ASIC/FPGA Chip Design

Power Grid and Clock Design

Mahdi Shabany

Department of Electrical Engineering
Sharif University of technology
Outline

- Power Distribution Design
 - Introduction
 - IR Drop
 - Ldi/dt Drop
- Decoupling Capacitances
- Clock Considerations
- PLL/DLL Architecture
Outline

- Power Distribution Design
 - Introduction
 - IR Drop
 - Ldi/dt Drop
- Decoupling Capacitances
- Clock Considerations
- PLL/DLL Architecture
Power Distribution Design

- Power means V_{DD} and GND
 - Not available easily at all locations in chip

- Clock should be routed from input pad to all flip flops

- Power Distribution (Multi-dimensional problem)
 - Off-chip
 - DC-DC converters
 - Power planes
 - Packages
 - Sockets
 - Power pins
 - On-Chip
 - Connection to the gates
 - On-chip distribution
Power Distribution Design

- Much of the complexity of power distribution systems arises due to the large number of transistors on a chip, the RLC nature of interconnect, and the frequency of operation.

- Today’s state-of-the-art designs have the following specs:
 - Clock frequency: Over 1GHz
 - Power: over 100 W
 - Current levels: 100A
 - Supply voltage: 1.2V and below

- Fluctuations in the power system lead to timing variations and design failure.

- **Rule-of-thumb**: For gates to functionally operate correctly max voltage noise/fluctuation on the supply should be less than 10% of \((V_{DD}-GND) \)
Power Distribution Design

- Noise/fluctuation on the supply is due to resistance and inductance along the current path
 - IR Drop
 - Ldi/dt Drop at package pins

 \[\text{Voltage Drop: } \Delta V = IR + L \frac{di}{dt} \]

- Voltage drops affects:
 - Clock Skew
 - Gate Performance
 - Clock Jitter
 - Overall timing and functionality

- Another dimension is about the “power intensity” issues
 - Power grid electromigration b/c of the large currents that affect long-term reliability

© M. Shabany, ASIC/FPGA Chip Design
Power Supply Isolation

- Chips often contain
 - Noisy circuits
 - Pad-drivers
 - Clock generators
 - Large RAM arrays
 - Noise-sensitive circuits
 - PLLs and DLLs
 - Receive amplifiers

- We would like to isolate the noise sensitive circuits from the noise generated by the noisy circuits

- To do this we need to make sure the two circuits share as little of the power distribution network as possible

- Typically provide separate power and/or GND pins
 - Quiet GND and VDD

© M. Shabany, ASIC/FPGA Chip Design
Outline

- Power Distribution Design
 - Introduction
 - IR Drop
 - Ldi/dt Drop
- Decoupling Capacitances
- Clock Considerations
- PLL/DLL Architecture
IR Drop

- IR drop is mainly due to the resistance on VDD lines.
- Basic concept with an example:
 - Two buffers connected to a resistive power supply
 - As the large driver, inv2, begins to switch, the demand for current reduces the voltage in the power grid.
 - The voltage remains high near the VDD connection at the periphery of the chip, but drops by ΔV at the connection to inv2.

IR drop reduces the VDD and increases the GND (ground bounce) over their respective paths.
IR Drop

- IR drop is caused by simultaneous switching of:
 - Clock buffers
 - Bus drivers
 - Memory decoder drivers

- IR Drop Effects:
 1) Reduces the drive capability of the gates and increases the overall delay:
 - A 5% drop in supply voltage can affect delay by 10-15%, which is serious when managing clock skews in the range of 100 ps.

 2) Compromises the noise margins of the logic gates due to the voltage drop in the power grid and increase in voltage in the ground grid:
 - VDD in deep submicron processes has been scaled down, which has resulted in very small noise margins. With IR drop, the margins are reduced even further!
How to avoid IR Drop?

- IR drop reduces the drive capability of the gates and increases the overall delay
 - Typically a 5% drop in supply voltage can affect delay by 10-15% or more!
 - Very serious when managing clock skews in the range of 100 picoseconds.

- To avoid IR drop:
 - Widen the lines that experience the largest voltage drops since increasing the width decreases the resistance (and the IR drop).
 - May not be always feasible due to the routing area constraints.
 - Add/remove metal straps.
 - Reduce buffer sizes if possible.
How to avoid IR Drop?

