.10.

Answer: Highpass filter,
R2

R1 + R2

(
jω

jω + ωc

)
,

ωc = R1R2

(R1 + R2)L
= 25 krad/s.

E X A M P L E 1 4 . 1 1

If the bandstop filter in Fig. 14.37 is to reject a 200-Hz sinusoid while pass-
ing other frequencies, calculate the values of L and C. Take R = 150 &
and the bandwidth as 100 Hz.

Solution:

We use the formulas for a series resonant circuit in Section 14.5.

B = 2π(100) = 200π rad/s

But

B = R

L
�⇒ L = R

B
= 150

200π
= 0.2387 H

Rejection of the 200-Hz sinusoid means that f0 is 200 Hz, so that ω0 in
Fig. 14.38 is

ω0 = 2πf0 = 2π(200) = 400π

Since ω0 = 1/
√
LC,

C = 1

ω2
0L

= 1

(400π)2(0.2387)
= 2.66 µF

P R A C T I C E P R O B L E M 1 4 . 1 1

Design a bandpass filter of the form in Fig. 14.35 with a lower cutoff fre-
quency of 20.1 kHz and an upper cutoff frequency of 20.3 kHz. Take
R = 20 k&. Calculate L, C, andQ.

Answer: 7.96 H, 3.9 pF, 101.

14.8 ACTIVE FILTERS
There are three major limits to the passive filters considered in the previous
section. First, they cannot generate gain greater than 1; passive elements
cannot add energy to the network. Second, they may require bulky and
expensive inductors. Third, they perform poorly at frequencies below the
audio frequency range (300 Hz < f < 3000 Hz). Nevertheless, passive
filters are useful at high frequencies.
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Active filters consist of combinations of resistors, capacitors, and
op amps. They offer some advantages over passive RLC filters. First,
they are often smaller and less expensive, because they do not require
inductors. This makes feasible the integrated circuit realizations of fil-
ters. Second, they can provide amplifier gain in addition to providing
the same frequency response as RLC filters. Third, active filters can be
combined with buffer amplifiers (voltage followers) to isolate each stage
of the filter from source and load impedance effects. This isolation allows
designing the stages independently and then cascading them to realize the
desired transfer function. (Bode plots, being logarithmic, may be added
when transfer functions are cascaded.) However, active filters are less
reliable and less stable. The practical limit of most active filters is about
100 kHz—most active filters operate well below that frequency.

Filters are often classified according to their order (or number of
poles) or their specific design type.

14 . 8 . 1 F i r s t -Orde r Lowpa s s F i l t e r
One type of first-order filter is shown in Fig. 14.41. The components
selected forZi andZf determine whether the filter is lowpass or highpass,
but one of the components must be reactive.

+
−

−

+

Vo

+

–

Vi

Zi

Zf

Figure 14.41 A general first-
order active filter.

Figure 14.42 shows a typical active low-pass filter. For this filter,
the transfer function is

H(ω) = Vo
Vi

= −Zf
Zi

(14.58)

where Zi = Ri and

Zf = Rf
∥∥∥∥ 1

jωCf
= Rf /jωCf

Rf + 1/jωCf
= Rf

1 + jωCfRf (14.59)

Therefore,

H(ω) = −Rf
Ri

1

1 + jωCfRf (14.60)

We notice that Eq. (14.60) is similar to Eq. (14.50), except that there is
a low frequency (ω → 0) gain or dc gain of −Rf /Ri . Also, the corner
frequency is

ωc = 1

RfCf
(14.61)

which does not depend on Ri . This means that several inputs with dif-
ferent Ri could be summed if required, and the corner frequency would
remain the same for each input.
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Figure 14.42 Active first-order
lowpass filter.

14 . 8 . 2 F i r s t -Orde r H i ghpa s s F i l t e r
+
−

+

–

Vo

+

–

Vi

Ri
Ci

Rf

Figure 14.43 Active first-order
highpass filter.

Figure 14.43 shows a typical highpass filter. As before,

H(ω) = Vo
Vi

= −Zf
Zi

(14.62)

where Zi = Ri + 1/jωCi and Zf = Rf so that

H(ω) = − Rf

Ri + 1/jωCi
= − jωCiRf

1 + jωCiRi (14.63)
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This is similar to Eq. (14.52), except that at very high frequencies (ω →
∞), the gain tends to −Rf /Ri . The corner frequency is

ωc = 1

RiCi
(14.64)

14 . 8 . 3 Bandpa s s F i l t e r
The circuit in Fig. 14.42 may be combined with that in Fig. 14.43 to form
a bandpass filter that will have a gain K over the required range of fre-
quencies. By cascading a unity-gain lowpass filter, a unity-gain highpass
filter, and an inverter with gain −Rf /Ri , as shown in the block diagram
of Fig. 14.44(a), we can construct a bandpass filter whose frequency re-
sponse is that in Fig. 14.44(b). The actual construction of the bandpass
filter is shown in Fig. 14.45.

This way of creating a bandpass filter, not neces-
sarily the best, is perhaps the easiest to under-
stand.

v0v1 v2 v

0.707 K
K

B

0

(a) (b)
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filter

vi vo

H

High-pass
filter

Inverter

Figure 14.44 Active bandpass filter: (a) block diagram, (b) frequency response.
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Figure 14.45 Active bandpass filter.

The analysis of the bandpass filter is relatively simple. Its transfer
function is obtained by multiplying Eqs. (14.60) and (14.63) with the gain
of the inverter; that is

H(ω) = Vo
Vi

=
(

− 1

1 + jωC1R

) (
− jωC2R

1 + jωC2R

) (
−Rf
Ri

)

= −Rf
Ri

1

1 + jωC1R

jωC2R

1 + jωC2R

(14.65)
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The lowpass section sets the upper corner frequency as

ω2 = 1

RC1
(14.66)

while the highpass section sets the lower corner frequency as

ω1 = 1

RC2
(14.67)

With these values of ω1 and ω2, the center frequency, bandwidth, and
quality factor are found as follows:

ω0 = √
ω1ω2 (14.68)

B = ω2 − ω1 (14.69)

Q = ω0

B
(14.70)

To find the passband gain K , we write Eq. (14.65) in the standard
form of Eq. (14.15),

H(ω) = −Kjω/ω1

(1 + jω/ω1)(1 + jω/ω2)
= −Kjωω2

(ω1 + jω)(ω2 + jω) (14.71)

At the center frequency ω0 = √
ω1ω2, the magnitude of the transfer

function is

H(ω0) =
∣∣∣∣ −Kjω0ω2

(ω1 + jω0)(ω2 + jω0)

∣∣∣∣ = Kω2

ω1 + ω2
(14.72)

We set this equal to the gain of the inverting amplifier, as

Kω2

ω1 + ω2
= Rf

Ri
(14.73)

from which the gain K can be determined.

14 . 8 . 4 Bandre j e c t (o r Notch ) F i l t e r
A bandreject filter may be constructed by parallel combination of a low-
pass filter and a highpass filter and a summing amplifier, as shown in
the block diagram of Fig. 14.46(a). The circuit is designed such that the

v0v1 v2 v

0.707 K

K

B

(b)(a)

0

H

vi vo = v1 + v2

v1

v2

Low-pass
filter sets

v1

High-pass
filter sets
v2 > v1

Summing
amplifier

Figure 14.46 Active bandreject filter: (a) block diagram, (b) frequency response.
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lower cutoff frequency ω1 is set by the lowpass filter while the upper cut-
off frequency ω2 is set by the highpass filter. The gap between ω1 and ω2

is the bandwidth of the filter. As shown in Fig. 14.46(b), the filter passes
frequencies below ω1 and above ω2. The block diagram in Fig. 14.46(a)
is actually constructed as shown in Fig. 14.47. The transfer function is

H(ω) = Vo
Vi

= −Rf
Ri

(
− 1

1 + jωC1R
− jωC2R

1 + jωC2R

)
(14.74)

The formulas for calculating the values of ω1, ω2, the center frequency,
bandwidth, and quality factor are the same as in Eqs. (14.66) to (14.70).

