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Abstract 

In a great number of situations (array processing, seismic 
sounding...), the signal received on an array of sensors is the 
sum of several contributions (sources). In general, it is 
realistic to assume that the sources emit independent 
stochastic signals. In this case, several methods using the 
second order statistic of the signal have been developed in 
order to detect the number of sources and to identify the 
sources. It is known that the source identification is then not 
feasible in the general case and some hypotheses (plane 
waves ...I must be added. 

When the signals emitted by the sources are not gaussian, 
the second order statistic does not contain a complete 
description of the statistical properties of the signals. We 
show that, in the non gaussian case, it is possible to identify 
the sources using the third and fourth order cumulants. We 
illustrate the possibilities of this method in simulated 
situations. 

1. Introduction 

In a great number of situations (array processing : 
submarine acoustics, seismic sounding...), the signal received 
on an array of sensors is the s u m  of several contributions that 
are called sources. In order to study the effect of each source 
on the whole signals, it is necessary to separate the sources by 
a filtering procedure. To achieve this separation, a partial (in 
general not total) identification of the sources must be done. 
A large number of works on that topic have been done using 
the second order properties of the signal which are resumed 
in the spectral matrix [1,2,31. 

However, it has been shown that in the interesting case of 
more than one source, the information contained in the 
spectral matrix are not sufficient for source separation and 
that supplementary relations must be introduced [4]. It is 
well known, particularly in the case of a linear antenna with 
equispaced sensors, that the plane wave hypothesis is 
sufficient. This procedure leads to the large amount of works 
concerned Mth high resolution [5]. In a large class of real 
situations (near field measurement for example) the plane 
wave hypothesis is not valid. Other procedures have been 
proposed in this context : use of large band signal [61 or other 
kinds of hypothesis on the signal emitted by each source [7] 
not so restrictive as the plane wave model. Nevertheless all 
these approaches must use at the same time the information 
contained in the received signals and extra information not 
contained in them. 

It will be useful to develop identification methods that 
are onlv based on the information contained in the received 
signals. This task is not feasible in the very common case 
(common essentially in theoretical works, but perhaps not 
so common in real life !) of gaussian signal. In this situation, 
the spectral matrix contains all the information and so the 

introduction of an a priori information is unavoidable. On the 
contrary, if the signals emitted by the sources are not 
gaussian, the spectral matrix related to the second order 
moments of the signals does not contain all the information 
and extra information are given by the moments of order 
greater than two. This idea is not new and a lot of works have 
shown the interest of the use of the higher order cumulants 
[8] in particular it is now well known that the multispectra 
issuing from these cumulants make feasible the indification 
of a non minimum phase filter knowing only its output [8]. 

In this communication we will show that in non gaussian 
situations, the use of higher order cumulants allows the 
multiple source identification without any supplementary 
hypothesis. We anticipate that this result will be of interest in 
a great number of real situations in which the pecularities of 
the propagation does not justify the plane wave hypothesis. 
As for the non gaussian hypothesis, it is well known that it is 
the most probable issue and a great number of models are 
developed for this situation [9]. These models have been 
proved useful for example in underwater acoustics. 

Atter a short presentation of the cumulants we will study 
the simplest case of two sources identification. We will show 
that in the case of two sources and two sensors, the model is 
described by two parameters. We will then present the 
identification of these two parameters with the cumulants up 
to order 4. The potentialities of this new algorithm of sources 
identification will be illustrated on simulated data. 

2.1. Definition [lo]. If (Yi, ..., Yr) is a r variate random 
variable, the r* order joint cumulant C[YI, ..., YrI of (Yi, ..., Yr) 
is given by 

where the summation extends over all partitions (vi, ..., vp), of 
p = 1 ,..., r, of (1 ,..., r). For example, if X i  and X2 are two 
random variables, two partitions may occur : one with vi=(l), 
v2=(2), one with vi=(l,2). So C[Xl,X21= E(XiX2) - E(Xd E(X2) 
is the cross-covariance function of Xi and X2. 

urou&ies of cumulants [IO]. 

