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Fast Sparse Representation based on Smoothed
���

Norm
G. Hosein Mohimani � , Massoud Babaie-Zadeh � * Member and Christian Jutten � Member

Abstract— In this paper, a new algorithm for Sparse Compo-
nent Analysis (SCA) or atomic decomposition on over-complete
dictionaries is presented. The algorithm is essentially a method
for obtaining sufficiently sparse solutions of underdetermined
systems of linear equations. The solution obtained by the pro-
posed algorithm is compared with the minimum ��� -norm solution
achieved by Linear Programming (LP). It is experimentally
shown that the proposed algorithm is about two to three orders
of magnitude faster than the state-of-the-art interior-point LP
solvers, while providing the same (or better) accuracy.

Index Terms— sparse component analysis, over-complete
atomic decomposition, sparse representation, over-complete sig-
nal representation, sparse source separation, blind source sepa-
ration.

I. INTRODUCTION

Obtaining sparse solutions of under-determined systems
of linear equations is of significant importance in signal
processing and statistics. Despite recent theoretical develop-
ments [1], [2], [3], the computational cost of the methods has
remained as the main restriction, especially for large systems
(large number of unknown/equations). In this article, a new
approach is proposed which provides a considerable reduction
in complexity. To introduce the problem in more details, we
will use the context of Sparse Component Analysis (SCA). The
discussions, however, may be easily followed in other contexts
of application, for example, in finding ‘sparse decomposition’
of a signal in an over-complete dictionary, which is the goal
of the so-called over-complete ‘atomic decomposition’ [4].

SCA can be viewed as a method to achieve separation of
sparse sources. The general Blind Source Separation (BSS)
problem is to recover � unknown (statistically independent)
sources from 	 observed mixtures of them, where little or
no information is available about the sources (except their
statistical independence) and the mixing system. In linear
instantaneous (noiseless) model, it is assumed that x 
���
��
As 
���
 in which x 
���
 and s 
���
 are the 	���� and ����� vectors
of sources and mixtures and A is the 	���� mixing matrix.
The goal of BSS is then to find s 
���
 only by observing x 
���
 .
The general BSS problem is not easy for the case ����	 .
However, if the sources are sparse (i.e., not a totally blind
situation), then the problem can be solved in two steps [3],
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[2]: first estimating the mixing matrix, and then estimating
the sources assuming A to be known. For sparse sources, the
first step is not difficult and may be accomplished by means of
clustering [3], [2], [5], [6]. The second step requires finding
the sparse solution of an underdetermined system of linear
equation (which is the subject of this article): for each instant
of time ( � ), the under-determined system of linear equations
x 
���
�� As 
���
 should be solved under the sparsity assumption
[3], [2], [7], [8].

In the atomic decomposition viewpoint [9], we have a
‘single’ signal ��
���
 whose samples are collected in the 	����
signal vector s � � ��
!�"
$#&%&%&%&#'��
�	�
)(�* and we would like to
represent it as a linear combination of � , 	+�,� signal
vectors -/.1032"40 576 . After [10], the .80 ’s are called atoms and
they collectively form a dictionary over which the signal is
to be decomposed. We may write s �:9 40 576<; 0 . 0 �>=@? ,
where =BAC� . 6 #&%&%&%&#'. 4 ( is the 	C�D� dictionary (matrix)
and ?EAF
 ; 6 #&%&%&%G# ; 4 
!* is the �H�H� vector of coefficients.
A dictionary with 	I�,� is called overcomplete. Although,
	J�I� is sufficient to obtain such a decomposition (e.g.
Discrete Fourier Transform), using overcomplete dictionaries
has a lot of advantages in many diverse applications (refer
for example to [4] and the references in it). In all these
applications, we are looking for a sparse representation, that
is, we would like to use a number of atoms as small as
possible to represent the signal. Again, we have the problem
of finding sparse solutions of the underdetermined system of
linear equations =@?K� s.

