

Optical Neural Network

By: Roghayeh Saeidi

Motivation

ONN Features:

- Massive interconnections
- Parallel processing operation
- Inherent additive properties

✓ Fast optical computing ✓ Power efficient manner

Motivation

All Optic Systems

A packet switched telecommunication network.

- In each network router data packets are routed according to their destination address.

- The routers should perform a pattern detection task on the header detect sequence and classify the packets by their destination address.

Outline

Outline

Introduction
Optical Medium
ONN Examples

BP Traning of an ONN
A Multilayer ONN

References

Optical Neural Network

Introduction

Introduction

In an Optical NN:

- Sources are modulated light beams
- Synaptic Multiplications are due to attenuation of light passing through an optical medium: Geometric or Holographic.
- Target neurons sum signals from many source neurons.

Introduction History

History

- ONN was suggested by Farhat ad Pissaltis in 1987.
- Many of the early ONNs had electro-optical components
 - □ Computers were slow
 - With converters between optical beams and electrical current
 - The full theoretical advantages of fully-optical NN couldn't be displayed.
- With the advent of all-optical components it became possible to create complete all-optical ONN.
 - They are not as accurate as their electronic equivalents,
 - That it is not easy to integrate a large number of optical units on a chip
- A common misconception: Optical NNs work much faster than Electronic NNs.
- The future of ONN is yet uncertain.

Optical Neural Network

Optical Elements of ONN

Optical Elements of ONN

- **L**aser (1960)
- Lenses
- Liquid Crystals (1888)

Optical Elements: Laser

Laser

• A laser is a device that emits light through a process called stimulated emission. <u>The term</u> "laser" is an acronym for Light Amplification by Stimulated Emission of Radiation. Laser light is usually spatially coherent, which means that the light either is emitted in a narrow, low divergence beam, or can be converted into one with the help of optical components such as lenses.

Optical Elements: Liquid Crystal

The study of liquid crystals began in 1888 when an Austrian botanist observed that a material had two distinct melting point.
Liquid crystals are a phase of matter whose order is intermediate between that of a liquid and that of a crystal.
The molecules are typically rod-shaped organic moieties about 25 Angstroms in length and their ordering is a function of temperature.

Optical Elements: Liquid Crystal

Liquid Crystals in ONN

SLM (Spatial Light Modulation)

 OA-SLM
 EA-SLM

 LCVT (Liquid Crystal Television)
 LCLV (Liquid Crystal Light Valve)
 PCM (Phase Conjugate Mirror)

Optical Elements: OA-SLM1

Optically Addressed SLM

The "incoherent" light is detected (as intensity), by a photo-detector (as an electrical change distribution). This charge distribution affects the modulator, and so changes the Amplitude **or** Phase of the reflected coherent light.

Optical Elements: OA-SLM2

Practical Uses of AOSLMs

Simplest applications is for real-time input to "4-f" optical processor

Optical Elements: EA-SLM LCVT Electrically Addressed SLM

- The hologram is generated on SLM by a computer.
- **EASLM** is similar to LCTV.

Optical Elements: LCLV1 LCLV1 LCLV1 LCLV1 LCLV1 LCLV: Optical Thresholding

Optical Elements: LCLV2

Sigmoid Curve fit for LCLVs

	standard sigmoid	LCLV1	LCLV2	LCLV3	LCLV4a	LCLV4b
α	0	-0.41	-2.34	-0.015	-11.4	-0.019
β	1	0.087	0.0062	0.043	0.79	1.40
γ	1	1.41	3.34	1.0	12.4	1.0
δ	0	0.93	-0.82	3.20	-2.31	4.57

Optical Elements: PCM1

Phase Conjugate Mirror

A phase conjugate mirror is like a mirror, in that it reflects incident light back towards where it came from, but it does so in a different way than a regular mirror.

Optical Elements: PCM2

Phase Conjugate Mirror

phase conjugate mirror

Optical Neural Network

1- BP Training of an ONN
 2- A Multilayer ONN for Digit Recognition

BP Training of an ONN

- Use optical BP in a feed-forward ONN
- Is the first report of BP training in an optical system.
- Uses a thermal nonlinear material as a neural processing layer and a photorefractive crystal as a phase conjugate mirror to backpropagate the optical error.
- The nonlinear material modulates the phase front of a forward propagating information beam by dynamically altering the index of the refraction profile of the material via a stronger weighting beam.

Example1 Net

Basic Neural Network

Example1 Mixing

Two-Wave Mixing

In linear optics

is a transient phenomenon that has no effect on anything else.

In the transparent volume of a nonlinear optical medium the interference pattern will cause a change in the refractive index of the nonlinear medium in the shape of those same parallel planes.

 $n(y) = n_0 + n_2 . I(y)$

Example1 Set Up

Experimental Set up

Example1 Results

BP Training Results

Mean Square Error (MSE)

INPUT (A B)		(0-0)	(0-1)	(1-0)	(1 1)	RME
	Start	1.22	0.87	0.92	0.82	0.29
AND	End	0.82	0.90	0.84	1.18	0.06
	Desired	0.8	0.8	0.8	1.2	
	Start	1.35	0.87	0.93	0.86	0.22
NAND	End	1.70	1.23	1.32	0.86	0.03
	Desired	1.2	1.2	1.2	0.8	
	Start	1.28	0.87	0.91	0.85	0.07
NOR	End	1.13	0.78	0.85	0.78	0.04
	Desired	1.2	0.8	0.8	1.2	

A Multilayer ONN for Digit Recognition

- An optical perceptron with a soft optical threshold is implemented, that is trained with an adapted BP algorithm.
- An optical thresholding perceptron is composed of two parts:
 - Matrix-vector-Multiplier (MVM),
 - A thresholding device.

Example2 MVM MVM MVM

P: Polariser; Gn: Gratings

Optical Neural Network

28

Example2 Digit Test

Weight Mappings

Behaviour of optical weights under different weight mappings: x-axis has calculated weights, and y-axis has corresponding optical weights or LCTV2 transmittances

Example2 Digit Test

Test inputs

A set of handwritten digits

0123456789

Example2 Digit Test

Output Screen

LCLV output images without and with write light

Optical Neural Network

31

Example1 Digit Test

Digit Recognition

Recognition of a 0, 2, 3, 4, 5, 6, 7, and 9

Optical Neural Network

References

References

- [1] J. E. Steck1, S. R. Skinner2, A. A. Cruz-Cabrera2, M. Yang, and E. C. Behrman3, "Backpropagation Training of an Optical Neural Network," IEEE, 2000.
- [2] I. Saxena, P. Moerland, E. Fiesler, A. R. Pourzand, and N. Collings, "An Optical Thresholding Perceptron with Soft Optical Threshold." 1997.
- [3] I. Saxena and P. Moerland, "An Adaptive Multilayer Optical Neural Network Design," 1996.
- [4] I. Saxena and P. Moerland, "Adaptive Multilayer Optical Neural Network with Optical Thresholding," 1994.
- [5] P. Moerland, E. Fiesler and I. Saxena, "Incorporating LCLV Non_Linearities in Optical Neural Network,"1995.
- [6] T. Yatagai and M. Itoh, "Development of an Optical Neural Network," 1995.
 [6] PCM: <u>http://cns-alumni.bu.edu/~slehar/Spatial/Spatial.htm</u>
- [7] Liquid Crystal: <u>http://plc.cwru.edu/tutorial/enhanced/files/lc/Intro.htm</u>
- [8] <u>http://www.exo.net/~pauld/activities/liquidcrystal/liquidcrystal.html#how</u>
- [9] Google Search for so many optic concepts in Optical Neural Networks!