+
−

+

–

vi

+

–

vo

R

R

C1

Rf

C2

+
−

+
−

R

R Ri

Ri

Figure 14.47 Active bandreject filter.

To determine the passband gain K of the filter, we can write Eq.
(14.74) in terms of the upper and lower corner frequencies as

H(ω) = Rf

Ri

(
1

1 + jω/ω2
+ jω/ω1

1 + jω/ω1

)

= Rf

Ri

(1 + j2ω/ω1 + (jω)2/ω1ω1)

(1 + jω/ω2)(1 + jω/ω1)

(14.75)

Comparing this with the standard form in Eq. (14.15) indicates that in the
two passbands (ω → 0 and ω → ∞) the gain is

K = Rf

Ri
(14.76)

We can also find the gain at the center frequency by finding the magnitude
of the transfer function at ω0 = √

ω1ω2, writing

H(ω0) =
∣∣∣∣RfRi

(1 + j2ω0/ω1 + (jω0)
2/ω1ω1)

(1 + jω0/ω2)(1 + jω0/ω1)

∣∣∣∣
= Rf

Ri

2ω1

ω1 + ω2

(14.77)

Again, the filters treated in this section are only typical. There are
many other active filters that are more complex.
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E X A M P L E 1 4 . 1 2

Design a low-pass active filter with a dc gain of 4 and a corner frequency
of 500 Hz.

Solution:

From Eq. (14.61), we find

ωc = 2πfc = 2π(500) = 1

RfCf
(14.12.1)

The dc gain is

H(0) = −Rf
Ri

= −4 (14.12.2)

We have two equations and three unknowns. If we select Cf = 0.2 µF,
then

Rf = 1

2π(500)0.2 × 10−6
= 1.59 k&

and

Ri = Rf

4
= 397.5 &

We use a 1.6-k& resistor forRf and a 400-& resistor forRi . Figure 14.42
shows the filter.

P R A C T I C E P R O B L E M 1 4 . 1 2

Design a highpass filter with a high-frequency gain of 5 and a corner fre-
quency of 2 kHz. Use a 0.1-µF capacitor in your design.

Answer: Ri = 800 & and Rf = 4 k&.

E X A M P L E 1 4 . 1 3

Design a bandpass filter in the form of Fig. 14.45 to pass frequencies be-
tween 250 Hz and 3000 Hz and with K = 10. Select R = 20 k&.

Solution:

Since ω1 = 1/RC2, we obtain

C2 = 1

Rω1
= 1

2πf1R
= 1

2π × 250 × 20 × 103
= 31.83 nF

Similarly, since ω2 = 1/RC1,

C1 = 1

Rω2
= 1

2πf2R
= 1

2π × 3000 × 20 × 103
= 2.65 nF

From Eq. (14.73),

Rf

Ri
= Kω2

ω1 + ω2
= Kf2

f1 + f2
= 10

3000

3250
= 9.223

If we select Ri = 10 k&, then Rf = 9.223Ri � 92 k&.
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P R A C T I C E P R O B L E M 1 4 . 1 3

Design a notch filter based on Fig. 14.47 for ω0 = 20 krad/s,K = 5, and
Q = 10. Use R = Ri = 10 k&.

Answer: C1 = 47.62 nF, C2 = 52.63 nF, and Rf = 50 k&.

†14.9 SCALING
In designing and analyzing filters and resonant circuits or in circuit anal-
ysis in general, it is sometimes convenient to work with element values
of 1 &, 1 H, or 1 F, and then transform the values to realistic values by
scaling. We have taken advantage of this idea by not using realistic el-
ement values in most of our examples and problems; mastering circuit
analysis is made easy by using convenient component values. We have
thus eased calculations, knowing that we could use scaling to then make
the values realistic.

There are two ways of scaling a circuit: magnitude or impedance
scaling, and frequency scaling. Both are useful in scaling responses and
circuit elements to values within the practical ranges. While magnitude
scaling leaves the frequency response of a circuit unaltered, frequency
scaling shifts the frequency response up or down the frequency spectrum.

14 . 9 . 1 Magn i t ude Sc a l i n g

Magnitude scaling is the process of increasing all impedance in a network by a factor,
the frequency response remaining unchanged.

Recall that impedances of individual elements R, L, and C are
given by

ZR = R, ZL = jωL, ZC = 1

jωC
(14.78)

In magnitude scaling, we multiply the impedance of each circuit element
by a factorKm and let the frequency remain constant. This gives the new
impedances as

Z′
R = KmZR = KmR, Z′

L = KmZL = jωKmL

Z′
C = KmZC = 1

jωC/Km

(14.79)

Comparing Eq. (14.79) with Eq. (14.78), we notice the following changes
in the element values: R → KmR, L → KmL, and C → C/Km. Thus,
in magnitude scaling, the new values of the elements and frequency are

R′ = KmR, L′ = KmL
C ′ = C

Km
, ω′ = ω (14.80)
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The primed variables are the new values and the unprimed variables are
the old values. Consider the series or parallelRLC circuit. We now have

ω′
0 = 1√

L′C ′ = 1√
KmLC/Km

= 1√
LC

= ω0 (14.81)

showing that the resonant frequency, as expected, has not changed. Sim-
ilarly, the quality factor and the bandwidth are not affected by magnitude
scaling. Also, magnitude scaling does not affect transfer functions in the
forms of Eqs. (14.2a) and (14.2b), which are dimensionless quantities.

14 . 9 . 2 F requency Sc a l i n g

Frequency scaling is the process of shifting the frequency response of a network up
or down the frequency axis while leaving the impedance the same.

We achieve frequency scaling by multiplying the frequency by a factor
Kf while keeping the impedance the same.

Frequency scaling is equivalent to relabeling the
frequency axis of a frequency response plot. It is
needed when translating such frequencies such
as a resonant frequency, a corner frequency, a
bandwidth, etc., to a realistic level. It can be
used to bring capacitance and inductance values
into a range that is convenient to work with.

From Eq. (14.78), we see that the impedances of L and C are
frequency-dependent. If we apply frequency scaling to ZL(ω) and ZC(ω)
in Eq. (14.78), we obtain

ZL = j (ωKf )L′ = jωL �⇒ L′ = L

Kf
(14.82a)

ZC = 1

j (ωKf )C ′ = 1

jωC
�⇒ C ′ = C

Kf
(14.82b)

since the impedance of the inductor and capacitor must remain the same
after frequency scaling. We notice the following changes in the element
values: L → L/Kf and C → C/Kf . The value of R is not affected,
since its impedance does not depend on frequency. Thus, in frequency
scaling, the new values of the elements and frequency are

R′ = R, L′ = L

Kf

C ′ = C

Kf
, ω′ = Kfω

(14.83)

Again, if we consider the series or parallel RLC circuit, for the resonant
frequency

ω′
0 = 1√

L′C ′ = 1√
(L/Kf )(C/Kf )

= Kf√
LC

= Kfω0 (14.84)

and for the bandwidth

B ′ = KfB (14.85)

but the quality factor remains the same (Q′ = Q).
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14 . 9 . 3 Magn i t ude and F requency Sc a l i n g
If a circuit is scaled in magnitude and frequency at the same time, then

R′ = KmR, L′ = Km

Kf
L

C ′ = 1

KmKf
C, ω′ = Kfω

(14.86)

These are more general formulas than those in Eqs. (14.80) and (14.83).
We set Km = 1 in Eq. (14.86) when there is no magnitude scaling or
Kf = 1 when there is no frequency scaling.