If any group of the Y's are independent of the 
remaining Y's, then C[Yi, ..., Yr] = 0. Particularly, if two 
"sources" Si and S2 are independent : 

c SI ,...,si , SL ..., s2 I = c [ s:, S; I = 0, v (p,n) E ~2 (2) 
w -  

n 
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* If Si and S2 are two zero mean Gaussian processes, 

C[$=O wi thp>2  

C [ q , $ ] = O  withn+p>2 

So that all the statistical properties of 2 Gaussian 
processes are defined by their first and second order joint 
cumulant (or mean and variance function). Moreover, in this 
case, uncorrelation of the two processes implies 
independence. Yet if the processes are not Gaussian, we can 
have 

C [ Si, Sz I = 0 (uncorrelation), but not necessarily 

C [ $,$ ] = 0 ,  V n > 2 (independence) 

* We use the fourth order joint cumulant to distinguish 

uncorrelated "sources" ( C [Si,Sz 1 = 0 but C [$$I # 0 for 

n+p = 4) and independent "sources ( C [ !if, S," 1 = 0 1. 

By this way, the identification of independent "sources" 
will be possible, by taking into account the information given 
by the value of the fourth order cumulant. 

3-i its desa iptioq 

In this presentation, we limit ourself to 2 sources 
(si(n),sZ(n)) and 2 measurements (xi (n),x2(n)). The 
measurements are linearly related to the sources. And the 
sources emit random signal which are statistically independent. 
These two hypotheses: linearity and independency are the 
only done. We observe the two measured signals xl(n) and 
xZ(n), each of them depends on the two sources. We want to 
construct a linear filter giving two outputs u(n) and v(n) such 
that each of these output depends only on one source. 

We must be aware of the fact that with this modelization, 
it is impossible to obtain exactly the signals sl(n) (or sz(n)) 
emitted by the sources. A simple way to see that is to apply a 
linear transformation at one source (say s i b )  gives F(sl(n) = 
wi(n)) and to see that the problem is exactly the same if we 
replace sl(n)by wl(n). Moreover, it will also not be possible 
to associate each output u(n) and v(n) to one specific source. 
In order to do that, we must use other kind of information. 

Let us go to the frequency domain. In this domain, we 
will note the signal by capital letters : 

TZ : z transform 
h : z transform restricted to the unit circle. h is a 

parameter similar to the frequency. We can obtain a 
frequency with the sampling period TE through : 

v = UTE 

In the following, we will omit the variable h. 

The relation between 
sources (Sj) can be written : 

the measurements (Xi) and the 

(4) 
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Hii are the transfer functions of the linear filters relating X 
and S. The relation (4) contains 8 real unknowns but, as we 
have seen before, all of them are not identifiable. We have 
noticed that we can replace each source by a linear transform 
i.e. , in frequency, multiply St and S2 by arbitraries variables 
a and p. This leads to : 

with : 

(5)  

a and p are arbitrary complex numbers. First of all, we 
can fix the phase of a and p in order to get u'and v'real. The 
relations (5) split in two groups of real relation. 

We continue with (6) but the same is valid for (7). 
Inverting (6) we get (we suppose that this system has one 
solution) : 

u' = a %  (Xi) + b Re (Xz) 
V' = c (Xi) + d Re (Xz) 

a,b,c,d are real parameters. We normalize by : 

(8) 

U' V' 

giving finally : 

The only identifiable parameters are the two angles $1 

and $2 that appear in (9). We will adopt the model (9) in the 
following. 

Going back to our objective, we see that knowing +1 and 
@z it will be possible to obtain U and v ; each of them is 
linearly related to only one source. 

4. The aleorithm 

The model is given by (9). Let us call +IT and $ 2 ~  the 
presumed value of 41 and $2 giving the "presumed' sources : 

We will use the fact that for the good value of $ 1 ~  and 
$ 2 ~ ~  UT and VT are statistically independent and so their cross- 
cumulants are null. 

The second order cross-cumulants resume all the 
information contained in the spectral matrix. From : 

C(UT,VT) = 0 (11) 
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we obtain : 

At that point, we see that the spectral matrix is not 
sufficient for $1 and $2 identification. We propose then to use 
higher order cross-cumulants. It is clear that this procedure 
will not succeed if the two sources are Gaussian, so we must 
assume that no more than one source is Gaussian (this 
condition is also necessary for more than 2 sources). We think 
that it will be more general to use the fourth order cumulants 
We propose to solve : 

c3i = C(UT,UT,UT,VT) = 0 
~ 2 2  = C(UTPT,VT,VT) = 0 
ci3 = C(UT,VT,VT,VT) = 0 

With Xiand X2 zero mean, we have : 

(13) 

U is Gaussian white noise ; v is a non Gaussian noise obtained 
from the Gaussian zero mean white noise vl(n) through the 
non linear transformation : 

The Gaussian processes u(n) and vl(n) are statistically 
independent and thus u(n) and v(n) are the independent 
sources. 