- The number of pins assigned to VDD and GND can also be increased to reduce IR drop. By providing more supply pins, the current requirements for a given section can be satisfied from a number of sources.
- This would limit the number of pins available for I/O.
- One effective solution may be to use a ball-grid array where the power supply connections can be placed at various points within the chip. The key design issue is the proper placement of the bumps around the chip.
- Note that solder bumps cannot be used in sensitive areas such as memories and dynamic logic as they generate alpha-particles that may cause logic value upsets on the sensitive nodes.
Outline

- Power Distribution Design
 - Introduction
 - IR Drop
 - Ldi/dt Drop
- Decoupling Capacitances
- Clock Considerations
- PLL/DLL Architecture
Ldi/dt Drop

- Ldi/dt drop is mainly because of the package pin inductance
 - Typically around 1-2 nH
- The inductance arises from the bonding wire used to connect the chip I/O pads to the lead frame in the traditional dual-inline package (DIP).
- Today many companies have moved to ceramic ball-grid array (BGA) packaging due to the large number of chip I/O and power/ground connections.
- The inductance of each solder bump is of the order of 0.1 nH.
Ldi/dt Drop

Example: A current level of 25mA is supplied by V_{DD} and flows into the circuit over a 100ps time interval. If the bump and via generate 0.2 nH of inductance, then the total voltage drop due to the inductance on both rails is

$$V_L = 2 \times L \frac{di}{dt} = 2 \times 0.2\text{nH} \times \frac{25\text{mA}}{100\text{ps}} = 100\text{mV}$$

This is a significant drop considering that the supply voltage may only be 1.2V.

General Case:
- Packaging Inductances
- Power Grid Inductance
- Power Grid Resistances
- RLC model of the interconnect
Electromigration

- The migration of metal molecules due to the high current densities and narrow line widths leading to a short or open in the metal line.

- Once electromigration happens, the chip may not operate properly.

![Graph showing time progression of electromigration](image-url)
Electromigration

- The current density in each wire segment is computed using the wire dimensions (W: width, T: thickness)
 \[J_{\text{avg}} = \frac{I_{\text{avg}}}{W \times T} \]

- The electromigration failure happens if:
 \[J_{\text{avg}} > J_{\text{max}} \]

- The width of the metal segments with the failure should be adjusted to meet this criterion.
How to Avoid Electromigration?

- The electromigration failure can be reduced in several ways. The basic idea in all approaches is to reduce the average current density experienced by any metal segment.

 - The simplest approach is to widen the metal lines.
 - Costs area and can reduce yields.

 - Changing the current flow in the power grid itself by adding jumpers and straps between different points in the grid.
 - It reroutes current from the affected areas but should be verified to confirm the problem has not been moved to another part of the chip.
Power Routing Considerations

- An IC designer has to design a chip power system with having the IR drop, Ldi/dt drop and electromigration in mind.
- A simplified model for the power distribution:

![Diagram of power routing considerations](image.png)
Power Routing Considerations

- Power routing options/strategies for several blocks:

 - A large IR drop in block B
 - Power consumed by A before it reaches B
 - More blocks more complications

 Solution I:
 - Larger metal trucks to handle the current
 - Better power management (+)
 - More silicon area required (-)
Power Routing Considerations

- Power routing options/strategies for several blocks:
 - Current from both sides of the block thus minimizing IR drop in the middle
 - Main trunks should be wide enough to handle current

![Diagram of power routing options](image)

© M. Shabany, ASIC/FPGA Chip Design
Power Routing Considerations

- Power routing options/strategies for several blocks:

 - Main trunks should be wide enough to handle current
 - Electromigration problem should be be checked in T junctions, which have a high current density, specially around the bends
Power Routing Considerations

- Power routing options/strategies for several blocks:
 - A grid of two metal layers

![Diagram of a grid of two metal layers with Via arrays connected to VDD and some signals removed to route other signals.](image-url)
Outline

- Power Distribution Design
 - Introduction
 - IR Drop
 - Ldi/dt Drop
- Decoupling Capacitances
- Clock Considerations
- PLL/DLL Architecture
Decoupling Capacitances (Decaps)

- On-chip decoupling capacitances (decaps) are commonly used to keep the power supply within the noise budget, especially during peak demand periods in high-frequency switching applications.

- **Decaps**: large-valued capacitances, holding a reservoir of charge, located near the power pins and any large driver.