E X A M P L E 1 4 . 1 4

A fourth-order Butterworth lowpass filter is shown in Fig. 14.48(a). The
filter is designed such that the cutoff frequency ωc = 1 rad/s. Scale the
circuit for a cutoff frequency of 50 kHz using 10-k& resistors.

1 Ω

1 Ω

(a)

+
− vovs

+

−

1.848 F0.765 F

1.848 H 0.765 H 10 kΩ

10 kΩ

(b)

+
− vovs

+

−

588.2 pF243.5 pF

58.82 mH 24.35 H

Figure 14.48 For Example 14.14: (a) Normalized Butterworth lowpass filter, (b) scaled version of the same lowpass filter.

Solution:

If the cutoff frequency is to shift from ωc = 1 rad/s to ω′
c = 2π(50)

krad/s, then the frequency scale factor is

Kf = ω′
c

ωc
= 100π × 103

1
= π × 105

Also, if each 1-& resistor is to be replaced by a 10-k& resistor, then the
magnitude scale factor must be

Km = R′

R
= 10 × 103

1
= 104

Using Eq. (14.86),

L′
1 = Km

Kf
L1 = 104

π × 105
(1.848) = 58.82 mH

L′
2 = Km

Kf
L2 = 104

π × 105
(0.765) = 24.35 mH

C ′
1 = C1

KmKf
= 0.765

π × 109
= 243.5 pF

C ′
2 = C2

KmKf
= 1.848

π × 109
= 588.2 pF
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The scaled circuit is as shown in Fig. 14.48(b). This circuit uses practical
values and will provide the same transfer function as the prototype in Fig.
14.48(a), but shifted in frequency.

P R A C T I C E P R O B L E M 1 4 . 1 4

A third-order Butterworth filter normalized to ωc = 1 rad/s is shown in
Fig. 14.49. Scale the circuit to a cutoff frequency of 10 kHz. Use 15-nF
capacitors.

1 Ω

1 Ω+
− vovs

+

−

1 F1 F

2 H

Figure 14.49 For Practice Prob. 14.14.

Answer: R′
1 = R′

2 = 1.061 k&, C ′
1 = C ′

2 =15 nF, L′ = 33.77 mH.

14.10 FREQUENCY RESPONSE USING PSPICE
PSpice is a useful tool in the hands of the modern circuit designer for
obtaining the frequency response of circuits. The frequency response is
obtained using the AC Sweep as discussed in Section D.5 (Appendix D).
This requires that we specify in the AC Sweep dialog box Total Pts, Start
Freq, End Freq, and the sweep type. Total Pts is the number of points in
the frequency sweep, and Start Freq and End Freq are, respectively, the
starting and final frequencies, in hertz. In order to know what frequencies
to select for Start Freq and End Freq, one must have an idea of the
frequency range of interest by making a rough sketch of the frequency
response. In a complex circuit where this may not be possible, one may
use a trial-and-error approach.

There are three types of sweeps:

Linear: The frequency is varied linearly from Start Freq to End
Freq with Total equally spaced points (or responses).

Octave: The frequency is swept logarithmically by octaves from
Start Freq to End Freq with Total points per octave. An
octave is a factor of 2 (e.g., 2 to 4, 4 to 8, 8 to 16).

Decade: The frequency is varied logarithmically by decades from
Start Freq to End Freq with Total points per decade. A
decade is a factor of 10 (e.g., from 2 Hz to 20 Hz, 20 Hz to
200 Hz, 200 Hz to 2 kHz).

It is best to use a linear sweep when displaying a narrow frequency range
of interest, as a linear sweep displays the frequency range well in a narrow
range. Conversely, it is best to use a logarithmic (octave or decade) sweep
for displaying a wide frequency range of interest—if a linear sweep is
used for a wide range, all the data will be crowded at the high- or low-
frequency end and insufficient data at the other end.

With the above specifications, PSpice performs a steady-state si-
nusoidal analysis of the circuit as the frequency of all the independent
sources is varied (or swept) from Start Freq to End Freq.
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The Probe program produces a graphical output. The output data
type may be specified in the Trace Command Box by adding one of the
following suffixes to V or I:

M Amplitude of the sinusoid.

P Phase of the sinusoid.

dB Amplitude of the sinusoid in decibels, i.e., 20 log10

(amplitude).

E X A M P L E 1 4 . 1 5

Determine the frequency response of the circuit shown in Fig. 14.50. 8 kΩ

1 kΩ vo

++

−

vs

−

1 mF

Figure 14.50 For Example 14.15.

Solution:

We let the input voltage vs be a sinusoid of amplitude 1 V and phase 0◦.
Figure 14.51 is the schematic for the circuit. The capacitor is rotated 270◦

counterclockwise to ensure that pin 1 (the positive terminal) is on top.
The voltage marker is inserted to the output voltage across the capacitor.
To perform a linear sweep for 1 < f < 1000 Hz with 50 points, we
select Analysis/Setup/AC Sweep, DCLICK Linear, type 50 in the Total
Pts box, type 1 in the Start Freq box, and type 1000 in the End Freq box.
After saving the file, we select Analysis/Simulate to simulate the circuit.
If there are no errors, the Probe window will display the plot of V(C1:1),
which is the same as Vo orH(ω) = Vo/1, as shown in Fig. 14.52(a). This
is the magnitude plot, since V(C1:1) is the same as VM(C1:1). To obtain
the phase plot, select Trace/Add in the Probe menu and type VP(C1:1) in
the Trace Command box. Figure 14.52(b) shows the result. Notice that
the plots in Fig. 14.52 are similar to those in Fig. 14.3. By hand, the
transfer function is

H(ω) = Vo

Vs
= 1000

9000 + jω8

or

H(ω) = 1

9 + j16π × 10−3

showing that the circuit is a lowpass filter as demonstrated in Fig. 14.52.

R1

R2V1
-
-

C11u1k

0

ACMAG=1V
ACPHASE=0

8k

V

Figure 14.51 The schematic for the circuit in Fig. 14.50.
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1.0 Hz 10 Hz 100 Hz 1.0 KHz

(a)

0 V

40 mV

80 mV

120 mV

1.0 Hz 10 Hz 100 Hz 1.0 KHz

Frequency

(b)

–40 d

–60 d

–80 d

–20 d

0 d

 VP(C1:1)

Frequency

  V(C1:1)

Figure 14.52 For Example 14.15: (a) magnitude plot, (b) phase plot of the frequency response.

P R A C T I C E P R O B L E M 1 4 . 1 5

Obtain the frequency response of the circuit in Fig. 14.53 using PSpice.
Use a linear frequency sweep and consider 1 < f < 1000 Hz with 100
points.

2 kΩ vo

++

−

vs

−

6 kΩ

1 mF

Figure 14.53 For Practice Prob. 14.15.

Answer: See Fig. 14.54.

1.0 Hz 10 Hz 100 Hz 1.0 KHz

(a)

0 V

0.5 V

1.0 V

1.0 Hz 10 Hz 100 Hz 1.0 KHz
0 d

20 d

40 d

Frequency

  V(R2:2)

(b)

Frequency

  VP(R2:2)

Figure 14.54 For Practice Problem 14.15: (a) magnitude plot, (b) phase plot of the frequency response.

