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Abstract. In this paper, a new algorithm for Sparse Component Anal-
ysis (SCA) or atomic decomposition on over-complete dictionaries is pre-
sented. The algorithm is essentially a method for obtaining sufficiently
sparse solutions of underdetermined systems of linear equations. The
solution obtained by the proposed algorithm is compared with the min-
imum �1-norm solution achieved by Linear Programming (LP). It is ex-
perimentally shown that the proposed algorithm is about two orders of
magnitude faster than the state-of-the-art �1-magic, while providing the
same (or better) accuracy.
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1 Introduction

Obtaining sparse solutions of under-determined systems of linear equations is of
significant importance in signal processing and statistics. Despite recent
theoretical developments [1,2,3], the computational cost of the methods has re-
mained as the main restriction, especially for large systems (large number of un-
knowns/equations). In this article, a new approach is proposed which provides a
considerable reduction in complexity. To introduce the problem in more details,
we will use the context of Sparse Component Analysis (SCA). The discussions,
however, may be easily followed in other contexts of application, for example, in
finding ‘sparse decomposition’ of a signal in an over-complete dictionary, which
is the goal of the so-called over-complete ‘atomic decomposition’ [4].

SCA can be viewed as a method to achieve separation of sparse sources.
The general Blind Source Separation (BSS) problem is to recover n unknown
(statistically independent) sources from m observed mixtures of them, where
little or no information is available about the sources (except their statistical
independence) and the mixing system. In linear instantaneous (noiseless) model,
it is assumed that x(t) = As(t) in which x(t) and s(t) are the m × 1 and n × 1
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vectors of sources and mixtures and A is the m × n mixing matrix. The goal of
BSS is then to find s(t) only from x(t). The general BSS problem is not easy
for the case n > m. However, if the sources are sparse (i.e., not a totally blind
situation), then the problem can be solved in two steps [3,2]: first estimating
the mixing matrix [3,2,5,6], and then estimating the sources assuming A to be
known [3,2,7,8]. In this paper we only consider the second step.

To obtain the sparsest solution of As = x, we may search for a solution of
it having minimal �0 norm, i.e., minimum number of nonzero components. It is
usually stated in the literature [4,9,10,3] that searching the minimum �0 norm
is an intractable problem as the dimension increases (because it requires a com-
binatorial search), and it is too sensitive to noise (because any small amount of
noise completely changes the �0 norm of a vector). Consequently, the researchers
look for other approaches to find sparse solution of As = x which are tractable.
One of the most successful approaches is Basis Pursuit (BP) [11,1,10,3] which
finds the minimum �1 norm (that is, the solution of As = x for which

∑
i |si| is

minimized). Such a solution can be easily found by Linear Programming (LP)
methods. The idea of Basis Pursuit is based on the property that for large sys-
tems of equations, the minimum �1 norm solution is also the minimum �0 norm
solution [1,11,12,13]. By utilizing fast LP algorithms, specifically interior-point
LP solvers or �1-magic [14] (which is about one order of magnitude faster),
large-scale problems with thousands of sources and mixtures become tractable.
However, although this approach is tractable, it is still very time-consuming.
Another approach is Matching Pursuit (MP) [15,16,3] which is very fast, but is
somewhat heuristic and does not provide good estimation of the sources.

In this article, we present a fast method for finding the sparse solution of an
under-determined system of linear equations, which is based on minimization of
�0 norm. The paper is organized as follows. The next section introduces a family
of Gaussian sparsity norms and discusses their optimization. The algorithm is
then stated in Section 3. Finally, Section 4 provides some experimental results
of our algorithm and its comparison with BP.

2 The Main Idea

The main idea of this article is to approximate the �0 norm by a smooth (contin-
uous) function, which lets us to use gradient based methods for its minimization
and solves also the sensitivity of �0 norm to noise. In this section we introduce
a family of smooth approximators of �0 norm, whose optimization results in a
fast algorithm for finding the sparse solution while preserving noise robustness.

