- شماره درس: ۲۵۴۵۳
- عنوان درس: سیستمهای کنترل شبکه ای
- نوع درس (نظری، نظری و آزمایشگاه، آزمایشگاه، درس پروژه دار): نظری
 - پیشنیاز یا همنیاز: ندارد
- مقطع (کارشناسی، تحصیلات تکمیلی): تحصیلات تکمیلی گروه: سیستمهای دیجیتال
 - نوع (ثابت یا متغیر) و تعداد واحد: ثابت، ۳ واحد
 - اهداف درس (۵۱۲ کاراکتر یا حدوداً چهار خط):

هدف از ارائه این درس آ شنایی دانشجویان با سیستمهای کنترل شبکه ای، چالشهای اصلی در توسعه این سیستمها و اصول طراحی اینترنت اشیا و سیستمهای کنترل از راه دور است. این درس به مطالعه اثر متقابل کنترل و مخابرات دیجیتال در سیستمهای کنترل شیبکه ای و الگوریتمهای طراحی یکپارچه کنترل و مخابرات دیجیتال برای سیستمهای کنترل شبکه ای می پردازد.

- سرفصل ها (حداكثر ٢٣ سر فصل، هر سرفصل ١٢٨ كاراكتر يا حدوداً يك خط):
 - مثالهای عملی از سیستمهای کنترل شبکه ای:
 - 🗡 شبکه آبیاری خودکار خوزستان
 - 🖊 مجموعه زیر دریایی های بدون سرنشین خودکار کشور فرانسه
 - 🖊 سیستم خودکار حفاری چاه نفت و گاز
- نکات فنی که در توسعه سیستمهای کنترل شبکه ای باید در نظر گرفته شوند:
- 🗡 روشهای موجود مخابراتی برای منابع اطلاعاتی فاقد حافظه توسعه یافته اند
- در سیستمهای کنترل شبکه ای، منابع اطلاعاتی تو سط سیستمهای دینامیکی تو صیف می
 گردند. بعبارت دیگر در این سیستمها، منابع اطلاعاتی دارای حافظه می باشند
 - کدینگ (block coding) هستند بر بلوک کدینگ (block coding) هستند
- که منابع اطلاعاتی توسط سیستمهای دینامیکی توصیف شوند، این روش باعث تاخیر مخابراتی زیاد می گردد
- الگوریتمهای موجود کنترل و تخمین بدون در نظر گرفتن نواقص مخابراتی نظیر از د ست رفتن تصادفی داده ها، نویز و محدودیتهای پهنای باند انتقال توسعه یافته اند
 - چالشهای اساسی در توسعه سیستمهای کنترل شبکه ای

- نیازمندی به توسعه روشهای نوین مخابراتی جهت نقل و انتقال بدون تاخیر از منابع اطلاعاتی توصیف شده توسط سیستمهای دینامیکی (منابع اطلاعاتی حافظه دار)
- کنترل که در مقابل نواقص مخابراتی مقاوم می نیازمندی به توسعه الگوریتمهای نوین تخمین و کنترل که در مقابل نواقص مخابراتی مقاوم می باشند
 - 🗡 نیازمندی به توسعه الگوریتمهای طراحی یکپارچه کنترل و مخابرات
 - مروری بر مطالب پیش نیاز درس:
- مدلسازی فضای حالت سیستمهای دینامیکی، روش خطی سازی، تابع توصیفی، پایداری لیستمهای تصادفی، LQG و غیره
- مدلسازی کانالهای مخابراتی، ظرفیت انتقال، روشهای کدینگ، نرخ اعوجاج و تئوری انتقال اطلاعات و غیره
 - الگوریتمهای طراحی یکپارچه کنترل و مخابرات دیجیتال
- دیابی و کنترل سیستمهای خطی بر روی کانال مخابراتی محک بسته ای: کاربرد در شبکه آبیاری خودکار خوزستان
- ردیابی و کنترل از راه دور سیستمهای غیر خطی بر روی کانال مخابراتی محک بسته ای: کاربرد
 در اندازه گیری و کنترل از راه دور وسایل نقلیه خودکار
 - ردیابی و کنترل بر روی کانال مخابراتی گوسی: اصل جدایی و نرخ اعوجاج سکوئنسی
 - معرفی ماژولهای اینترنت اشیا و آرایش شبکه های مخابراتی مبتنی بر این ماژولها:
 - LoRA, Sigfox, Digi 🕨
- ← آرایش مخابراتی مش (mesh)، نقطه به نقطه (point to point)، براد کست (broadcast) و هیبرید
 - مراجع (حداكثر ۴ مراجع، وب سايت به عنوان مرجع درس درنظر گرفته نخواهد شد):
 - 1- S. Yuksel and T. Basar, Stochastic Control Systems: Stabilization and Optimization under Information Constraints, Springer, 2013.
 - 2- A. Parsa and A. Farhadi, Measurement and Control of Nonlinear Dynamic Systems over the Internet (IoT): Applications in Remote Control of Autonomous Vehicles, *Automatica*, 95, pp. 93 103, September 2018.
 - 3- A. Farhadi, J. Domun, and C. Canudas de Wit, A Supervisory Control Policy over an Acoustic Communication Network, *International Journal of Control*, 88(5), pp. 946-958, May 2015
 - 4- A. Farhadi, and E. Amani, Automated Irrigation Network: The Missing Link in Iran's Water Management Resources, *in Proceedings of the First Brainstorming Symposium with Water and Environment Experts*, Feb. 2018, Tehran, Iran (in Persian)

