High-Speed Parallel Viterbi Decoding: Algorithm and VLSI-Architecture

Gerhard Fettweis
Heinrich Meyr

DIGITAL SIGNAL PROCESSING (DSP) APPLICATIONS often require computing speeds that cannot be achieved by standard signal processor implementations. In this case the use of customized dataflow processors is necessary to meet the given requirements. This requires a careful examination of algorithms in order to find an architecture appropriate for Very Large-Scale Integration (VLSI) implementation. The vast increase in gate density and the ability to build increasingly larger chips not only enables the integration of whole systems on one Application Specific Integrated Circuit (ASIC) but also allows the implementation of massive parallel processors to achieve a speedup by orders of magnitude for high data rate applications.

To obtain a high-speed implementation of an algorithm first, the maximum inherent parallelism needs to be extracted. Then, the algorithm has to be mapped onto a parallel architecture, e.g., by standard signal-flow analysis or algebraic methods [1-3].

Generally, a high throughput-rate is achieved if the circuit has a very short critical path. The critical path of a synchronous circuit is that path between two buffers (e.g., flip-flops) that has the largest delay and hence, determines the maximum achievable clock frequency of the circuit. This shows the importance of the critical path for high-speed circuit design. The whole circuit therefore needs to be examined carefully to obtain a short critical path. If the critical path is in a feedforward section of the circuit, it often can be shortened substantially by introducing pipelining, i.e., by dividing the path by adding buffers according to rules [6] [7]. In this case, a new critical path arises somewhere else in the circuit, which might be eliminated by the same means.

By carrying out this procedure three points need to be kept in mind. First, it is desirable to design circuits such that all paths between two buffers are almost critical. In this case, high efficiency of the logic utilization is obtained.

Second, the maximum achievable clock frequency is always upper bounded by physical constraints of the implementation technology used. This is especially important if fairly complex algorithms need to be implemented for high-speed applications since the complexity of the algorithm requires the use of very dense and power efficient technology like Complementary Metal Oxide Semiconductor (CMOS), that however, has a fairly low maximum clock frequency. A solution to this problem is found if additional parallelism can be introduced to the algorithm such that it can be mapped onto a block processing scheme (see Figure 1). In a block processing scheme, the incoming data is serial-to-parallel converted in blocks of length \(M \). Each block then is processed in parallel by the following circuit. In this case, only the serial/parallel and parallel/serial converters need to be realized with high-speed technology such as Emitter Coupled Logic (ECL) or gallium arsenide (GaAs) whereas the complex algorithm can operate at a \(1/M \) lower clock frequency, and therefore, can be implemented e.g., with CMOS circuits.

Third, the critical path very often occurs in a feedback loop and cannot be made uncritical by introducing pipelining. In this case, it presents a bottleneck for high-speed implementations that needs to be examined more closely to find transformations that allow either an introduction of pipelining or the derivation of block-processing architectures.

An example of a fairly complex algorithm that needs to be implemented for high-speed applications is the Viterbi Algorithm (VA). We want to show that even though the VA contains a nonlinear data-dependent feedback loop, additional parallelism can be introduced to derive efficient high-speed parallel architectures. Three levels exist to introduced parallelism, the bit-, word-, and algorithm-level [8]. Recently solutions were found for the VA at all three levels. After recalling the VA and the state of the art of its implementation in the next section, Implementing the Viterbi Algorithm, it is shown how additional parallelism can be introduced at the bit-, word-, and algorithm-levels. An extensive presentation of the results discussed here can be found in the book by G. Fettweis [9].