The �0 norm of s = [s1 . . . sn]T is defined as the number of non-zero compo-
nents of s. In other words if we define

ν(s) =
{

1 s �= 0
0 s = 0 (1)

then

‖s‖0 =
n∑

i=1

ν(si). (2)
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It is clear that the discontinuities of �0 norm are caused by discontinuities of
the function ν. If we replace ν by a smooth estimation of it in (2), we obtain a
smooth estimation of �0 norm. This may also provide some robustness to noise.

Different functions may be utilized for this aim. We use zero-mean Gaussian
family of functions which seem to be very useful for this application, because of
their differentiability. By defining:

fσ(s) = exp(−s2/2σ2), (3)

we have:

lim
σ→ 0

fσ(s) =
{

1 s = 0
0 s �= 0 . (4)

Consequently, limσ→ 0 fσ(s) = 1 − ν(s), and therefore if we define:

Fσ(s) =
n∑

i=1

fσ(si), (5)

we have:

lim
σ→ 0

Fσ(s) =
n∑

i=1

(1 − ν(si)) = n − ‖s‖0. (6)

We take then n − Fσ(s) as an approximation to ‖s‖0:

‖s‖0 ≈ n − Fσ(s). (7)

The value of σ specifies a trade-off between accuracy and smoothness of the
approximation: the smaller σ, the better approximation, and the larger σ, the
smoother approximation.

From (6), minimization of �0 norm is equivalent to maximization of Fσ for suffi-
ciently smallσ.Thismaximization shouldbedoneon theaffine setS={s |As = x}.

For small values of σ, Fσ contains a lot of local maxima. Consequently, it
is very difficult to directly maximize this function for very small values of σ.
However, as value of σ grows, the function becomes smoother and smoother,
and for sufficiently large values of σ, as we will show, there is no local maxima
(see Theorem 1 of the next section).

Our idea for escaping local maxima is then to decrease the value of σ grad-
ually1: for each value of σ we use a steepest ascent algorithm for maximizing
Fσ, and the initial value of this steepest ascent algorithm is the maximizer of Fσ

obtained for the previous (larger) value of σ. Since the value of σ changes slowly,
the steepest ascent algorithm is initialized not far from the actual maximum.
Consequently, we hope that it would not be trapped in the local maxima.

Remark 1. Equation (6) proposes that Fσ(·) can be seen as a measure of
‘sparsity’ of a vector (especially for small values of σ): the sparser s, the larger
Fσ(s). In this viewpoint, maximizing Fσ(s) on a set is equivalent to finding the
‘sparsest’ element of that set.
1 This idea is similar to simulated annealing, but, here, the sequence of decreasing

values is short and easy to define so that the solution is achieved in a few steps,
usually less than 10.
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– Initialization:
1. Choose an arbitrary solution from the feasible set S, v0, e.g., the minimum �2 norm

solution of As = x obtained by pseudo-inverse (see the text).
2. Choose a suitable decreasing sequence for σ, [σ1 . . . σK ].

– for k = 1, . . . , K:
1. Let σ = σk.
2. Maximize (approximately) the function Fσ on the feasible set S using L iterations

of the steepest ascent algorithm (followed by projection onto the feasible set):
• Initialization: s = vk−1.
• for j = 1 . . . L (loop L times):

(a) Let: Δs = [s1 exp (−s2
1/2σ2

k), . . . , sn exp (−s2
n/2σ2

k)]T .
(b) Let s ← s − μΔs (where μ is a small positive constant).
(c) Project s back onto the feasible set S:

s ← s − AT (AAT )−1(As − x)

3. Set vk = s.
– Final answer is s = vl.

Fig. 1. The final algorithm (SL0 algorithm)

3 The Algorithm

Based on the main idea of the previous section, the final algorithm (smoothed
�0 or SL0) is given in Fig. 1. As indicated in the algorithm, the final value of
previous estimation is used for the initialization of the next steepest ascent. By
choosing a slowly decreasing sequence of σ, we may escape from getting trapped
in the local maxima, and obtain the sparsest solution.

Remark 2. The internal loop (steepest ascent for a fixed σ) is repeated a fixed
and small number of times (L). In other words, for increasing the speed, we do
not wait for the (internal loop of the) steepest ascent algorithm to converge. This
may be justified by gradual decrease in value of σ, and the fact that for each
value, we do not need the exact maximizer of Fσ. All we need, is to enter a region
near the (absolute) maximizer of Fσ for escaping from its local maximizers.