The purpose of the simulation is to identify the 
independent sources from the family (UT,VT) defined by (10) 
and (12). 

From (16), obtained with known parameters $1 and $2, 
we implant the algorithm described in Figure 1. 

r -  Time averaged pericdogram 

I I I I I I '  

From (14) we see that the only remaining unknown 
parameter is $ 2 ~ .  So one of the relations (13) will be sufficient. 
However, the values of the cumulants will be estimated with 
errors and so it is more precise to use a combination of the 
three cumulants. As a first candidate, we have chosen to 
maximize : 

d2 = 2 2 2  (15) 

Finally our algorithm works in the following way (Fig. 1) : 
1. Calculation of the cumulants (~11, ~ 1 3 ,  c31,c22) of the 

real part of the Fourier transform of the observations. We 
take QLT as a parameter that will vary from 0 to n. 

2. For each value of $21 calculation of $IT and d2($2T) 
from the relations (121, (14), (15). 

3. The maxinlum value of d2 gives $ 2 ~ .  

'13 + '12 + '31 

Let us notice that d2 will have at least two maxima 
associated with $ 2 ~  = $1 or $2 but this leads to the same 
solution for the couple ($IT, $ 2 ~ ) .  This is related to the fact 
that we cannot relate U and v and a specific source. 

We defiie, from (10) : 

where U and v are zero mean generated white noises, 

statistically independent, with e = ov = 1 and $1 ,+2 are 
chosen by the user. 

2 2  

Frequency averaging 

Figure 1 

Notations : 

~ 1 1  = E{&X1)2) ~ 1 2  = E{(R&d(ReX2)) ~ 2 2  = E((&XZ)~) 
C l 1 1 1  = c [ ReXl,ReX1,ReX1,ReX11 I 

~ 1 1 1 2  = C [ R~X~,&XI,&X~,%XZI I etc... 

linear functions of ciiii , c1112, c i m ,  ... 
The following Table gives the coefficients of ~ 1 3 ,  c22 I C31 

20 1 

Authorized licensed use limited to: The University of Toronto. Downloaded on March 3, 2009 at 02:21 from IEEE Xplore.  Restrictions apply.



The simulation of the sources and their identification has 
been conducted in different conditions. We give in Figure 2 
the plot of the value of $ 1 ~  versus $ 2 ~  and of the parameter d2 
versus $ 2 ~  in the following case. 

Simulated sources : 

v(n): a =  10 b =  1 $1o=2Oo $20 = 40” 

Estimation of the cumulants : 

” 

Time averaged periodogram : 
- total number of points of the signal in time : M = 4096 
- number of points for each elementary slice : N = 64 
- number of slices : L = 64 (NL = M) 

Frequency averaging : 
- number of averaged frequency channels : p = 3 

dV=f(phiZt) 

- central frequency : vo = 1 /TE 
51) 711 80 TE : sampling period not explicited 

phi1 t=g(phiZt) 

The total number of average in thus : LP = 64x3 = 192 

We see in Figure 2 that the two source are correctly 
obtained by the maxima of the parameter d2. The twc 

_____._________ m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  m _____._.__..... L...,,,/z n ___.___________ m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  Io Ba 
i 

maxima correspond to the same situation with the two 
commutated sources. The errors on the parameter values $1 
and $2 can be related to the estimation errors of the different 
cumulants. It will be necessary to develop a more complete 
study Of these estimation 

In Figure 3 we show 5 realizations of the same 
experiment giving a first visual approach to the statistical 
properties of the estimators. 

1 

Figure 2 : 
Plot of the value,of $lT and of the parameter d2 versus $2T. 

5. Conclusion 

The problem of source separation has no solution 
without a priori information when one uses only the spectral 
matrix. 

We have developed a new algorithm using the fourth 
order cumulants that solve the problem of the two source 
separation without the necessity of a priori information. We 
have shown the potentialities of this method on simulated 
results. 

To our mind, this work opens a new field of research in 
multidimensional signal processing. The open questions 
concern primarily the extension to more than two sources 
and the charaterization of the estimators (bias and variance). 

phnlt - g( phi21 ) 
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