E X A M P L E 1 4 . 1 6

Use PSpice to generate the gain and phase Bode plots of Vo in the circuit
of Fig. 14.55.
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Solution:

The circuit treated in Example 14.15 is first-order while the one in this
example is second-order. Since we are interested in Bode plots, we use
decade frequency sweep for 300 < f < 3000 Hz with 50 points per
decade. We select this range because we know that the resonant frequency
of the circuit is within the range. Recall that

ω0 = 1√
LC

= 5 krad/s or f0 = ω

2π
= 795.8 Hz

After drawing the circuit as in Fig. 14.55, we select Analysis/Setup/AC
Sweep, DCLICK Linear, enter 50 as the Total Pts box, 300 as the Start
Freq, and 3000 as the End Freq box. Upon saving the file, we simulate
it by selecting Analysis/Simulate. This will automatically bring up the
Probe window and display V(C1:1) if there are no errors. Since we are
interested in the Bode plot, we select Trace/Add in the Probe menu and
type dB(V(C1:1)) in the Trace Command box. The result is the Bode
magnitude plot in Fig. 14.56(a). For the phase plot, we select Trace/Add
in the Probe menu and type VP(C1:1) in the Trace Command box. The
result is the Bode phase plot of Fig. 14.56(b). Notice that the plots confirm
the resonant frequency of 795.8 Hz.

R1

V1−
+

C14u

0

ACMAG=10V
ACPHASE=0

2 10mH

V
L1

Figure 14.55 For Example 14.16.

50

-50

0

100 Hz 1.0 KHz 10 KHz

 dB(V(C1:1))

Frequency

(a)

0 d

-100 d

-150 d

-50 d

-200 d
100 Hz 1.0 KHz 10 KHz

 VP(C1:1)

Frequency

(b)

Figure 14.56 For Example 14.16: (a) Bode plot, (b) phase plot of the response.

P R A C T I C E P R O B L E M 1 4 . 1 6

Consider the network in Fig. 14.57. Use PSpice to obtain the Bode plots
forVo over a frequency from 1 kHz to 100 kHz using 20 points per decade.

1 kΩ Vo1 mF0.4 mH1   0° A
+

−

Figure 14.57 For Practice Prob. 14.16.

Answer: See Fig. 14.58.
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60

40

20

0
1.0 KHz 10 KHz 100 KHz

0 d

-100 d

-200 d

-300 d
1.0 KHz 10 KHz 100 KHz

 dB(V(R1:1))

Frequency

(a)

 VP(R1:1)

Frequency

(b)

Figure 14.58 For Practice Prob. 14.16: Bode (a) magnitude plot, (b) phase plot.

†14.11 APPLICATIONS
Resonant circuits and filters are widely used, particularly in electronics,
power systems, and communications systems. For example, a Notch
filter with cutoff frequency above 60 Hz may be used to eliminate the
60-Hz power line noise in various communications electronics. Filtering
of signals in communications systems is necessary in order to select the
desired signal from a host of others in the same range (as in the case of
radio receivers discussed next) and also to minimize the effects of noise
and interference on the desired signal. In this section, we consider one
practical application of resonant circuits and two applications of filters.
The focus of each application is not to understand the details of how each
device works but to see how the circuits considered in this chapter are
applied in the practical devices.

14 . 11 . 1 Rad io Rece i v e r
Series and parallel resonant circuits are commonly used in radio and TV
receivers to tune in stations and to separate the audio signal from the radio-
frequency carrier wave. As an example, consider the block diagram of an
AM radio receiver shown in Fig. 14.59. Incoming amplitude-modulated
radio waves (thousands of them at different frequencies from different
broadcasting stations) are received by the antenna. A resonant circuit (or
a bandpass filter) is needed to select just one of the incoming waves. The
selected signal is very weak and is amplified in stages in order to generate
an audible audio-frequency wave. Thus we have the radio frequency
(RF) amplifier to amplify the selected broadcast signal, the intermediate
frequency (IF) amplifier to amplify an internally generated signal based
on the RF signal, and the audio amplifier to amplify the audio signal just
before it reaches the loudspeaker. It is much easier to amplify the signal
at three stages than to build an amplifier to provide the same amplification
for the entire band.
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Audio
amplifier

Loudspeaker

Detector
IF

amplifier
stages

RF
amplifier Mixer

1255
kHz

455 kHz 455 kHz
Audio to

5 kHz

Audio frequency

800 kHz

Amplitude
modulated

radio waves

Carrier
frequency

Local
oscillator

Ganged tuning

Figure 14.59 A simplified block diagram of a superheterodyne AM radio receiver.

The type of AM receiver shown in Fig. 14.59 is known as the super-
heterodyne receiver. In the early development of radio, each amplification
stage had to be tuned to the frequency of the incoming signal. This way,
each stage must have several tuned circuits to cover the entire AM band
(540 to 1600 kHz). To avoid the problem of having several resonant
circuits, modern receivers use a frequency mixer or heterodyne circuit,
which always produces the same IF signal (445 kHz) but retains the audio
frequencies carried on the incoming signal. To produce the constant IF
frequency, the rotors of two separate variable capacitors are mechanically
coupled with one another so that they can be rotated simultaneously with
a single control; this is called ganged tuning. A local oscillator ganged
with the RF amplifier produces an RF signal that is combined with the
incoming wave by the frequency mixer to produce an output signal that
contains the sum and the difference frequencies of the two signals. For
example, if the resonant circuit is tuned to receive an 800-kHz incoming
signal, the local oscillator must produce a 1255-kHz signal, so that the
sum (1255+800=2055 kHz) and the difference (1255−800=455 kHz)
of frequencies are available at the output of the mixer. However, only the
difference, 455 kHz, is used in practice. This is the only frequency to
which all the IF amplifier stages are tuned, regardless of the station dialed.
The original audio signal (containing the “ intelligence” ) is extracted in
the detector stage. The detector basically removes the IF signal, leaving
the audio signal. The audio signal is amplified to drive the loudspeaker,
which acts as a transducer converting the electrical signal to sound.

Our major concern here is the tuning circuit for the AM radio re-
ceiver. The operation of the FM radio receiver is different from that of the
AM receiver discussed here, and in a much different range of frequencies,
but the tuning is similar.
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E X A M P L E 1 4 . 1 7

The resonant or tuner circuit of an AM radio is portrayed in Fig. 14.60.
Given that L = 1 µH, what must be the range of C to have the resonant
frequency adjustable from one end of the AM band to another?

LC

Tuner

RF amplifier

Input resistance
to amplifier

R A

Figure 14.60 The tuner circuit for
Example 14.17.

Solution:

The frequency range for AM broadcasting is 540 to 1600 kHz. We con-
sider the low and high ends of the band. Since the resonant circuit in Fig.
14.60 is a parallel type, we apply the ideas in Section 14.6. From Eq.
(14.44),

ω0 = 2πf0 = 1√
LC

or

C = 1

4π2f 2
0 L

For the high end of the AM band, f0 = 1600 kHz, and the corresponding
C is

C1 = 1

4π2 × 16002 × 106 × 10−6
= 9.9 nF

For the low end of the AM band, f0 = 540 kHz, and the corresponding
C is

C2 = 1

4π2 × 5402 × 106 × 10−6
= 86.9 nF

Thus, C must be an adjustable (gang) capacitor varying from 9.9 nF to
86.9 nF.

P R A C T I C E P R O B L E M 1 4 . 1 7

For an FM radio receiver, the incoming wave is in the frequency range
from 88 to 108 MHz. The tuner circuit is a parallel RLC circuit with
a 4-µH coil. Calculate the range of the variable capacitor necessary to
cover the entire band.