Remark 3. Steepest ascent consists of iterations of the form s ← s+μk∇Fσ(s).
Here, the step-size parameters μk should be decreasing, i.e., for smaller values
of σ, smaller values of μk should be applied. This is because for smaller values
of σ, the function Fσ is more ‘fluctuating’, and hence smaller step-sizes should
be used for its maximization. If we set2 μk = μσ2

k, we obtain s ← s − μΔs as
stated in the algorithm of Fig. 1 (note that Δs � −∇Fσ(s)/σ2).

Remark 4. The algorithm may work by initializing v0 (initial estimation of
the sparse solution) to an arbitrary solution of As = x. However, the best initial
2 In fact, we may think about changing the σ in (3) and (5) as looking at the same

curve (or surface) at different ‘scales’, where the scale is proportional to σ2. For
having the same step-sizes of the steepest ascent algorithm in these different scales,
μk should be proportional to σ2.
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value of v0 is the minimum �2 norm solution of As = x, which is given by the
pseudo-inverse of A. It is because this solution is the (unique) maximizer of
Fσ(s) on the feasible set S, where σ tends to infinity. This is formally stated in
the following theorem (refer to appendix for the proof).

Theorem 1. The solution of the problem:

Maximize Fσ(s) subject to As = x,

where σ → ∞, is the minimum �2 norm solution of As = x, that is, s =
AT (AAT )−1x.

Remark 5. Having initiated the algorithm with the minimum �2 norm solution
(which corresponds to σ = ∞), the next value for σ (i.e., σ1) may be chosen
about two to four times of the maximum absolute value of the obtained sources
(maxi |si|). To see the reason, note first that:

exp(−s2
i /2σ2) =

{
1 , if |si| 	 σ
0 , if |si| 
 σ

. (8)

Consequently, if we take, for example, σ > 4 maxi |si| for all 1 ≤ i ≤ n, then
exp(−s2

i /2σ2) > 0.96 ≈ 1, and comparison with (8) shows that this value of σ
acts virtually like infinity for all values of si, 1 ≤ i ≤ n.

For the next σk’s (k ≥ 2), we have used σk = ασk−1, where α is usually
between 0.5 and 1.

Remark 6. The final value of σ depends on the noise level. For the noiseless
case, it can be decreased arbitrarily to zero (its minimum values is determined
by the desired accuracy, and/or machine precision). For the noisy case, it should
be terminated about one to two times of energy of the noise. This is because,
while σ is in this range, (8) shows that the cost function treats small (noisy)
samples as zero (i.e., for which fσ(si) ≈ 1, 1 ≤ i ≤ n). However, below this
range, the algorithm tries to ‘learn’ these noisy values, and moves away from
the true answer. Restricting σ to be above energy of the noise, provides the
robustness of this approach to noise, which was one of the difficulties of using
the exact �0 norm.

In the simulations of this paper, this noise level was assumed to be known3.

4 Experimental Results

In this section, we justify performance of the presented approach and compare it
with BP. Sparse sources are artificially created using Mixture of Gaussian (MoG)
model4:

si ∼ p · N (0, σon) + (1 − p) · N (0, σoff), (9)
3 Note that its exact value is not necessary, and in practice a rough estimation is

sufficient.
4 The model we have used is also called the Bernoulli-Gaussian model.
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Table 1. Progress of SL0, Compared to �1-magic

itr. # σ MSE SNR (dB)
1 1 3.75 e −2 2.88
2 0.5 2.19 e −2 5.21
3 0.2 4.28 e −3 12.29
4 0.1 1.67 e −3 16.37
5 0.05 6.18 e −4 20.71
6 0.02 1.91 e −4 25.80
7 0.01 1.87 e −4 25.89

algorithm total time MSE SNR (dB)
SL0 0.227 seconds 2.34 e −4 25.67

�1-magic 20.8 seconds 4.64 e −4 21.95

where p denotes probability of activity of the sources. σon and σoff are the stan-
dard deviations of the sources in active and inactive mode, respectively. In order
to have sparse sources, the parameters are required to satisfy the conditions
σoff 	 σon and p 	 1. σoff is to model the noise in sources, and the larger values
of σoff produces stronger noise. In the simulation σon is fixed to 1. Each column
of the mixing matrix is randomly generated using the normal distribution which
is then normalized to unity.