- Decaps can reduce the amount of metal needed for distribution
 - Change peak requirement to average requirement

© M. Shabany, ASIC/FPGA Chip Design
Decoupling Capacitances (Decaps)

- When large buffers switch from low to high, these decaps are the first line of defense for IR drop and Ldi/dt effects. The needed current for the switching process is obtained from the local decap.

- Later, current flows from the V_{DD} pad to refill the reservoir of charge for the next switching operation.

© M. Shabany, ASIC/FPGA Chip Design
Decoupling Capacitances (Decaps)

- The on-chip decoupling capacitance is usually implemented using an NMOS transistor with the gate connected to V_{DD} and the S/D connected to V_{SS}.

- The device is therefore in the linear region of operation.

- The parallel-plate capacitor is formed by the poly on one side and the channel inversion layer on the other side.

$$C_{\text{decap}} = C_{\text{ox}}WL + C_{\text{ol}}W$$
Decoupling Capacitances (Decaps)

- The two main design issues are to decide how much decoupling capacitance to include and where to place them.
- These are determined through the large amount of simulations on the target chip.
- The location of the decaps should be based on the location of the large buffers that are switching during the peak demand periods.
- Simulations can be carried out on a representative patch of the power grid between power bumps, which are the solder bumps connected to V_{DD}.
- Any buffer and driver can be connected to the grid.
Decoupling Capacitances (Decaps)

- There are many factors to consider when deciding how much capacitance to employ and where to place them.

- There is a certain amount of decoupling that is already present in the circuit due to the devices that do not switch. This includes gate and S/D capacitances as well as wire capacitances for all nodes that are charged up to VDD. This value may be subtracted off the target decoupling capacitance needed in the circuit. (Symbiotic Bypass Caps.)

- The decaps are placed near the power pins to offset any effect of inductance due to solder bumps or bonding wires.

- The decaps should be placed in as many open areas of the chip as possible.

- Normally the amount of decoupling capacitance used is 10 times the amount of capacitance switched on every cycle.
Decoupling Capacitances (Decaps)

☐ We need a bypass capacitor of about 0.25nF for each 1mm2 area of the chip

☐ For comparison, an MOS capacitor covering a 1mm2 area has a capacitance of about 5nF/mm2

☐ So, our bypass capacitor uses 5% of the silicon area!

☐ Can be made much smaller with local regulation
Decoupling Capacitances (Symbiotic)

- Where are the bypass capacitors in this picture?
- Gates that are not switching at a given instant in time act as symbiotic decaps
- If only one gate in 60 switches at a given instant, the bypass capacitance is 30 times the switched capacitance
Outline

- Power Distribution Design
 - Introduction
 - IR Drop
 - Ldi/dt Drop
- Decoupling Capacitances
- Clock Considerations
- PLL/DLL Architecture
Noise on Clock

Glitch on Clock input

Glitch on data input
Noise on Clock: Layout solutions to coupling

- There is a potential for noise events due to the coupling capacitances.

- The spacing has a lower capacitance and thus reduces power to some degree.
- Shielding is beneficial for both capacitive and inductive coupling. Typically clocks are shielded to protect them from unwanted noise and also to protect other sensitive signals from mutual coupling to the clock.
- The price of shielding is the increased capacitance and power dissipation.
Outline

- Power Distribution Design
 - Introduction
 - IR Drop
 - Ldi/dt Drop
- Decoupling Capacitances
- Clock Considerations
- PLL/DLL Architecture
Clock Synchronization with PLL & DLL

- Remember that clock buffers are used to route clock, which incurs clock delay/latency.

- Synchronization of an externally supplied master clock with the internal clock of the chip.

- Synchronization is needed:
 - When a master clock is distributed to several chips on PCB
 - To synchronize a local clock with an external clock because the data transfers are synchronized with the local clocks, data may be sampled at a wrong time
 - Clock latency value may differ from chip to chip or module to module

- Synchronization is done using phase-locked loop (PLL) or delay-locked loop (DLL).

- PPL are mainly used for:
 - Locking to external signals
 - Phase control
 - Frequency multiplication
 - Frequency division

© M. Shabany, ASIC/FPGA Chip Design
Clock Synchronization with PLL & DLL

- Clock latency between different points in design

![Diagram showing clock synchronization with PLL and DLL](image)
PLL/DLL Idea

- Create enough delay to match the phase/delay of the master clock with the local clock through a feedback line. (insert enough delay to clock line up!)
PLL/DLL Idea

- Create enough delay to match the phase/delay of the master clock with the local clock through a feedback line. (Insert enough delay so that clocks line up!)
PLL & DLL

- DLL and PLL circuits are closely related. Both use feedback control to lock output clock to the incoming clock.