Answer: From 0.543 pF to 0.818 pF.

14 . 11 . 2 Touch -Tone Te l ephone
A typical application of filtering is the Touch-Tone telephone set shown
in Fig. 14.61. The keypad has 12 buttons arranged in four rows and
three columns. The arrangement provides 12 distinct signals by using
seven tones divided into two groups: the low-frequency group (697 to
941 Hz) and the high-frequency group (1209 to 1477 Hz). Pressing a
button generates a sum of two sinusoids corresponding to its unique pair
of frequencies. For example, pressing the number 6 button generates
sinusoidal tones with frequencies 770 Hz and 1477 Hz.

When a caller dials a telephone number, a set of signals is trans-
mitted to the telephone office, where the Touch-Tone signals are decoded
by detecting the frequencies they contain. Figure 14.62 shows the block
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High-band frequencies
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#

Figure 14.61 Frequency assignments for Touch-Tone dialing.
(Adapted from G. Daryanani, Principles of Active Network Syn-
thesis and Design [New York: John Wiley & Sons], 1976, p. 79.)

D1BP1

L1LP

697 Hz

D2BP2 770 Hz

D3BP3 852 Hz

D4BP4 941 Hz

Low-group
signals

Band-pass
filters

Detectors

L2HP

A

D5BP5 1209 Hz

D6BP6 1336 Hz

D7BP7 1477 Hz

High-group
signals

Band-pass
filters

Detectors

Low-pass
filter

Limiter

High-pass
filter

Amplifier

Limiter

Figure 14.62 Block diagram of detection scheme.
(Source: G. Daryanani, Principles of Active Network Synthesis and Design
[New York: John Wiley & Sons], 1976, p. 79.)

diagram for the detection scheme. The signals are first amplified and
separated into their respective groups by the lowpass (LP) and highpass
(HP) filters. The limiters (L) are used to convert the separated tones into
square waves. The individual tones are identified using seven highpass
(HP) filters, each filter passing one tone and rejecting other tones. Each
filter is followed by a detector (D), which is energized when its input
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voltage exceeds a certain level. The outputs of the detectors provide the
required dc signals needed by the switching system to connect the caller
to the party being called.

E X A M P L E 1 4 . 1 8

Using the standard 600-& resistor used in telephone circuits and a series
RLC circuit, design the bandpass filter BP2 in Fig. 14.62.

Solution:

The bandpass filter is the series RLC circuit in Fig. 14.35. Since BP2

passes frequencies 697 Hz to 852 Hz and is centered at f0 = 770 Hz, its
bandwidth is

B = 2π(f2 − f1) = 2π(852 − 697) = 973.89 rad/s

From Eq. (14.39),

L = R

B
= 600

973.89
= 0.616 H

From Eq. (14.27) or (14.57),

C = 1

ω2
0L

= 1

4π2f 2
0 L

= 1

4π2 × 7702 × 0.616
= 69.36 nF

P R A C T I C E P R O B L E M 1 4 . 1 8

Repeat Example 14.18 for bandpass filter BP6.

Answer: 0.356 H, 39.83 nF.

14 . 11 . 3 Cros sove r Ne twork
Another typical application of filters is the crossover network that cou-
ples an audio amplifier to woofer and tweeter speakers, as shown in Fig.
14.63(a). The network basically consists of one highpass RC filter and
one lowpass RL filter. It routes frequencies higher than a prescribed
crossover frequency fc to the tweeter (high-frequency loudspeaker) and
frequencies belowfc into the woofer (low-frequency loudspeaker). These
loudspeakers have been designed to accommodate certain frequency re-
sponses. A woofer is a low-frequency loudspeaker designed to reproduce
the lower part of the frequency range, up to about 3 kHz. A tweeter can
reproduce audio frequencies from about 3 kHz to about 20 kHz. The two
speaker types can be combined to reproduce the entire audio range of
interest and provide the optimum in frequency response.

L

C

S1

S2

One channel
of a stereo
amplifier

Woofer
(a)

(b)

Tweeter

Vs

R1 R2

S1 S2

C

+
−

V2V1

L

+

−

+

−

Figure 14.63 (a) A crossover network
for two loudspeakers, (b) equivalent
model.

By replacing the amplifier with a voltage source, the approximate
equivalent circuit of the crossover network is shown in Fig. 14.63(b),
where the loudspeakers are modeled by resistors. As a highpass filter,
the transfer function V1/Vs is given by

H1(ω) = V1

Vs
= jωR1C

1 + jωR1C
(14.87)

Similarly, the transfer function of the lowpass filter is given by

H2(ω) = V2

Vs
= R2

R2 + jωL (14.88)
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The values of R1, R2, L, and C may be selected such that the two filters
have the same cutoff frequency, known as the crossover frequency, as
shown in Fig. 14.64.

vc v

H2(v) H1(v)

Figure 14.64 Frequency responses of the
crossover network in Fig. 14.63.

The principle behind the crossover network is also used in the res-
onant circuit for a TV receiver, where it is necessary to separate the video
and audio bands of RF carrier frequencies. The lower-frequency band
(picture information in the range from about 30 Hz to about 4 MHz) is
channeled into the receiver’s video amplifier, while the high-frequency
band (sound information around 4.5 MHz) is channeled to the receiver’s
sound amplifier.

E X A M P L E 1 4 . 1 9

In the crossover network of Fig. 14.63, suppose each speaker acts as a
6-& resistance. Find C and L if the crossover frequency is 2.5 kHz.

Solution:

For the highpass filter,

ωc = 2πfc = 1

R1C

or

C = 1

2πfcR1
= 1

2π × 2.5 × 103 × 6
= 10.61 µF

For the lowpass filter,

ωc = 2πfc = R2

L
or

L = R2

2πfc
= 6

2π × 2.5 × 103
= 382 µH

P R A C T I C E P R O B L E M 1 4 . 1 9

If each speaker in Fig. 14.63 has an 8-& resistance and C = 10 µF, find
L and the crossover frequency.

Answer: 0.64 mH, 1.989 kHz.

14.12 SUMMARY
1. The transfer function H(ω) is the ratio of the output response Y(ω)

to the input excitation X(ω); that is, H(ω) = Y(ω)/X(ω).

2. The frequency response is the variation of the transfer function with
frequency.

3. Zeros of a transfer function H(s) are the values of s = jω that make
H(s) = 0, while poles are the values of s that make H(s)→ ∞.

4. The decibel is the unit of logarithmic gain. For a gain G, its decibel
equivalent is GdB = 20 log10G.
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5. Bode plots are semilog plots of the magnitude and phase of the
transfer function as it varies with frequency. The straight-line
approximations of H (in dB) and φ (in degrees) are constructed
using the corner frequencies defined by the poles and zeros of H(ω).

6. The resonant frequency is that frequency at which the imaginary
part of a transfer function vanishes. For series and parallel RLC
circuits,

ω0 = 1√
LC

7. The half-power frequencies (ω1, ω2) are those frequencies at which
the power dissipated is one-half of that dissipated at the resonant
frequency. The geometric mean between the half-power frequen-
cies is the resonant frequency, or

ω0 = √
ω1ω2

8. The bandwidth is the frequency band between half-power frequen-
cies:

B = ω2 − ω1

9. The quality factor is a measure of the sharpness of the resonance
peak. It is the ratio of the resonant (angular) frequency to the band-
width,

Q = ω0

B

10. A filter is a circuit designed to pass a band of frequencies and reject
others. Passive filters are constructed with resistors, capacitors, and
inductors. Active filters are constructed with resistors, capacitors,
and an active device, usually an op amp.