The mixtures are generated using the noisy model x = As + n, where n is
an additive white Gaussian noise with variance σnIm (Im is the m × m identity
matrix). Note that both σoff and σn can be used for modeling the noise and they
are both set to 0.01 in the simulation5.

The values used for the experiment are n = 1000, m = 400, p = 0.1, σoff =
0.01, σon = 1, σn = 0.01 and the sequence of σ is fixed to [1, 0.5, 0.2, 0.1, 0.05,
0.02, 0.01]. μ is set equal to 2.5. For each value of σ the gradient-projection loop
(the internal loop) is performed three times (i.e., L = 3).

We use the CPU time as a measure of complexity. Although, the CPU time is
not an exact measure, it can give us a rough estimation of complexity, and lets
us roughly compare SL0 (Smoothed �0 norm) with BP6.

Table 1 shows the gradual improvement in the output SNR after each it-
eration, for a typical run of SL0. Moreover, for this run, total time and final
SNR have been shown for SL0 and for BP (using �1-magic). Figure 2 shows
the actual source and it’s estimations in different iterations for this run of SL0.
The experiment is then repeated 100 times (with the same parameters, but for
different randomly generated sources and mixing matrices) and the values of
SNR (in dB) obtained over these simulations are averaged. For SL0, this av-
eraged SNR was 25.67dB with standard derivation of 1.34dB. For �1 magic,

5 Note that, although in the theoretical model only the noiseless case was addressed,
because of continuity of the cost functions, the method can work as well in noisy
conditions.

6 Our simulations are performed in MATLAB7 under WinXP using an AMD Athlon
sempron 2400+, 1.67GHz processor with 512MB of memory.



Fast Sparse Representation Based on Smoothed �0 Norm 395

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

Fig. 2. Evolution of SL0 toward the solution: From top to bottom, first plot corresponds
to the actual source, second plot is its estimation at the first level (σ = 1), third plot
is its estimation at the second level (σ = 0.5), while the last plot is its estimation at
third level (σ = 0.2)

these values were 21.92dB and 1.36dB, respectively. The minimum value of SNR
was 20.12dB compared with minimum of 18.51dB for BP.

5 Conclusions

In this article, a fast method for finding sparse solutions of an under-determined
system of linear equations was proposed (to be applied in atomic decomposition
and SCA). SL0 was based on maximizing a ‘smooth’ measure of sparsity. SL0
shows to be about two orders of magnitude faster than the �1-magic, while pro-
viding the same (or better) accuracy. The authors conclude that sparse decompo-
sition problem is not computationally as hard as suggested by the LP approach.
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Appendix: Proof of Theorem 1

Let g(s) � As − x, and consider the method of Lagrange multipliers for maxi-
mizing Fσ(s) subject to the constraint g(s) = 0. Setting ∇Fσ(s) = λT ∇(g(s)),
where λ = [λ1, . . . , λm]T is the vector collecting the m Lagrange multipliers,
along with the constraints As = x, results in the nonlinear system of m + n
equations and m + n unknowns:

{
As = x

λ̂
T
A = [s1 exp (−s2

1/2σ2) . . . sn exp (−s2
n/2σ2)]

(10)

where λ̂ is an m × 1 unknown vector (proportional to λ). In general, it is not
easy to solve this system of nonlinear equations and for small values of σ, the
solution is not unique (because of existence of local maxima). However, when σ
increases to infinity, the system becomes linear and easy to solve:

{
As = x
AT λ̂ = s

⇒ AAT λ̂ = x ⇒ s = AT (AAT )−1x (11)

which is the minimum �2-norm or the pseudo-inverse solution of As = x. ��

www.acm.caltech.edu/l1magic/downloads/l1magic.pdf
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