- PLLs must lock on to the frequency and phase of the reference clock.

- DLLs simply lock to a constant phase of the reference clock.

- Therefore, locking process in a PLL requires more time than a DLL.

- If we simply want synchronization, we could use a DLL.

- If we needed the internal clock to run at a multiple of external clock frequency we must use a PLL.
PLL & DLL in FPGAs

- Most FPGAs have PLLs and DLLs already designed in their hardware, which can be instantiated as a core to your design.

- For instance, Virtex has up to 8 fully digital DLLs that provide zero propagation delay and low clock skew between output clock signals distributed throughout the device.

- In addition to providing zero delay with respect to a user source clock, the DLL can provide multiple phases of the source clock. The DLL can also act as a clock doubler or can divide the user source clock by up to 16.

- Clock multiplication gives the designer a number of design alternatives. For instance, a 50 MHz source clock doubled by the DLL can drive an FPGA design operating at 100 MHz. This technique can simplify board design b/c the clock path on the board no longer distributes such a high-speed signal.
PLL & DLL in Virtex FPGAs

- CLKDLL

![Diagram of PLL and DLL in Virtex FPGAs](image)
PLL & DLL in Virtex FPGAs

- Various possible outputs:

- The DLL clock outputs can drive a buffer, a global clock buffer, or they can route directly to destination clock pins.
PLL/DLL Architecture

- A PLL consists of:
 - Phase/frequency detector (PFD)
 - A charge pump
 - A loop filter (LP)
 - A voltage-controlled oscillator (VCO)
PLL/DLL Architecture: PFD

- The phase/frequency detector detects the difference between the edges of the reference clock and the feedback clock.
- The role of this block is to control the VCO by moving its frequency up or down depending on the edges of the incoming clocks.

- If the feedback clock switches ahead (behind) of the reference clock, a down (up) signal is generated to slow down (speed up) the VCO.

- If both up and down are high, it is viewed as a reset condition.

© M. Shabany, ASIC/FPGA Chip Design
PLL/DLL Architecture: Charge Pump

- Up/down signals are applied to a charge pump.

- The up signal will switch on the upper current source and raise the output voltage.

- The down signal will discharge the output capacitance and lower the control voltage.

- In case that both are high, the current flows harmlessly from VDD to GND.
PLL/DLL Architecture : Loop Filter

- The filter \(F(s) \) determines the order and stability of the overall PLL system. Its role is to filter out the high-frequency switching components in the up/down signals and deliver a slowly changing control voltage to the VCO.

- Can be modeled using a linear system.

- The phase is the loop variable and the phase difference is determined and amplified.
PLL/DLL Architecture: VCO

- VCO acts as an integrator and generates a periodic output based on a control voltage input.
- Basic principle: a ring oscillator with a controllable delay τ
- The delay of each stage is adjusted by the control voltage V_c.

The control voltage adjusts the amount of current delivered to the inverter to charge and discharge the next stage.

As the current varies, the delay through the inverter varies as well.
PLL/DLL Architecture:

- The PLL can be modified to implement a DLL by a substitution of the VCO with a voltage-controlled delay line (VCDL).
- The circuit utilizes the control signal to vary the delay of each inverter.
- DLL is more stable and much easier to design.
- Widely used in clock and data recovery.
PLL vs. DLL

- When it comes to choosing between a PLL or a DLL for a particular application, the differences in the architectures must be understood.

- The oscillator used in the PLL inherently introduces instability and an accumulation of phase error. This in turn degrades the performance of the PLL when attempting to compensate for the delay of the clock distribution network.

- Conversely, the unconditionally stable DLL architecture does not accumulate phase error. For this reason, for delay compensation and clock conditioning, DLL architecture should be used. On the other hand, the PLL typically has an advantage when it comes to frequency synthesis (frequency multiplication/division).
Low Power Design Techniques

- Two major types of techniques to lower the dissipated power:
 - Circuit-oriented techniques
 - Fabrication-oriented techniques

- Circuit-oriented techniques:
 - Multi-voltage Design
 - Gated Clock
 - Lower Frequency
 - Utilizing Decaps
 - Dynamic Voltage Scaling
 - RAM Partitioning
Low Power Design Techniques

- Two major types of techniques to lower the dissipated power:
 - Circuit-oriented techniques
 - Fabrication-oriented techniques