Course number: 25453

Course name: Networked Control Systems

• Course Type (Theory, Theory and Lab., Lab., With project): Theory

• Pre-requisite: None

• Level (Undergraduate, Graduate): Graduate

• Group: Digital Systems

• Type and max unit: Constant, 3

• Objectives:

The objective of this course is to familiarize students with networked control systems; main issues and challenges for developing these distributed systems and the design principles of the Internet of Things (IOT) and tele-operated systems. This course studies the interaction between digital communication and control in networked control systems; and the available communication and control co-design frameworks for balancing this interaction.

• Topics:

- P
Practical examples of networked control systems:
➤ Iran's automated irrigation network
➤ Ifremer's fleet of autonomous under water vehicles
➤ Automated oil drilling system
Main issues to be considered in the development of networked control systems:
The available communication techniques are developed for memoryless information sources
➤ In networked control systems, information sources are described by dynamic systems. That is, they are sources with memory
➤ The available communication techniques are based on block coding
This coding technique for dynamic systems as the information source results in long transmission delay
Available estimation and control algorithms have been developed without considering communication imperfections: random packet dropout, noise, limited bit rate, etc.
Main challenges in the development of networked control systems:

- ➤ The needs for the development of novel communication techniques for real time reliable communication of the information sources described by dynamic systems (sources with memory)
- ➤ The needs for the development of novel estimation and control algorithms that are robust against communication imperfections
- ➤ The needs for the development of integration frameworks for control and communication co-design

• Preliminaries:

- > State space modeling for dynamic systems, Linearization method, describing function, stability of stochastic systems, LQG, etc.
- Modeling communication channels, transmission capacity, channel coding, source coding, rate distortion, information transmission theorem, etc.
- Available communication and control co-design frameworks:
 - ➤ Linear tracking and control over limited capacity packet erasure channel: Applications in Iran's automated irrigation network
 - Nonlinear tracking and control over the packet erasure channel: Applications in tele-operation and tele-metry of autonomous vehicles
 - ➤ Linear tracking and control over limited capacity AWGN channel: Separation principle and sequential rate distortion function
- Introducing IOT modules and the commonly used communication topologies of IOT networks:
 - ➤ LORA, Sigfox, Digi
 - Mesh, point to point, broadcast and hybrid communication topologies

References:

- 1- S. Yuksel and T. Basar, Stochastic Control Systems: Stabilization and Optimization under Information Constraints, Springer, 2013.
- 2- A. Parsa and A. Farhadi, Measurement and Control of Nonlinear Dynamic Systems over the Internet (IoT): Applications in Remote Control of Autonomous Vehicles, *Automatica*, 95, pp. 93 103, September 2018.
- 3- A. Farhadi, J. Domun, and C. Canudas de Wit, A Supervisory Control Policy over an Acoustic Communication Network, *International Journal of Control*, 88(5), pp. 946-958, May 2015
- 4- A. Farhadi, and E. Amani, Automated Irrigation Network: The Missing Link in Iran's Water Management Resources, *in Proceedings of the First Brainstorming Symposium with Water and Environment Experts*, Feb. 2018, Tehran, Iran (in Persian)