To obtain the sparsest solution of As � x, we may search for
a solution of it having minimal L&M norm, i.e., minimum number
of nonzero components. It is usually stated in the literature
[4], [11], [12], [3] that searching the minimum L�M norm is
an intractable problem as the dimension increases (because it
requires a combinatorial search), and it is too sensitive to noise
(because every small amount of noise changes completely the
LGM norm of a vector). Consequently, the researchers look for
other approaches to find sparse solution of As � x which
are tractable. One of the most successful approaches is Basis
Pursuit (BP) [9], [1], [12], [3] which finds the minimum L 6
norm (that is, the solution of As � x for which 9 0ON � 0 N is
minimized). Such a solution can be easily found by Linear
Programming (LP) methods. The idea of Basis Pursuit is based
on the observation that for large systems of equations, the
minimum L 6 norm solution is also the minimum L&M norm
solution [1], [9], [13], [14]. By utilizing fast LP algorithms,
specifically interior-point LP solvers, large-scale problems
with thousands of sources and mixtures become tractable.
However, although this approach is tractable, it is still very
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slow. Another approach is Matching Pursuit (MP) [10], [15],
[3] which is very fast, but is somewhat heuristic and does not
provide good estimation of the sources.

In this article, we present a fast method for finding the
sparse solution of an under-determined system of linear equa-
tions, which is based on minimization of L M norm. The main
idea is as follows: The problems of using L�M norm (that is,
the need for a combinatorial search for its minimization, and
its too large sensibility to noise) are both due to the fact that
the LGM norm of a vector is a discontinuous function of that
vector. Our idea is then to approximate this discontinuous
function by a suitable continuous one, and minimize it by
means of a minimization algorithm for continuous functions
(e.g., steepest descent method). We will see that our method
performs typically three orders of magnitude faster than BP
(based on interior-point LP solvers), while producing solutions
with the same or better accuracy than BP.

The paper is organized as follows. The next section in-
troduces a family of Gaussian sparsity norms and discusses
their optimization. The algorithm is then stated in Section III.
Finally, Section IV provides some experimental results of our
algorithm and its comparison with BP.

II. THE MAIN IDEA

As stated in the previous section, the main idea is to
approximate the L&M norm by a smooth (continous) function,
which will let us to use gradient based methods for its
minimization. In this section we introduce a family of smooth
approximators of L&M norm, whose optimization results in a
fast algorithm for finding the sparse solution while preserving
noise robustness.

The L M norm of s ��� � 6 %&%&%'� 4 ( * is defined as the number
of non-zero components of s. In other words if we define

� 
 �"
 � � � ������� � ��� (1)

then �
s

�
M �
4�
0 576

� 
 � 0 
G% (2)

It is clear that the discontinuities of L&M norm are caused
by the discontinuities of the function � . If we replace � by a
smooth estimation of it in (2), we obtain a smooth estimation
of L M norm. This may also provide some robustness to noise.

Different functions may be utilized for this aim. We use
zero-mean Gaussian family of functions which seem to be very
useful for this application, because of their differentiability. By
defining: �
	


 �"
 ���
��� 
��8�����������&
$# (3)

we have: � � �	��
M
�
	

 �"
 �

� � � ���� ������ % (4)

Consequently,

� � � 	��
M
�
	

 �"
 � ��� � 
 �"
 , and therefore if we

define:  	

 s 
 � 4� 0 576

�
	

 � 0 
$# (5)

we have: � � �	��
M

 	

 s 
 � 4� 0 576 
!�!� � 
 � 0 
�
 � �"�

�
s

�
M % (6)

We take then �#�
 	

 s 
 as an approximation to

�
s

�
M :�

s

�
M%$ �#�

 	

 s 
$% (7)

The value of � specifies a trade-off between the accuracy and
the smoothness of the approximation: the smaller � , the better
approximation, and the larger � , the smoother approximation.

From (6), the minimization of L&M norm is equivalent to max-
imization of

 	
for sufficiently small � . This maximization

should be done on the affine set & �K- s N As � x 2 .
For small values of � ,

 	
contains a lot of local maxima.