- Process-oriented techniques:
 - Multi-threshold Design
 - Well Biasing
 - Process Techniques
Low Power Design Techniques

- Circuit-oriented
 - Multi-voltage
 - RAM Partitioning
 - Gated Clock
 - Lower Freq.
 - Dynamic voltage
 - Decaps
- Process-oriented
 - Multi Threshold
 - Well Biasing
 - Process Techniques
Low Power Design: Multi-Voltage Design

- Low Power Design
 - Circuit-oriented
 - Multi-voltage
 - RAM Partitioning
 - Gated Clock
 - Lower Freq.
 - Dynamic voltage
 - Decaps
 - Process-oriented
 - Multi Threshold
 - Well Biasing
 - Process Techniques
Low Power Design: Multi-Voltage Design

Island (Voltage Domains) نکته ای از روش‌های موتر در کاهش توان مصرفی این است که چیپ را به قسمت‌های مختلف تقسیم-بندی کنیم که هر یک از این قسمت‌ها دارای ولتاژ‌های متغیری هستند. در این روش، از سری‌های کم ولتاژ (Low-voltage) برای کاهش فضای بحرانی طرح، از سری‌های با ولتاژ اسمی (Nominal voltage) برای مناطق بحرانی و از سری‌های با (High voltage) ولتاژ بالا (High voltage) برای مناطق بسیار بحرانی استفاده می‌شود.
Low Power Design: Multi-Voltage Design

Power Islands

Clamps

Level Shifter

Global

Multi-Voltage Design Example
Low Power Design: Multi-Voltage Design

استفاده از طراحی چند ولتاژ پیامدهایی را در بر دارد.

- طراحی شبکه توان پیچیده می‌شود.
- طراحی شکستگی ولتاژ و سلول‌های ایزولاسیون (Clamps) باید بصورت دستی به طرح Level Shifter اضافه شوند.
- ها فضای زیادی را اشغال می‌کنند. Level Shifter

به چندین مرحله آنالیز با حفظ همبستگی و دقت حوزه‌های توان نیاز است.

© M. Shabany, ASIC/FPGA Chip Design
Low Power Design: Clock Control

Low Power Design

Circuit-oriented
- Multi-voltage
 - RAM Partitioning
- Gated Clock
- Lower Freq.
 - Decaps
- Dynamic voltage

Process-oriented
- Multi Threshold
- Well Biasing
 - Process Techniques
Low Power Design: Clock Control

- Control Fringes: Dividing the clock frequency control.
- Power savings: Between 200 mA and 300 mA, the chip current must be controlled.
- Signals: Asynchronous signals are used in the design to control the clock.
- Clock Slew: The change in the clock phase due to the clock signal.
- Crossbar: Used to connect the clock signals to the right point.
- Control: The use of control signals to adjust the clock frequency.
شما می‌توانید بخش‌هایی از طرح را در صورتی که به آنها نیازی نباشند خاموش نگه دارید. همانطور که SLEEP در شکل زیر نشان داده شده است، ترانزیستورهای Header و Footer کنترل می‌شوند.
Low Power Design: Clock Control/ Sleep Mode

© M. Shabany, ASIC/FPGA Chip Design
Low Power Design: Decap Insertion

Low Power Design

- Circuit-oriented
 - Multi-voltage
 - RAM Partitioning
 - Gated Clock
 - Lower Freq.
 - Dynamic voltage
 - Decaps
- Process-oriented
 - Multi Threshold
 - Well Biasing
 - Process Techniques
Low Power Design: Decap Insertion

Between Decoupling between Power and Ground, previous processes at 90nm could only insert additional capacitance at each target location.

For 90nm processes, decoupling between Decoupling elements and the memory chip is critical. The memory chip must be powered and grounded properly. The decoupling must be able to handle the memory chip demands.

As the dynamic power consumption analysis reveals, the dynamic power consumption of each module needs to be accurately calculated. The memory chip must be powered and grounded properly.

© M. Shabany, ASIC/FPGA Chip Design
Low Power Design: Dynamic Voltage Scaling

- Circuit-oriented
 - Multi-voltage
 - RAM Partitioning
 - Gated Clock
 - Lower Freq.
 - Dynamic voltage
 - Decaps

- Process-oriented
 - Multi Threshold
 - Well Biasing
 - Process Techniques
Low Power Design: Dynamic Voltage Scaling

- استفاده از یک واسط سریال برای کنترل ولتاژ گالاتورها (Power Wise) که به شما این امکان را می‌دهد که ولتاژ را به حد نیاز کاهش دهید.
- واحد مدیریت انرژی (EMU) بوسیله گالاتور و ولتاژ را کنترل می‌کند بنابراین شما می‌توانید سطح ولتاژ را بر اساس نیاز خود تغییر دهید.