11. Four common types of filters are lowpass, highpass, bandpass, and
bandstop. A lowpass filter passes only signals whose frequencies
are below the cutoff frequency ωc. A highpass filter passes only
signals whose frequencies are above the cutoff frequency ωc. A
bandpass filter passes only signals whose frequencies are within a
prescribed range (ω1 < ω < ω2). A bandstop filter passes only
signals whose frequencies are outside a prescribed range
(ω1 > ω > ω2).

12. Scaling is the process whereby unrealistic element values are mag-
nitude-scaled by a factor Km and/or frequency-scaled by a factor
Kf to produce realistic values.

R′ = KmR, L′ = Km

Kf
L, C ′ = 1

KmKf
C

13. PSpice can be used to obtain the frequency response of a circuit if a
frequency range for the response and the desired number of points
within the range are specified in the AC Sweep.

14. The radio receiver—one practical application of resonant
circuits—employs a bandpass resonant circuit to tune in one
frequency among all the broadcast signals picked up by the antenna.
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15. The Touch-Tone telephone and the crossover network are two typi-
cal applications of filters. The Touch-Tone telephone system
employs filters to separate tones of different frequencies to activate
electronic switches. The crossover network separates signals in
different frequency ranges so that they can be delivered to different
devices such as tweeters and woofers in a loudspeaker system.

R E V I EW QU E S T I ON S

14.1 A zero of the transfer function

H(s) = 10(s + 1)

(s + 2)(s + 3)
is at
(a) 10 (b) −1 (c) −2 (d) −3

14.2 On the Bode magnitude plot, the slope of the pole
1/(5 + jω)2 is

(a) 20 dB/decade (b) 40 dB/decade
(c) −40 dB/decade (d) −20 dB/decade

14.3 On the Bode phase plot, the slope of
[1 + j10ω − ω2/25]2 is
(a) 45◦/decade (b) 90◦/decade
(c) 135◦/decade (d) 180◦/decade

14.4 How much inductance is needed to resonate at 5
kHz with a capacitance of 12 nF?
(a) 2652 H (b) 11.844 H
(c) 3.333 H (d) 84.43 mH

14.5 The difference between the half-power frequencies
is called the:
(a) quality factor (b) resonant frequency
(c) bandwidth (d) cutoff frequency

14.6 In a series RLC circuit, which of these quality
factors has the steepest curve at resonance?
(a) Q = 20 (b) Q = 12
(c) Q = 8 (d) Q = 4

14.7 In a parallel RLC circuit, the bandwidth B is
directly proportional to R.
(a) True (b) False

14.8 When the elements of an RLC circuit are both
magnitude-scaled and frequency-scaled, which
quality is unaffected?
(a) resistor (b) resonant frequency
(c) bandwidth (d) quality factor

14.9 What kind of filter can be used to select a signal of
one particular radio station?
(a) lowpass (b) highpass
(c) bandpass (d) bandstop

14.10 A voltage source supplies a signal of constant
amplitude, from 0 to 40 kHz, to an RC lowpass
filter. The load resistor experiences the maximum
voltage at:
(a) dc (b) 10 kHz
(c) 20 kHz (d) 40 kHz

Answers: 14.1b, 14.2c, 14.3d, 14.4d, 14.5c, 14.6a, 14.7b, 14.8d,
14.9c, 14.10a.

P RO B L E M S

Section 14.2 Transfer Function

14.1 Find the transfer function Vo/Vi of the RC circuit
in Fig. 14.65.

vi(t) R

C

+
− vo(t)

+

−

Figure 14.65 For Prob. 14.1.

14.2 Obtain the transfer function Vo/Vi of the RL circuit
of Fig. 14.66.

vi(t) R+
− vo(t)

L

+

−

Figure 14.66 For Probs. 14.2 and 14.36.
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14.3 (a) Given the circuit in Fig. 14.67, determine the
transfer function H(s) = Vo(s)/V i(s) .

(b) If R = 40 k& and C = 2 µF, specify the
locations of the poles and zeros of H(s) .

Vi

R

C+
− Vo

R

C

+

−

Figure 14.67 For Prob. 14.3.

14.4 Find the transfer function H(ω) = Vo/Vi of the
circuits shown in Fig. 14.68.

RC Vo

++

−

Vi

−

L

R

C

(a)

(b)

Vo

++

−

Vi

−
L

Figure 14.68 For Prob. 14.4.

14.5 Repeat Prob. 14.4 for the circuits in Fig. 14.69.

C

R

Vo

++

−

Vi

−

L

(a)

Vo

++

−

Vi

−

(b)

R

C

L

Figure 14.69 For Prob. 14.5.

14.6 Obtain the transfer function H(ω) = Io/Is of the
circuits shown in Fig. 14.70.

is 0.25 F20 Ω

(a)

vx

10 H

io

is 2.5 H10 Ω

0.1 F 0.5vx

(b)

io
+ −

+

−

Figure 14.70 For Prob. 14.6.

Section 14.3 The Decibel Scale

14.7 Calculate |H(ω)| if HdB equals
(a) 0.05 dB (b) −6.2 dB (c) 104.7 dB

14.8 Determine the magnitude (in dB) and the phase (in
degrees) of H(ω) at ω = 1 if H(ω) equals
(a) 0.05 (b) 125

(c)
10jω

2 + jω (d)
3

1 + jω + 6

2 + jω
Section 14.4 Bode Plots

14.9 A ladder network has a voltage gain of

H(ω) = 10

(1 + jω)(10 + jω)
Sketch the Bode plots for the gain.

14.10 Sketch the Bode plots for

H(ω) = 10 + jω
jω(2 + jω)

14.11 Construct the Bode plots for

G(s) = s + 1

s2(s + 10)
, s = jω

14.12 Draw the Bode plots for

H(ω) = 50(jω + 1)

jω(−ω2 + 10jω + 25)
14.13 Construct the Bode magnitude and phase plots for

H(s) = 40(s + 1)

(s + 2)(s + 10)
, s = jω

14.14 Sketch the Bode plots for

G(s) = s

(s + 2)2(s + 1)
, s = jω
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14.15 Draw Bode plots for

G(s) = (s + 2)2

s(s + 5)(s + 10)
, s = jω

14.16 A filter has

H(s) = s

s2 + 10s + 100
Sketch the filter’s Bode magnitude and phase plots.

14.17 Sketch Bode magnitude and phase plots for

N(s) = 100(s2 + s + 1)

(s + 1)(s + 10)
, s = jω

Construct the straight-line approximate plots and the
exact plots.

14.18 Construct Bode plots for

T(ω) = 10jω(1 + jω)
(10 + jω)(100 + 10jω − ω2)

14.19 Find the transfer function H(ω) with the Bode
magnitude plot shown in Fig. 14.71.

v (rad/s)2 20 100

–20 dB/decade

20

40

H (dB)

0

Figure 14.71 For Prob. 14.19.

14.20 The Bode magnitude plot of H(ω) is shown in Fig.
14.72. Find H(ω).

v (rad/s)10.1 10

–40 dB/decade

+20 dB/decade

H

Figure 14.72 For Prob. 14.20.

14.21 The Bode phase plot of G(ω) of a network is
depicted in Fig. 14.73. Find G(ω).

v (rad/s)1031021010.1

f

0°

–45°

–90°

Figure 14.73 For Prob. 14.21.

Section 14.5 Series Resonance

14.22 A series RLC network has R = 2 k&, L = 40 mH,
and C = 1 µF. Calculate the impedance at
resonance and at one-fourth, one-half, twice, and
four times the resonant frequency.