Consequently, it is very difficult to directly maximize this
function for very small � ’s. However, as � grows, the function
becomes smoother and smoother, and for sufficiently large
values of � , as we will show, there is no local maxima (see
Theorem 1 of the next section).

Our idea for escaping local maxima is then to decrease the
value of � gradually1: for each value of � we use a steepest
ascent algorithm for maximizing

 	
, and the initial value of

this steepest ascent algorithm is the maximizer of

 	
obtained

for the previous (larger) value of � . Since for each � , its value
is not too different from the previous � , the steepest ascent
algorithm is initialized not far from the actual maximum.
Consequently, we hope that it would not be trapped in the
local maxima.

Remark. Equation (6) proposes that

 	

�' 
 can be seen as a

measure of the ‘sparsity’ of a vector (especially for small � ’s):
the sparser s, the larger

 	

 s 
 . In this viewpoint, maximizing

 	

 s 
 on a set is equivalent to finding the ‘sparsest’ element

of that set.

III. THE ALGORITHM

The final algorithm based on the main idea of the previous
section is given in Fig. 1. As indicated in the algorithm, the
final value of previous estimation is used for the initialization
of the next steepest ascent. By choosing a slowly decreasing
sequence of � 0 , we may escape from getting trapped in the
local maxima, and obtain the sparsest solution.

Remark 1. The internal loop (steepest ascent for a fixed � )
is repeated a fixed and small number of times ( ( ). In other
words, for increasing the speed, we do not wait for the (internal
loop of the) steepest ascent algorithm to converge. This may
be justified by the gradual decrease in � , and the fact that for
each � , we do not need the exact maximizer of

 	
. All we

need, is to enter the region near the (absolute) maximizer of
 	

for escaping from its local maximizers.
Remark 2. Steepest ascent consists of iterations of the form

s ) s *,+.-
/
 	

 s 
 . Here, the step-size parameters +0- should

be decreasing, i.e., for smaller � ’s, smaller +1- ’s should be
applied. This is because for smaller � ’s, the function

 	
is

1This idea is similar to simulated annealing, but, here, the sequence of
decreasing values is short and easy to define so that the solution is achieved
in a few steps, usually less than �32 .
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� Initialization:
1) Choose an arbitrary solution from the feasi-

ble set
�

, v � , e.g., the minimum � � norm
solution of As � x obtained by pseudo-
inverse (see the text).

2) Choose a suitable decreasing sequence for � ,� � ���	�	� ��

� .� for ��� ��� �	��� ��� :
1) Let ������� .
2) Maximize (approximately) the function ���

on the feasible set
�

using � iterations of
the steepest ascent algorithm (followed by
projection onto the feasible set):
– Initialization: s � v ��� � .– for ��� � �	�	� � (loop � times):

a) Let:  s � � ! ��"$#&% ')(*!
�
�
+ � �
��-, � �	����	�	� � !�. "$#&% ')(*!

�. + � �
��-, � / .

b) Let s 0 s
(21  s (where

1
is a small

positive constant).
c) Project s back onto the feasible set

�
:

s 0 s
(

A / ' AA / , � � ' As
(

x ,
3) Set v ��� s.� Final answer is s � v 3 .

Fig. 1. The final algorithm.

more ‘fluctuating’, and hence smaller step-sizes should be used
for its maximization. If we set2 +.- � + � �- , we obtain s )
s � +54 s as stated in the algorithm of Fig. 1 (note that 4 s A� /

 	

 s 
 �
� � ).

Remark 3. The algorithm may work by initializing v M
(the initial estimation of the sparse solution) to an arbitrary
solution of As � x. However, the best initial value of v M is the
minimum L � norm solution of As � x, which is given by the
pseudo-inverse of A. It is because this solution is the (unique)
maximizer of

 	

 s 
 on the feasible set & , where � tends to

infinity3. This is formally stated in the following theorem (refer
to appendix for the proof).

Theorem 1: The solution of the problem:

Maximize

 	

 s 
 subject to As � x #

where �7698 , is the minimum L � norm solution of As � x,
that is, s � A * 
 AA * 
;: 6 x.