© M. Shabany, ASIC/FPGA Chip Design
Low Power Design: RAM Partitioning

- Low Power Design
 - Circuit-oriented
 - Multi-voltage
 - Gated Clock
 - Lower Freq.
 - Dynamic voltage
 - RAM Partitioning
 - Decaps
 - Process-oriented
 - Multi Threshold
 - Well Biasing
 - Process Techniques
Low Power Design: RAM Partitioning

Bi-shitren Tavan Dinarimikha Heat-zam Ram va Dasharz Bithaye خطوط حافظه Pre-charge Ramsey dr مصرف می‌شود.

حافظه هایی که تعداد خطوط کمتری دارند توان دینامیک کمتری دارند.

- یک 32 × 1024k × 32 RAM یک توان به چهار 256 تقسیم کرده و در نتیجه توان دینامیک را کاهش داد.

© M. Shabany, ASIC/FPGA Chip Design
Low Power Design: Multi-Threshold

Low Power Design

Circuit-oriented
- Multi-voltage
 - RAM Partitioning
- Gated Clock
- Lower Freq.
 - Dynamic voltage
 - Decaps

Process-oriented
- Multi Threshold
 - Process Techniques
- Well Biasing
یکی دیگر از روشهای کاهش توان مصرفی، استفاده از پروسه CMOS چند آستانه ای (MTCMOS) برای کاهش نشتنی است. در این راهکار می‌توان از ابزارهای آی‌تی‌تی‌سی‌‌ویژکال که سلول‌های با ولتاژ آستانه بالا را که نشتی کم و سرعت کمتری دارد با سلول‌های با آستانه پایین که نشتی بالا و سرعت بالا دارند برای بلوک‌هایی که سرعت در آنها اهمیت چندانی ندارد، معاوضه کرد.

سلول‌های آستانه پایین در مسيرهای بحرانی و سلول‌های آستانه بالا در مسيرهای غير بحرانی توسط ابزار سنتزکننده جایگذاری می‌شوند. بسیاری از تولیدکنندگان های كتابخانه، سه نسخه از هر كتابخانه را می‌دهند.

<table>
<thead>
<tr>
<th></th>
<th>90 Nanometers</th>
<th>130 Nanometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>LOW</td>
<td>Standard</td>
</tr>
<tr>
<td>Leakage(Static)</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>(pA/µ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_d-sat</td>
<td>755</td>
<td>640</td>
</tr>
</tbody>
</table>
Low Power Design: Multi-Threshold

Mask طراحی چند آستانه ای پیچیدگی فراپید ساخت را افزایش می‌دهد زیرا به های

بیشتری نیاز دارد.

ولتاژ آستانه، ولتاژ ورودی است که باعث سوئیچ یک ترانزیستور می‌شود. اگر شما سلول‌هایی
با ولتاژ آستانه پایین در اختیار دارید، سرعت سوئیچینگ شما افزایش می‌یابد ولی در عین حال
جریان نشتن استاتیک نیز افزایش می‌یابد.

<table>
<thead>
<tr>
<th></th>
<th>90 Nanometers</th>
<th>130 Nanometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>LOW</td>
<td>Standard</td>
</tr>
<tr>
<td>Leakage(Static)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pA/μ)</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>I_{d-sat}</td>
<td>755</td>
<td>640</td>
</tr>
</tbody>
</table>
Low Power Design: Well Biasing

- Low Power Design
 - Circuit-oriented
 - Multi-voltage
 - RAM Partitioning
 - Gated Clock
 - Lower Freq.
 - Dynamic voltage
 - Decaps
 - Process-oriented
 - Multi Threshold
 - Well Biasing
 - Process Techniques
Low Power Design: Well Biasing

- Current flowing in the well is 10 to 20 times lower.
- The bias voltage and biasing methods affect the current in the source drain region.
- The biasing voltage affects the operation of the well.
- Biasing is used to control the well voltage and affects the substrate biasing.
- nwell biasing is used in substrate biasing.
Low Power Design: Well Biasing

See Voltage storm manual to complete this slide series.