Fig. 1. Principle scheme of block processing. Each block of data (of length \(M \)) is processed in parallel.
Implementing the Viterbi Algorithm

Dynamic programming is a well-established approach for a large variety of problems concerning multistage decision processes [10]. One specific application of dynamic programming is the search for the best path through a graph of weighted branches. These branch weights will hereafter be referred to as branch metrics. The path through the graph to be found, is the one with the maximum (or minimum) cost, i.e., the maximum value of accumulated branch metrics. An example of such a graph is the trellis (the state transition diagram) of a discrete-time finite state machine. The state sequence of the finite state machine marks a path through the trellis. If this path is to be estimated with the help of noisy measurements of the output of the finite state machine, and if this is solved by dynamic programming, then in communications this is called the VA [11]. The VA was introduced in 1967 as a method to decode convolutional codes [12]. In the meantime the VA has found widespread applications in communications as e.g., in digital transmission, magnetic recording, and speech recognition. A comprehensive tutorial on the VA is given [13]. A brief introduction to the VA will be discussed.

The Viterbi Algorithm

Given a discrete-time finite state machine with \(N \) states. Without loss of generality we assume that the transition diagram and the transition rate \(1/T \) are constant in time. The trellis, which shows the transition dynamics, is a two-dimensional graph that is described in vertical direction by \(N \) states \(s_j \) and in horizontal direction by time instances \(kT \) \((T = 1) \). The states of time instance \(k \), are connected with those of time \(k+1 \) by the branches of time interval \((k,k+1) \). Below we refer to a specific state \(s_j \) at time instance \(k \) as node \(s_{j,k} \). The branch between two nodes corresponds to a possible state transition. A simple example of a trellis is given in Figure 2a for \(N = 2 \) states. The notation used can be summarized as follows:

- \(N \) — number of states
- \(k \) — time instance
- \(s_j \) — i-th possible state, \(i \in [1,...,N] \)
- \(s_{j,k} \) — node: i-th possible state of time instance \(k \)

Now, the finite state machine chooses a path through the trellis and with the help of the observed state transitions (over a noisy channel) the branch metrics of time interval \((k,k+1) \) are computed.

Fig. 2. Examples of trellis and optimum paths.

The best path through the trellis is calculated recursively by the VA, where best can mean, e.g., the most likely. This is done recursively not by computing only one path for each time \(k \), but \(N \) paths, i.e., the optimum path to each of the \(N \) nodes of time \(k \). The \(N \) new optimum paths of time \(k+1 \) are computed with the help of the old paths and the branch metrics of time step \((k,k+1) \). This should be explained for the simple trellis shown in Figure 2a. As indicated in Figure 2b, each of the optimum paths of time \(k \), i.e., each node \(s_{j,k} \), has a path metric \(Y_{j,k} \) that is the accumulation of its branch metrics. Now, the new optimum path leading to node \(s_{j,k+1} \) is the metric leading to this node. Therefore, the new path metric \(Y_{j,k+1} \) of node \(s_{j,k+1} \) is

\[
Y_{j,k+1} = \max(Y_{11,k} + Y_{1,k}, Y_{12,k} + Y_{2,k})
\]

and equivalently for node \(s_{2,k+1} \)

\[
Y_{2,k+1} = \max(Y_{21,k} + Y_{1,k}, Y_{22,k} + Y_{2,k})
\]

These \(N = 2 \) equations together form the Add-Compare-Select (ACS)-recursion of the VA.

Since, with the help of the ACS-recursion, a set of \(N \) paths is decoded, the question that might arise now is, "How do we find the best path, which must be unique?" However, if all \(N \) paths are traced back in time, they merge into a unique path, and this is exactly the best one which is to be found.

The number of time steps that have to be traced back for the paths to have merged with high probability is called the survivor depth, \(D \). Therefore, in a practical implementation of the VA, the latency of decoding is at least \(D \) time steps.

An implementation of the VA, referred to as Viterbi Decoder (VD), can be divided into three basic units, as shown in Figure 4. The input data (the noisy observations of the transitions of the finite state machine) is used in the Branch Metric Unit (BMU) to calculate the set of branch metrics \(\lambda_{j,k} \) for each new time step. These are then fed to the Add-Compare-Select Unit (ACSU) that accumulates the branch metrics recursively as path metrics according to the ACS-recursion. The Survivor Memory Unit (SMU) processes the decisions being made in the ACSU due to carrying out of the ACS-recursion and outputs the estimated path, with a latency of at least \(D \).