Remark 4. Having initiated the algorithm with the min-
imum L � norm solution (which corresponds to � �<8 ), the
next value for the � (i.e., � 6 ) may be chosen about two to four
times of the maximum absolute value of the obtained sources
(

� = � 0 N � 0 N ). To see the reason, note first that:

�
��� 
��8���0 ��������
 � � � , if N � 0 N?> �� , if N � 0 N?@ � % (8)

Consequently, if we take, for example, ���BA
� = � 0 N � 0 N , then�
��� 
��8� �0 ����� � 
 � � % C?D $ � , and comparison with (8) shows

that this value of � acts virtually like infinity for all the � 0 ’s.

2In fact, we may think about changing the � in (3) and (5) as looking at the
same curve (or surface) at different ‘scales’, where the scale is proportional to� � . For having the same step-sizes of the steepest ascent algorithm in these
different scales,

1 � should be proportional to � � .
3In another point of view, one may think about the minimum � � norm

solution as a rough estimate of the sparse solution, which will be modified in
the future iterations of the algorithm.

TABLE I

PROGRESS OF THE METHOD FOR A PROBLEM WITH EF� �32 2 2 , GH�JI 2 2
AND KL� 2 � � .

itr. # �  �M MSE SNR (dB)
1 1 0.032 I � N;OQP ( � 3.48
2 0.5 0.046 � � � OQP ( � 6.73
3 0.2 0.047

O � 2 2 P (5R 13.29
4 0.1 0.063 � � 2 2 P (5R 17.18
5 0.05 0.047

N � 2�S P ( I 21.74
6 0.02 0.031 � � N;OQP ( I 27.80
7 0.01 0.016 � � ��T P ( I 29.17

algorithm total time MSE SNR (dB)
Our method 2 � ��T$� seconds � � ��T P ( I 29.17
LP interior ��� R seconds

R � T OQP ( I 24.39

For the next � - ’s ( UWV � ), we have used � - � ; � - : 6 ,
where ; is usually between 0.5 and 1.

Remark 5. The final value of � depends on the noise level.
For the noiseless case, it can be decreased arbitrarily to zero
(its minimum values is determined by the desired accuracy,
and/or machine precision). For the noisy case, it should be
terminated about one to two times of the energy of the noise.
This is because, while � is in this range, (8) shows that the
cost function treats small (noisy) samples as zeros (i.e., for
which

�
	

 � 0 
 $ � ). However, below this range, the algorithm

tries to ‘learn’ these noisy values, and moves away from the
true answer. Restricting � 0 to be above the energy of the noise,
provides the robustness of this approach to noise, which was
one of the difficulties of using the exact L&M norm.

In the simulations of this paper, this noise level was assumed
to be known4.

IV. EXPERIMENTAL RESULTS

In this section, we justify the performance of the presented
approach and compare it with BP. Sparse sources are artifi-
cially created using the Mixture of Gaussians (MoG) model5:

� 0*XZY '�[ 
 � # �]\_^�
.* 
!�!� Y 
1'_[ 
 � # �]\�` 
$# (9)

where Y denotes the probability of activity of the sources. �Q\_^
and �]\�` are the standard deviations of the sources in active and
inactive mode, respectively. In order to have sparse sources, the
parameters are required to satisfy the conditions �Q\�` > �]\_^
and Y > � . �]\�` is to model the noise, and the larger values of�]\�` produces stronger noise. In the simulation �Q\_^ is set to 1.
Each column of the mixing matrix is randomly generated using
the normal distribution which is then normalized to unity.

To evaluate the decomposition quality, Signal-to-Noise Ra-
tio (SNR) and Mean Square Error (MSE) are estimated as
quality measures. SNR (in dB) is defined as ��� � a?b 


�-c
s �

s

�
� �
�
s

�
� 
 and MSE as 
!�
�"� 


�dc
s � s

�
�� , where s and

c
s denote

the actual source and its estimation, respectively.
The values used for the experiment are ��� ��� � � , 	��eA � � ,Y ��� % � , �]\�`���� % � � , �]\_^ � � , and the sequence for � is fixed

4Note that its exact value is not necessary, and in practice a rough estimation
is sufficient.

