Digital Logic Design Project

Mahdi Shabany
Electrical Engineering Department
Sharif University of Technology

Fall 2011

1. Introduction

The purpose of this Project is to introduce you to the software tools and hardware that are the Altera Quartus II
Computer Aided Design (CAD) system and the DE2 Board. You will need to install that software on your computer
before you can start this project.

You will be learning to design hardware that will go into a kind of programmable logic chip call a Field-
Programmable Gate Array, or FPGA. The FPGA chip is mounted on a board called the Altera DE2 Development and
Education board, pictured below (Fig. 1).

The board contains many useful features for learning about logic circuits, including simple input and output
mechanisms like switches and lights, and more complicated features like audio and video devices. This assignment
will use only the switches and lights that are provided on the bottom edge of the board, as illustrated below, but
other assignments will utilize more advanced features. A detailed description of the board can be found on the
course website at: http://ee.sharif.edu/~asic

o LTI L T

O ¥EvETRENEEETvEEE

iTTTNgl

nfalafulafusjsfak

Fig. 1. The Altera DE2 Development and Education board.

N

FPGA/SOPC <:::1 SEGT Controller
<.‘:f>‘ SDRAM Controller SDRAM U1 ‘
Nios IT
NIOS II — (:)‘ SDRAM Caontroller SDRAM U2 k:f) Program
w @:}‘ LCD Controller LCD ‘
TIMER || %
e 2 <:>‘ USB Controller USB Mouse ‘
— Jmac [2
HB]ﬂster 7 z C:;)‘ PS2 Contraller PS2 Keyhoard ‘
ardware =
g <):(>‘ PIO Controller LED/Button/
= Switch/ Seg7/
; SD-Card
= - Avalon- MM Flash
{——> Tristate Bridge [<——> Contraller
i ":c__ - -I_I“:
prr— H -N103 '
. = f— Avalon- MM SSRAM i ' 1
W Tri state Bridge [<——> Controller ___]jr_u_g_l 2 1“__:
=
Fig. 2. The block diagram of the DE2-70 Control Panel.
Note:

The blue boxes identified by the word “DE2” are the parts that should be done on-line on the board. The
rest can be done at home.

Part I:

For this part you need to do three important tutorials indicated in the following. Make sure you perform
every single step specified in them as they are the foundation of all you will do in this project.

Tutorial 1. Do the tutorial called Using Quartus Il CAD Software, which is in fact the Appendix B of the
book Fundamentals of Digital Logic with Verilog Design, 2nd Edition. This tutorial is available on-line on
the course website. This tutorial describes the basics of how Quartus Il helps a designer describe circuits
and check them for correctness. It shows two ways of creating circuits: either using schematic capture, in
which you “draw” a picture of the circuit, or describing a circuit in language form. Please do the same
circuit in both ways so that you understand the schematic form and the textual form describing exactly
the same thing. We will use the textual form often because it is far more powerful and quicker.

Tutorial 2. Do the first part of the tutorial called Implementing Circuits in Altera Devices (Appendix C.1),
available on the course website.

Tutorial 3. Do the tutorial Physical Implementation in an FPGA (Appendix D), available on the course
website.

Part ll:

Create a simple circuit to connect four switches to four lights on the Altera board, by extending the following
Verilog code:

// Simple module that connects the SW switches to the LEDR lights

module part3 (Switch 1, Switch 2, Switch 3, Switch 4, Light 1, Light 2, Light 3, Light 4);
input Switch 1, Switch 2, Switch 3, Switch 4; // toggle switches

output Light 1, Light 2, Light 3, Light 4; // lights

// Your code goes here

endmodule

On the board the FPGA chip that your designs will be programmed into has hardwired connections
between the pins of the FPGA chip and the switches and lights on the board. Note that these lights and
switches are connected to circuits that allow them to generate 1s and Os as inputs to your FPGA circuit
(for the switches) and to turn on and off in response to digital 1s and Os that are outputs from your circuit.
To use switches and lights you have to tell Quartus Il which of the input/output signals in your Verilog
code should be connected to which pins on the FPGA chip and which are connected to the switches or
lights. The procedure for doing this is called pin assignment and was covered in the tutorial 3 of Part |
above. Table 1 below indicates which pins (which are referred to by names such as PIN N25) of the FPGA
are connected to which switches and lights on the board. There are 18 total switches and lights on the
board, but the table only lists 4 of each needed for this part.

NOTE:

Please only connect the SWO0...SW3 to LEDRO...LEDR3 on the Altera board .Do NOT try to connect
the other switches and lights.