Fig. 3. Block diagram of the Viterbi decoder.
I. The ACS-loop which comprises an addition and a maximum selection (M).

b. A 3-bit implementation of the ACS-loop.

Fig. 5. ACS-loop at the word- and bit-levels.

As can easily be seen, the design of the ACSU depends only on the ACS-recursion, determined by the trellis. Also the path-decoding in the SMU depends only on the trellis and therefore, is independent of the application for which the VA is being used. The application specific computations are the calculation of the branch metrics in the BMU and the interpretation of the decoded path into raw data at the output of the SMU. Since the application specific parts of the VD are mainly found at the input and output, major architectural investigations can be carried out which are generally applicable.

High-Speed Viterbi Decoders: State of the Art

By viewing the block diagram of a VD shown in Figure 3, it can be seen that all three units need to operate at the data rate \(1/T\). In some cases this problem can be solved by \(L\)-fold interleaving, allowing the use of \(L\) VDs at reduced speed, or by other manipulations of the data-stream [14] [15]. However, if a high-speed VD needs to be realized, the problem of implementing all three units for high speed arises. Since the BMU, as well as the SMU, are purely feedforward (without feedback), the throughput rate can easily be increased substantially by introducing massive pipelining and/or a parallel implementation. However, this does not hold for the ACSU.

In the following we will use a simple example of an \(N=2\) state diagram of the finite state machine that is to be decoded by the VA. The state diagram is given in Figure 4a, showing possible transitions from state \(s_1\) to \(s_2\), \(s_1\) to \(s_3\), \(s_2\) to \(s_1\), and \(s_2\) to \(s_2\) (the trellis is shown in Figure 2a). According to these four branches, the BMU has to compute four branch metrics for each time step. Recall, we refer to \(A_{i,k}\) as being the branch metric of \(s_i\) to \(s_i\) and time step \((k, k+1)\). These branch metrics have to be accumulated to path metrics \(y_j\) according to the ACS-recursion.

\[
y_{1,k+1} = \text{maximum}(A_{1,k} + y_{1,k}, A_{2,k} + y_{1,k})
\]

\[
y_{2,k+1} = \text{maximum}(A_{2,k} + y_{1,k}, A_{2,k} + y_{2,k})
\]

If this ACS-recursion is mapped onto hardware such that a high-speed realization is achieved, by exploiting the inherent parallelism, then each operation has to be implemented by a separate processing element. This leads to the block diagram of the ACSU as given in Figure 4b. By viewing this ACSU it can be noticed that it strongly resembles the state diagram of Figure 4a. Two ACS-cells (shaded regions in Figure 4b) are connected with each other exactly as determined by the state diagram. This shows the strong interaction between the state diagram and the architecture, because the algorithm is determined by the state diagram.

A high-speed implementation requires the examination of the critical path. Since the ACSU is the implementation of a recursion, it contains a feedback loop. This loop, referred to as the ACS-loop, is indicated in Figure 4b. Because of the nonlinear and data-dependent maximum selection, it is the bottleneck of a VD for high-speed implementations [16]. It therefore will be examined in detail in the Bit-, Word-, and Algorithm-Level Parallelization sections following.

To date many different architectures are already well known for the realization of VDs. To achieve medium throughput rates the path metric update of the ACS-recursion is carried out serially or in part serially. In many cases the fact can be exploited that the trellis is a shuffle-exchange graph, equivalent to the graph known, e.g., from the Fast Fourier Transform (FFT) or from sorting [17]. Then so-called "butterfly" processor arrangements can be used, as known for FFT implementations [18] [19].