14.23 Design a series RLC circuit that will have an
impedance of 10 & at the resonant frequency of
ω0 = 50 rad/s and a quality factor of 80. Find the
bandwidth.

14.24 Design a series RLC circuit with B = 20 rad/s and
ω0 = 1000 rad/s. Find the circuit’sQ.

14.25 For the circuit in Fig. 14.74, find the frequency ω for
which v(t) and i(t) are in phase.

v(t) 1 Ω 1 H+
−

i(t) 1 H 1 F

Figure 14.74 For Prob. 14.25.

Section 14.6 Parallel Resonance

14.26 Design a parallel resonant RLC circuit with
ω0 = 10 rad/s andQ = 20. Calculate the bandwidth
of the circuit.

14.27 A parallel resonant circuit with quality factor 120
has a resonant frequency of 6 × 106 rad/s. Calculate
the bandwidth and half-power frequencies.

14.28 It is expected that a parallel RLC resonant circuit
has a midband admittance of 25 × 103 S, quality
factor of 80, and a resonant frequency of 200 krad/s.
Calculate the values of R, L, and C. Find the
bandwidth and the half-power frequencies.

14.29 Rework Prob. 14.22 if the elements are connected in
parallel.

14.30 For the “ tank” circuit in Fig. 14.75, find the resonant
frequency.

Io cos vt

50 Ω

40 mH

1 mF

Figure 14.75 For Probs. 14.30 and 14.71.
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14.31 For the circuits in Fig. 14.76, find the resonant
frequency ω0, the quality factorQ, and the
bandwidth B.

2 Ω

(a)

6 Ω

1 H

0.4 F

(b)

3 mF
20 mH 2 kΩ

6 mF

Figure 14.76 For Prob. 14.31.

14.32 Calculate the resonant frequency of each of the
circuits in Fig. 14.77.

R

(a)

C R

L

(b)

CL

R L

C

(c)

Figure 14.77 For Prob. 14.32.

14.33∗ For the circuit in Fig. 14.78, find:
(a) the resonant frequency ω0

(b) Zin(ω)

9 mF

20 mH 0.1 Ω1 Ω
Zin

Figure 14.78 For Prob. 14.33.

14.34 In the circuit of Fig. 14.79, i(t) = 10 sin t . Calculate
the value of C such that v(t) = Vo sin t V. Find Vo.

*An asterisk indicates a challenging problem.

–

+

v(t)i(t) 1 F

1 Ω

CH2
3

Figure 14.79 For Prob. 14.34.

14.35 For the network illustrated in Fig. 14.80, find
(a) the transfer function H(ω) = Vo(ω)/I(ω),
(b) the magnitude of H at ω0 = 1 rad/s.

VoI 1 F1 H

1 Ω

1 Ω 1 Ω
+

−

Figure 14.80 For Probs. 14.35, 14.61, and 14.72.

Section 14.7 Passive Filters

14.36 Show that the circuit in Fig. 14.66 is a lowpass filter.
Calculate the corner frequency fc if L = 2 mH and
R = 10 k&.

14.37 Find the transfer function Vo/Vs of the circuit in
Fig. 14.81. Show that the circuit is a lowpass filter.

vs 1 F0.25 F+
− vo

1 H

+

−

Figure 14.81 For Prob. 14.37.

14.38 Determine the cutoff frequency of the lowpass filter
described by

H(ω) = 4

2 + jω10

Find the gain in dB and phase of H(ω) at ω = 2
rad/s.

14.39 Determine what type of filter is in Fig. 14.82.
Calculate the corner frequency fc.

vi(t)

200 Ω

+
− vo(t)0.1 H

+

−

Figure 14.82 For Prob. 14.39.
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14.40 Obtain the transfer function of a highpass filter with
a passband gain of 10 and a cutoff frequency of
50 rad/s.

14.41 In a highpass RL filter with a cutoff frequency of
100 kHz, L = 40 mH. Find R.

14.42 Design a series RLC type bandpass filter with
cutoff frequencies of 10 kHz and 11 kHz. Assuming
C = 80 pF, find R, L, andQ.

14.43 Determine the range of frequencies that will be
passed by a series RLC bandpass filter with
R = 10 &, L = 25 mH, and C = 0.4 µF. Find the
quality factor.

14.44 (a) Show that for a bandpass filter,

H(s) = sB

s2 + sB + ω2
0

where B = bandwidth of the filter and ω0 is the
center frequency.

(b) Similarly, show that for a bandstop filter,

H(s) = s2 + ω2
0

s2 + sB + ω2
0

14.45 Determine the center frequency and bandwidth of
the bandpass filters in Fig. 14.83.

Vs Vo1 F

(a)

1 Ω

1 Ω+
−

1 F

Vs Vo1 Ω

(b)

1 Ω

1 H+
−

1 H

+

−

+

−

Figure 14.83 For Prob. 14.45.

14.46 The circuit parameters for a series RLC bandstop
filter are R = 2 k&, L = 0.1 H, C = 40 pF.
Calculate:
(a) the center frequency
(b) the half-power frequencies
(c) the quality factor

14.47 Find the bandwidth and center frequency of the
bandstop filter of Fig. 14.84.

Vi Vo

+

–

4 Ω

6 Ω

1 mH
+
−

4 mF

Figure 14.84 For Prob. 14.47.

Section 14.8 Active Filters

14.48 Find the transfer function for each of the active
filters in Fig. 14.85.

+
−

+

–

vo

+

–
vi

R

C

(a)

+
−

+

–

vo

+

–
vi

C

R

(b)

Figure 14.85 For Probs. 14.48 and 14.49.

14.49 The filter in Fig. 14.85(b) has a 3-dB cutoff
frequency at 1 kHz. If its input is connected to a
120-mV variable frequency signal, find the output
voltage at:
(a) 200 Hz (b) 2 kHz (c) 10 kHz

14.50 Obtain the transfer function of the active filter in
Fig. 14.86. What kind of filter is it?

Rf

+
−

+

–

vo

+

–

vi

Ri
Ci

Cf

Figure 14.86 For Prob. 14.50.
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14.51 A highpass filter is shown in Fig. 14.87. Show that
the transfer function is

H(ω) =
(

1 + Rf

Ri

)
jωRC

1 + jωRC

+
− +

–

vo

+

–

vi

C

Rf

R

Ri

Figure 14.87 For Prob. 14.51.

14.52 A “general” fi rst-order filter is shown in Fig. 14.88.
(a) Show that the transfer function is

H(s) = R4

R3 + R4
× s + (1/R1C)[R1/R2 − R3/R4]

s + 1/R2C
,

s = jω

(b) What condition must be satisfied for the circuit
to operate as a highpass filter?

(c) What condition must be satisfied for the circuit
to operate as a lowpass filter?

R2

vo

vs

C

R4

+

−

R3

R1

Figure 14.88 For Prob. 14.52.

14.53 Design an active lowpass filter with dc gain of 0.25
and a corner frequency of 500 Hz.

14.54 Design an active highpass filter with a
high-frequency gain of 5 and a corner frequency of
200 Hz.

14.55 Design the filter in Fig. 14.89 to meet the following
requirements:
(a) It must attenuate a signal at 2 kHz by 3 dB

compared with its value at 10 MHz.

(b) It must provide a steady-state output of vo(t) =
10 sin(2π × 108t + 180◦) V for an input vs(t) =
4 sin(2π × 108t) V.

Rf

+
−

vo
vs

R C

+

–

+
−

Figure 14.89 For Prob. 14.55.