Table 1. Pin assighment table for lights and switches in Part Il.

Do the following steps to download and test the circuit in Part Il:
1. Create a Verilog module for the code above and include it in your project. Make sure to
complete the code by adding the assignment statements for the lights.
2. Use Quartus Il to make the pin assignments shown in Table 1 as described in tutorial 3.
Compile the project.

DE2: Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by flipping
the switches and observing the lights.

Part lll:

Fig. 3a shows a sum-of-products circuit that implements a 2-to-1 multiplexer (MUX) of inputs x and y
select input s and output m. If s = 0 the multiplexer’s output m is equal to the input x, and if s = 1 the
output is equal to y. Part b of the figure gives a truth table for this multiplexer, and part c shows the
schematic circuit symbol.

3_
-

y
a) Circuit
S m — o
m
0 X y 1
1 y
S
b) Truth Table c) Symbol

Fig. 3. A 2-to-1 Multiplexer.

The multiplexer can be described by the following Verilog statement:
assignm=(~s &x) | (s&y);

You are to design a circuit, using Verilog, which is a more complex version of a multiplexer. Rather than
select between two signals, your circuit is to select between two sets of eight signals, as illustrated in Fig.
4a. This circuit has two eight-bit inputs, X and Y, and produces the eight-bit output M. If s = 0 then M =X,
while if s =1 then M =Y . We refer to this circuit as an eight-bit wide 2-to-1 multiplexer. It has the circuit
symbol shown in Fig. 4b, in which X, Y, and M are depicted as eight-bit wires.

Do the following steps to download and test the circuit in Part IlI:
1. Write your Verilog file for the eight-bit wide 2-to-1 multiplexer in your project. Use switch
SW17 on the board as the s input, switches SW7-0 as the X input and SW15-8 as the Y input.
Connect the output M to the green lights on the board, called LEDG7-0.

Xo

Mo

X1

—my 8
Y1 1 X—/q0
8 ™
8
b y+ 1
.
L d S
°
b) Symbol

X7

| —m;
Y7 1

S
a) Circuit

Fig. 4. An eight-bit wide 2-to-1 multiplexer.

2. Include in your project the required pin assignments for the board using the pin assignment
file as described above. As discussed in previous parts, these assighments ensure that the inputs
declared in your Verilog code will use the pins on the Cyclone Il FPGA that are connected to the
SW switches and LEDRs, and the outputs of your Verilog code will use the FPGA pins connected
to the LEDG lights. Compile the project.
NOTE:
Always Connect the inputs to the LEDRs in Part lll and Part IV.

DE2: Download the compiled circuit into the FPGA chip. Test the functionality of the eight-bit wide 2-
to-1 multiplexer by toggling the switches and observing the LEDs.

Part IV:

In Fig. 3 we showed a 2-to-1 multiplexer that selects between the two inputs x and y. For this part
consider a circuit in which the output m has to be selected from five inputs u, v, w, x, and y. Part a of Fig. 5
shows how we can build the required 5-to-1 multiplexer by using four 2-to-1 multiplexers. The circuit uses
a 3-bit select input {s2,51,s0} and implements the truth table shown in Fig. 5b. A circuit symbol for this
multiplexer is given in Fig. 5c. Recall from Fig. 4 that an eight-bit wide 2-to-1 multiplexer can be built by
using eight 2-to-1 multiplexers. Fig. 6 applies this concept to define a three-bit wide 5-to-1 multiplexer. It
contains three instances of the 5-to-1multiplexer circuit in Fig. 5.

a) Circuit

55 m

000 u)
001 v o
010 w
01 1] x

x u
100 » . | 000
1oL ¥ T
110 ¥ W 010 m
I X —l_u
.\‘
b) Truth table c) Symbol

Fig. 5. A 5-to-1 MUX.

SoS1 S,

Fig. 6. A three-bit wide 5-to-1 multiplexer.

Do the following steps to download and test the circuit in Part IV:
1. Create a Verilog module for the three-bit wide 5-to-1 multiplexer (called mux_3bit_5tol.v).
Connect its select inputs to switches SW17-15, and use the remaining 15 switches on the Altera
board (SW14-0) to provide the five 3-bit inputs U through Y. Connect the output M to the green
lights LEDG2-0.
2. Include in your project the required pin assignments for the board. Compile the project.

DE2: Download the compiled circuit into the FPGA chip. Test the functionality of the three-bit wide 5-

to-1 multiplexer by toggling the switches and observing the LEDs. Ensure that each of the inputs U to Y
can be properly selected as the output M.