5The model we have used is also called the Bernoulli-Gaussian model: each
source is ‘active’ with probability K , and is inactive with probability � ( K .
If it is active, its value is modeled by a zero-mean Gaussian random variable
with variance � �f$g ; if it is not active, its value is modeled by a zero-mean
Gaussian random variable with variance � �f�h , where � �f�hjiW� �f$g .
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Fig. 2. Evolution of the algorithm toward the solution: 4 5 6 M M M , � 5�� M M and� 5 M�� 6 . From top to the bottom, first plot corresponds to the actual source, second
plot is its estimation at the first level (

	
5 6 ), third plot is its estimation at the second

level (

	
5 M�� � ), while the last plot is its estimation at third level (

	
5 M�� � ).

to [1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01]. + is set equal to � % � .
For each � the gradient-projection loop (the internal loop) is
performed three times (i.e., ( �	� ).

We use the CPU time as a measure of complexity. Al-
though, the CPU time is not an exact measure, it can give
us a rough estimation of the complexity, and lets us roughly
compare our method with BP. Our simulations were performed
in MATLAB7 environment using an AMD Athlon sempron
2400+, 1.67GHz processor with 512MB of memory, and under
Microsoft Windows XP operating system.

Table I shows the gradual improvement in the output
SNR after each iteration, for a typical run of the algorithm.
Moreover, for this run, the total time and final SNR have been
shown both for our method and for BP (using interior-point LP
solvers). It is seen that our method performs 2 to 3 orders of
magnitude faster than BP (based on interior-point LP solvers),
while it produces a better SNR. Figure 2 shows the actual
source and it’s estimations in different iterations for this run
of the algorithm.

The experiment was then repeated 100 times (with the same
parameters, but for different randomly generated sources and
mixing matrix) and the values of SNR’s (in dB) obtained over
these simulations are averaged. For our algorithm, this aver-
aged SNR was 28.25dB with standard derivation of 2.33dB.
For BP, these values were 24.86dB and 1.33dB, respectively.
The minimum value of SNR was 18.47dB compared with
minimum of 17.73dB for BP, and for 98 out of 100 simulations
the SNR was larger than 20dB, compared with 99 for BP.

V. CONCLUSIONS

In this article, a fast method for finding sparse solutions of
an underdetermined system of linear equations was proposed
(to be applied in atomic decomposition and SCA). The method
was based on maximizing a ‘smooth’ measure of sparsity.
The overall algorithm was shown to be two to three orders
of magnitude faster than the LP interior-point solvers, while
providing the same (or better) accuracy. The authors conclude
that the sparse decomposition problem is not computationally
as hard as suggested by the LP approach.

APPENDIX

Proof of Theorem 1: Let 
 
 s 
8A As � x, and consider the
method of Lagrange multipliers for maximizing

 	

 s 
 subject

to the constraints 
 
 s 
 ��� . Setting /
 	

 s 
 � / 
�
 * 
 
 s 
�
 ,

where 
+� 
�� 6 #&%&%&%G#�� � 
 is the vector collecting the 	
Lagrange multipliers, along with the constraints As � x,
results in the nonlinear system of 	 *�� equations and 	 *��
unknowns:�

As � x
A * 
�� � � � 6 �
��� 
��8� � 6 ����� � 
 %&%&%'� 4 �
��� 
��8� �4 ����� � 
)( * (10)

where 
�� is an 	>��� unknown vector (proportional to 
 ).
In general, it is not easy to solve this system of nonlinear
equations and for small values of � , the solution is not unique
(because of the existence of local maxima). However, when� increases to infinity, the system becomes linear and easy to
solve:�

As � x
A * 
�� � s

� AA * 
�� � x � s � A * 
 AA * 
 : 6 x (11)

which is the minimum L � -norm or the pseudo-inverse solution
of As � x. �
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