To achieve high throughput rates at least the maximum inherent parallelism of the VA has to be exploited, i.e., one ACS-cell needs to be implemented for each equation of the ACS-recursion as mentioned above and shown in Figure 4b [16] [20]. The complexity of the implementation thus depends at least linearly on the number of states. The high integration den-
Table I. High-Speed Viterbi Decoders: State of the Art

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Clock Frequency</th>
<th>N</th>
<th>Technology</th>
<th>Design</th>
<th>Reference/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Mb/s</td>
<td>15 MHz</td>
<td>8</td>
<td>CMOS Chip</td>
<td>Full Custom</td>
<td>[28] 1988</td>
</tr>
<tr>
<td>17 Mb/s</td>
<td>17 MHz</td>
<td>64</td>
<td>CMOS Chip</td>
<td>Semi Custom</td>
<td>[29] 1988</td>
</tr>
<tr>
<td>115 Mb/s</td>
<td>29 MHz</td>
<td>4</td>
<td>CMOS Chip</td>
<td>Semi Custom</td>
<td>[32][20] 1989</td>
</tr>
<tr>
<td>2n-600 Mb/s</td>
<td>50 MHz</td>
<td>4</td>
<td>2n CMOS Chips</td>
<td>Semi Custom</td>
<td>[27] 1990/1991</td>
</tr>
<tr>
<td>120 Mb/s</td>
<td>60 MHz</td>
<td>8</td>
<td>ECL 100K</td>
<td>PCBs</td>
<td>[23] 1986</td>
</tr>
<tr>
<td>140 Mb/s</td>
<td>70 MHz</td>
<td>16</td>
<td>ECL 100K</td>
<td>PCBs</td>
<td>[24] 1986</td>
</tr>
<tr>
<td>100 Mb/s</td>
<td>100 MHz</td>
<td>4</td>
<td>Analog + ECL</td>
<td>PCBs</td>
<td>[25] 1989</td>
</tr>
</tbody>
</table>

The high-speed realization requires a short word length, whereas a good decoder performance (low decoding error rate) requires a fine quantization of the branch metrics and therefore a long word-length of the path metrics.

A high-speed realization requires a short word length, whereas a good decoder performance (low decoding error rate) requires a fine quantization of the branch metrics and therefore a long word-length of the path metrics.

1This is of importance especially if the VA is used for equalization or the decoding of multilevel coded modulation.
the flag-ripple of the maximum selector chain, and back to the LSB. In this case, it is linearly dependent on the world length.

As mentioned above, since the critical path is a feedback loop it cannot be circumvented by pipelining. Thus there is a need for the elimination of the loop. This can only be obtained by either eliminating the carry-ripple of the adder or the flag-ripple of the maximum selector. Since the maximum selection is a nonlinear operation, it certainly is very difficult, if not impossible, to find a solution without flag-ripple. However, the addition is a linear operation.

Figure 6a shows part of a carry-ripple adder as used in Figure 5b that calculates the sum

\[S = \sum_{i} s_i \cdot 2^i \]

Now if the carry bit \(c_i \) is not fed to the \(i \)-th bit level, but is saved as part of the result (Figure 6b), then the sum always has 2 bits of weight \(2^i \), namely \(s_i \) and \(c_i \)

\[S = \sum_{i} (s_i + c_i) \cdot 2^i = \sum_{i} v_i \cdot 2^i \]

where \(v_i = s_i + c_i \) can take on the values \(v_i \in \{0, 1, 2\} \). Due to the different adder architecture these \(s_i \) and \(c_i \) do not take on the same value as those shown in Figure 6a. As now the carry bits are saved and do not lead to the full adder of the next bit level, this adder architecture is called Carry-Save (CS) addition [33][34]. The resulting sum will therefore be referred to as a CS-number. The resulting CS-number representation is redundant, since it is a binary number with ternary weights \(v_i \). Therefore, more than one representation exists for one value, e.g.,

\[2 = (02)_{cs} = (10)_{cs} \]