Part V - Design of a 7-Segment Decoder Circuit

Fig. 7 shows a 7-segment character display controlled by a logic circuit. These displays are common on
digital watches and various electrical devices. This circuit is called a 7-segment decoder and it has a three-
bit input {c,, ¢4, co} (Which you will connect to switches on the board), and 7 outputs that turn on or off
the 7 different segments in the character display. The three inputs present a code that are translated by
the circuit into 7 outputs to create a particular character by lighting up some of the lights on the display.

N 0
Gy —™ = 5| 6 |1
Cl E— 7—Segrr‘ﬂ‘\t ; -
decoder -
o —= al 2
> 3
HEXO

Fig. 7. A 7-segment decoder.

You are to design a circuit that is able to decode and display the last 5 digits of your student number. An
example mapping is given in Table 2, which lists the characters that should be displayed for each value of
{ca, €1, co}. To keep the design simple, you only need to decode five numbers, represented using the
codes {c,, c1, Co} = 000, 001, 010, 011, and 100. The fifth code should produce a blank character with all of
the lights off. Since we don’t care what is displayed for the remaining code values (110 and 111) you can
be treat these as don’t care values. The seven segments in the display are identified by the numbers 0 to 6
shown in Fig. 7. Each segment is lit up by driving it to the logic value 0 (which is a little opposite of what
you might expect). You must implement a separate logic function that controls each segment in the
display. Use a Karnaugh map to determine the minimal (optimal) sum-of-products expressions for each of
these 7 outputs.

Create a Verilog module for your 7-segment decoder circuit (call it char_7seg.v). In your Verilog code,
use only simple assign statements to specify each of the sum-of-products expressions generated from
your Karnaugh maps. In your Verilog code assign the {c,, C1, Co} inputs to switches SW2-0 on the board,
and assign the outputs of the decoder to the HEXO display on the board. The segments in this display are
called HEX00, HEXO01, . . ., HEX06, corresponding to Fig. 7 using the pin assignment file provided in the
previous assignment.

Note that in the pin assighments file the HEXO segments are declared as an array. To use the same
names in your Verilog code, your should declare the seven-bit output port as

output [0:6] HEXO;
By using this 7-bit array, the names of the seven segments in your code will match the names that are
used for these segments in the pin assignment file.

Table 2. Character codes (for the case where your student number ends in '12345’)

C2C1 € Character

000 1 (replace with last digit of your student number)

001 2 (replace with 2nd last digit of your student number)
010 3 (replace with 3rd last digit of your student number)
011 4 (replace with 4th last digit of your student number)
100 5 (replace with Sth last digit of your student number)

101 ‘blank’
110 ‘Don’t Care’
111 ‘Don’t Care’

DE2: compile and download your circuit onto the board. Test the functionality of the circuit by toggling
the SW2-0 switches and observing the 7-segment display HEXO.

Part VI - Selecting the Character to be Displayed

Consider the circuit shown in Fig. 8. It uses a three-bit wide 5-to-1 multiplexer (just like the one you built
above) to enable the selection of five characters that are displayed on a 7-segment display. Using the 7-
segment decoder from Part V, this circuit can display any of the five digits and ‘blank’. The character
codes are set according to Table 1 by using the switches SW14-0, and a specific character is selected for
display by setting the switches SW17-15.

SW
Wis HEXO0
Wiy 12— 0
3 f—
SWiioo 5 1
3 7-segment 7 6
SWB— 6% dmoda_ — - o
SW¢_s 4| I 2

Fig. 8. A circuit that can select and display one of five characters

To build this circuit you can reuse two smaller designs already created: the three-bit 5-to-1 multiplexer
and the 7-segment decoder that you design in previous parts. Your task is to create a new top-level design

that implements the circuit in Fig. 8 using the multiplexer and decoder as subcircuits. You are to design
this top-level circuit twice, using the following approach:

Create the top-level design by writing complete Verilog code for the circuit in Fig. 8. An
outline of this code, which shows how to include the multiplexer and decoder subcircuits in
the top-level Verilog module, is given in Fig. 9. Complete this section by performing the
following steps:

a) Use the modified codes in the previous sections, i.e., mux_3bit_5tol.v and
char_7seg.v.

b) Use the File > New command to create a new Verilog file named
hierarchy_verilog.v. Type your top-level Verilog code, following the style of code
shown in Fig. 9, into this file.