14.56∗ A second-order active filter known as a Butterworth
filter is shown in Fig. 14.90.
(a) Find the transfer function Vo/Vi .
(b) Show that it is a lowpass filter.

+
− +

–

Vo

+

–

Vi

R1 R2

C1

C2

Figure 14.90 For Prob. 14.56.

Section 14.9 Scaling

14.57 Use magnitude and frequency scaling on the circuit
of Fig. 14.75 to obtain an equivalent circuit in which
the inductor and capacitor have magnitude 1 H and
1 C respectively.

14.58 What values of Km and Kf will scale a 4-mH
inductor and a 20-µF capacitor to 1 H and 2 F
respectively?

14.59 Calculate the values of R, L, and C that will result
in R = 12 k&, L = 40 µH, and C = 300 nF
respectively when magnitude-scaled by 800 and
frequency-scaled by 1000.

14.60 A series RLC circuit has R = 10 &, ω0 = 40 rad/s,
and B = 5 rad/s. Find L and C when the circuit is
scaled:
(a) in magnitude by a factor of 600,
(b) in frequency by a factor of 1000,
(c) in magnitude by a factor of 400 and in frequency

by a factor of 105.

14.61 Redesign the circuit in Fig. 14.80 so that all resistive
elements are scaled by a factor of 1000 and all
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frequency-sensitive elements are frequency-scaled
by a factor of 104.

14.62∗ Refer to the network in Fig. 14.91.
(a) Find Zin(s).
(b) Scale the elements by Km = 10 and Kf = 100.

Find Zin(s) and ω0.

0.1 F

2 H

5 Ω
4 Ω

3Vo
Vo

Zin(s)
+ − +

−

Figure 14.91 For Prob. 14.62.

14.63 (a) For the circuit in Fig. 14.92, draw the new
circuit after it has been scaled by Km = 200 and
Kf = 104.

(b) Obtain the Thevenin equivalent impedance at
terminals a-b of the scaled circuit at ω =
104 rad/s.

0.5 F

a

b

1 H

0.5Ix2 Ω

Ix

Figure 14.92 For Prob. 14.63.

14.64 Scale the lowpass active filter in Fig. 14.93 so that
its corner frequency increases from 1 rad/s to 200
rad/s. Use a 1-µF capacitor.

+
−

+

–
Vo

+

–

Vi

2 Ω

1 Ω

1 F

Figure 14.93 For Prob. 14.64.

Section 14.10 Frequency Response Using PSpice

14.65 Obtain the frequency response of the circuit in Fig.
14.94 using PSpice.

4 kΩ

1 kΩ Vo

++

−

Vi

−

1 mF

Figure 14.94 For Prob. 14.65.

14.66 Use PSpice to provide the frequency response
(magnitude and phase of i) of the circuit in Fig.
14.95. Use linear frequency sweep from 1 to
10,000 Hz.

1 mH+
− 0.1Vo0.5 mF

1 kΩ 1 kΩ 1 kΩ

Vo100   0° V

I+

−

Figure 14.95 For Prob. 14.66.

14.67 In the interval 0.1 < f < 100 Hz, plot the response
of the network in Fig. 14.96. Classify this filter and
obtain ω0.

1 Ω Vo

++

−

Vi

−

1 F

1 Ω

1 F

1 Ω

1 F

Figure 14.96 For Prob. 14.67.

14.68 Use PSpice to generate the magnitude and phase
Bode plots of Vo in the circuit of Fig. 14.97.

2 F

+
− 1 F

1 Ω 2 H

1 Ω Vo1 H1   0° V
+

−

Figure 14.97 For Prob. 14.68.

14.69 Obtain the magnitude plot of the response Vo in the
network of Fig. 14.98 for the frequency interval
100 < f < 1000 Hz.
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Vo10 Ω 4 mH20 Ω

50 Ω

10 mF

1   0° A
+

−

Figure 14.98 For Prob. 14.69.

14.70 Obtain the frequency response of the circuit in Fig.
14.40 (see Practice Problem 14.10). Take R1 =
R2 = 100 &, L = 2 mH. Use 1 < f < 100,000 Hz.

14.71 For the “ tank” circuit of Fig. 14.75, obtain the
frequency response (voltage across the capacitor)
using PSpice. Determine the resonant frequency of
the circuit.

14.72 Using PSpice, plot the magnitude of the frequency
response of the circuit in Fig. 14.80.

Section 14.11 Applications

14.73 The resonant circuit for a radio broadcast consists of
a 120-pF capacitor in parallel with a 240-µH
inductor. If the inductor has an internal resistance of
400 &, what is the resonant frequency of the circuit?
What would be the resonant frequency if the
inductor resistance were reduced to 40 &?

14.74 A series-tuned antenna circuit consists of a variable
capacitor (40 pF to 360 pF) and a 240-µH antenna
coil which has a dc resistance of 12 &.
(a) Find the frequency range of radio signals to

which the radio is tunable.
(b) Determine the value ofQ at each end of the

frequency range.

14.75 The crossover circuit in Fig. 14.99 is a lowpass filter
that is connected to a woofer. Find the transfer
function H(ω) = Vo(ω)/Vi (ω).

+
−

L Speakers

Amplifier
Woofer

Tweeter

VoVi C1

Ri

C2 RL

+

−

Figure 14.99 For Prob. 14.75.

14.76 The crossover circuit in Fig. 14.100 is a highpass
filter that is connected to a tweeter. Determine the
transfer function H(ω) = Vo(ω)/Vi (ω).

+
−

C2

L

Speakers

Amplifier
Woofer

Tweeter

VoVi

C1Ri

RL

+

−

Figure 14.100 For Prob. 14.76.

COM P R E H EN S I V E P RO B L E M S

14.77 A certain electronic test circuit produced a resonant
curve with half-power points at 432 Hz and 454 Hz.
IfQ = 20, what is the resonant frequency of the
circuit?

14.78 In an electronic device, a series circuit is employed
that has a resistance of 100 &, a capacitive reactance
of 5 k&, and an inductive reactance of 300 & when
used at 2 MHz. Find the resonant frequency and
bandwidth of the circuit.

14.79 In a certain application, a simple RC lowpass filter
is designed to reduce high frequency noise. If the
desired corner frequency is 20 kHz and C = 0.5 µF,
find the value of R.

14.80 In an amplifier circuit, a simple RC highpass filter is
needed to block the dc component while passing the
time-varying component. If the desired rolloff fre-
quency is 15 Hz and C = 10 µF, find the value of R.

14.81 Practical
RC filter design should allow for source and load
resistances as shown in Fig. 14.101. Let R = 4 k&
and C = 40-nF. Obtain the cutoff frequency when:
(a) Rs = 0, RL = ∞,
(b) Rs = 1 k&, RL = 5 k&.
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+
−Vs

Rs R

C RL

Figure 14.101 For Prob. 14.81.

14.82 The RC circuit in Fig. 14.102 is used for a lead
compensator in a system design. Obtain the
transfer function of the circuit.

R1

R2

From
photoresistor

output

To 
amplifier

input
Vo

++

−

Vi

−

C

Figure 14.102 For Prob. 14.82.

14.83 A low-quality factor, double-tuned bandpass
filter is shown in Fig. 14.103. Use PSpice to
generate the magnitude plot of Vo(ω).

+

–

0.2 mF

+
− 2 mF

40 Ω

4 Ω
1.24 mH

Vo

0.124 mH

1   0° V

Figure 14.103 For Prob. 14.83.

http://www.mhhe.com/engcs/electrical/alexander/student/olc/ch14_ppt.htm
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