The big advantage of the CS-addition is that no carry-ripple exists, which is exactly what we want. So, if a CS-Maximum (CSM) selector can be built with a bit-local flag-ripple from MSB to LSB, this would be a solution for the ACS-loop. Even though the CS-number representation is redundant and the maximum selection is a nonlinear operation, a very simple CSM was derived (30-40 gates) [35]. This allows the implementation of the ACS-loop with CS-arithmetic as given in Figure 7. As can be seen, the critical path still runs along the flag ripple through all bit-levels, however, it is not a feedback loop. Therefore, in contrast to any conventional architecture, pipeline stages can now be introduced according to the laws given [6][7]. This results in a critical path that is very short, it runs only through two full adders plus two CSMs, and is independent of the word length \(W \). These two features allow the realization of high-speed VDs with an achievable data rate that is independent of the implemented word length [26].

Implementation Example

To apply the new carry-save architecture outlined above, we chose to realize a VD for the rate 2/3, 4-state, 2 x 8 Phase Shift Keying (PSK) trellis code given in [36]. The chosen code is especially well suited for digital satellite (and microwave) communication due to its rotational phase invariance. Therefore the aim was to build a VD for this code which, by implementing the novel architecture, is applicable for the 100-150 Mb/s digital satellite channels.

Fig. 8. Layout of fabricated 115 Mb/s Viterbi decoder chip (N = 4, 2µCMOS, 9K gates).
structure called a semi-ring [35]. Using these symbols we can write the ACS-recursion of Equation 1 as

\[
\begin{align*}
\gamma_{1,k+1} &= \lambda_{11,k} \otimes \gamma_{1,k} \oplus \lambda_{12,k} \otimes \gamma_{2,k} \\
\gamma_{2,k+1} &= \lambda_{21,k} \otimes \gamma_{1,k} \oplus \lambda_{22,k} \otimes \gamma_{2,k}
\end{align*}
\]

(4)

Thus Equation 4 looks just like a conventional linear algebraic recursion. Two major facts now allow one to rewrite Equation 4 as a vector-matrix recursion, as known from linear algebra [35] [39]. First, \(\otimes \) and \(\oplus \) form a semi-ring over all \(N \times N \) matrices. Second, equations formed with semi-ring operations are linear. Hence, Equation 4 can be rewritten as

\[
I_{k+1} = \Lambda_k \otimes I_k
\]

(5)

where \(I_k \) is the vector of all \(N \) path metrics of time \(k \)

\[
I_k = (\gamma_1, \gamma_2)\top
\]

and the transition matrix \(\Lambda_k \) comprises all \(N \times N \) branch metrics \(\lambda_{ij,k} \) of time step \((k, k+1) \). The operations of vector-matrix multiplication are defined in an analogy to the well-known definitions of linear algebra, requiring the definition of two operations, namely \(\otimes \) and \(\oplus \) . Rewriting the ACS-recursion Equation 4 in the form of Equation 5 leads to

\[
\begin{pmatrix}
\gamma_1 \\
\gamma_2
\end{pmatrix}
_{k+1} =
\begin{pmatrix}
\lambda_{11} & \lambda_{12} \\
\lambda_{21} & \lambda_{22}
\end{pmatrix}
_{k} \otimes
\begin{pmatrix}
\gamma_1 \\
\gamma_2
\end{pmatrix}
_k
\]

(6)

Next to the simplified notation the real advantage of the semi-ring notation is that it shows that the ACS-recursion is linear. Therefore the ACSU of a VD is a linear system (i.e., the semi-ring notation linear superposition holds). This allows one to handle Equation 5 as a linear equation. Writing Equation 5 for time instant \(k+2 \) and inserting Equation 5 into it leads to

\[
\begin{align*}
\gamma_{k+2} &= \lambda_{k+1} \otimes \gamma_{k+1} = \Lambda_{k+1} \otimes (\Lambda_k \otimes I_k) \\
&= (\Lambda_{k+1} \otimes \Lambda_k) \otimes I_k
\end{align*}
\]