c) Include the required pin assignments for the board switches and 7-segment display.
Compile the project.

d) Simulate the compiled circuit using a timing simulation in the Quartus Il Simulator.

module hierarchy_verilog (SW, HEXO);

input [17:0] SW; // toggle switches

output [0:6] HEXO; // 7-seg displays

wire [2:0] M;
mux_3bit_5to1 MO (SW[17:15], SW[14:12], SW[11:9], SW[8:6], SW[5:3], SW[2:0], M);
char_7seg HO (M, HEXO0);

endmodule

// implements a 3-bit wide 5-to-1 multiplexer

module mux_3bit_5tol (S, U, V, W, X, Y, M);

input [2:0]S, U, V, W, X, Y;

output [2:0] M;

... code not shown

endmodule

// implements a 7-segment decoder for each character
module char_7seg (C, Display);

input [2:0] C; // input code

output [0:6] Display; // output 7-seg code

... code not shown

endmodule

Fig. 9. Verilog code for the circuit in Fig. 8.

DE2: bownload your circuit onto the board. Test the functionality of the circuit by setting the proper
character codes on the switches SW14-0 and then toggling SW17-15 to observe the display of characters.

Part VIl - Displaying and Rotating a Sequence

In this part you will reuse your previous designs, and extend the code from part Viso that it uses five 7-
segment displays, rather than just one. You will need to use five instances (copies) of the subcircuits from
Part VI. The purpose of your circuit is to display a sequence on the five displays, and be able to manually
rotate this sequence in a circular fashion across the displays when the switches SW17-15 are toggled. As
an example, if the displayed sequence is 12345, then your circuit should produce the output patterns
illustrated in Table 3. The sequence must be the last five digits of your student number.

Table 3. Manually rotating the sequence 12345 on five displays.

SWir SWis SW1s | HEX4 | HEX3 | HEX2 | HEX1 | HEXO
000 1 2 3 4 5
001 2 3 4 5 1
010 3 4 5 1 2
011 4 5 1 2 3
100 5 1 2 3 4

Perform the following steps.

1. Copy the Verilog files mux_3bit_5tol.v and char_7seg.v from previous parts into the project
directory for Part VII.

2. Create a new Verilog file and write the code to instantiate the required subcircuits. Connect
the switches SW17-15, in the same order, to the select inputs of each of the five instances of
the three-bit wide 5-to-1 multiplexers. Also connect SW14-0 to each instance of the
multiplexers as required to produce the patterns of characters shown in Table 3. Each
multiplexer will share the same set of inputs (SW14-0), but the inputs will connect to each
multiplexer in a different manner. It is up to you to arrange them properly such that you can
manually “rotate” your numbers. Following this, you must connect the outputs of the five
multipexers to the 7-segment displays HEX4, HEX3, HEX2, HEX1, and HEXO on the board.

3. Include the required pin assignments for the board switches and 7-segment displays.
Compile the project.

DE2: Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by setting
the proper digit codes on the switches SW14-0 and toggle SW17-15 to observe the rotation of the digits.

Part Vill (Bonus Mark)

Extend your design from Part VIl so that is uses all eight 7-segment displays on the board. Your circuit
should be able to display the last five digits of your student number on the eight displays, and manually
rotate the displayed sequence when the switches SW17-15 are toggled. If the displayed sequence is
12345, then your circuit should produce the patterns shown in Table 4.

Table 4. Rotating the sequence 12345 on eight displays.

SWi7 SWie SW15 | HEX7 | HEX6 | HEXS | HEX4 | HEX3 | HEX2 | HEX1 | HEXO
000 1 2 3 4 5
001 1 2 3 4 5
010 1 2 3 4 5
011 1 2 3 4 5
100 2 3 4 5 1
101 3 4 5 1 2
110 4 5 1 2 3
111 5 1 2 3 4

Perform the following steps:

1. Write the required Verilog code for this part of the exercise and include these Verilog
modules in the Quartus Il project. Connect the switches SW17-15 to the select inputs of
each instance of the multiplexers in your circuit. Also connect SW14-0 to each instance of
the multiplexers as required to produce the patterns of characters shown in Table 4.
Connect the outputs of your multiplexers to the 7-segment displays HEX7, . . ., HEXO.

2. Include the required pin assignments for the board switches and 7-segment displays.
Compile the project.

DE2: pownload the compiled circuit into the FPGA chip. Test the functionality of the circuit by setting
the proper character codes on the switches SW14-0 and then toggling SW17-15 to observe the rotation
of the characters.