(7)

This is the breakthrough, since it can now be seen that \(\gamma_{k+2} \) can be calculated with the help of \(\gamma_k \) without knowing the value of \(\gamma_{k+1} \). Thus, now two time steps are available to carry out the recursion Equation 7 instead of only one time step as
holds for Equation 5. Or, in general, by further transformation of the ACS-recursion the following M-step ACS-recursion results [35]

\[\Gamma_k + M = M \Lambda_k \otimes \Gamma_k \]

(8)

with the M-step transition matrix \(M \Lambda_k \) defined as

\[M \Lambda_k := \Lambda_{k+M-1} \otimes \ldots \otimes \Lambda_{k+1} \otimes \Lambda_k \]

(9)

Therefore the ACS-recursion is not a bottleneck. With the help of semi-ring algebra it can be transformed to an M-step ACS-recursion Equation 8 with so-called look-ahead computation Equation 9 that can take place outside of the recursion, in analogy to the results known for conventional linear systems [40-43]. The possibility of an M-step word-level parallelization was first found by analysis of the trellis itself independently by the author [44], [45], and Thapar [46], [47]. The possibility of an algebraic parallelization was independently pointed out [35], [37], [48].

Implementation Architectures

To get an idea of how an M-fold speedup can be achieved by implementing the M-step ACS-recursion (see Equation 8), architectural examples shall be discussed. Notice that the M-step recursion transformation is well known to linear algebraic recursions. Since the ACS-recursion is a linear recursion, all known M-step architectures for linear systems of type Equation 5 can be applied for the M-step VA [38], [39].

Generally, two principle methods exist to implement M-step recursions, i.e., block processing or pipeline interleaving. In the case of block processing the major idea is that the incoming data stream is serial-to-parallel converted in blocks of length \(M \), and the following circuit processes each complete block of data in parallel (see Figure 1). Thus, only the serial/parallel converter needs to operate at the high-speed \(1/T \) whereas the actual computation is being carried out with a clock rate \(M \) times slower. In case of pipeline interleaving the processing circuit has to be clocked with the same high speed as the data rate \(1/T \) and therefore, is limited by the maximum clock rate of the technology chosen. Hence, we will focus on the discussion of two simple block architectures for the ACSU.

As can be seen by viewing Equation 8, next to carrying out the M-step ACS-recursion, the M-step transition matrix needs to be computed for each time step. This corresponds to an M-fold multiplication of transition matrices that can either be done in a tree-like or pipeline structure (see Figure 9). Also shown in Figure 9 is the serial/parallel converter followed by \(M \) parallel BMUs to compute the \(M \) transition matrices of each block of data in parallel. These are then multiplied either in a tree (see Figure 9a) or pipeline (see Figure 9b) of matrix multipliers whose output is fed to the M-step ACSU that carries out the M-step ACS-recursion. More detailed architecture descriptions can be found in [9], [35].

We only want to point out here the major difference between the two architecture principles that lie in latency, regularity, and complexity. As can easily be seen, the tree architecture, is not as regular as the pipeline, but has a short latency of \(O(\log M) \), whereas the pipeline leads to a latency of \(O(M) \). However, efficient multipliers can be derived for the pipeline and therefore, the complexity of one matrix multiplication is only \(O(N^2) \) compared to \(O(N^3) \) for the tree [35]. Thus a trade-off exists between complexity and latency.

Implementation Example

To show the realizability of the VA with M-step ACS-recursion, referred to as the M-step VA, we want to present an implementation example we carried out for a 4-state convolutional code. As an architecture we chose the pipeline multiplication. The architecture can be arranged, such that it can be divided up into identical slices which can then be chained to achieve the desired \(M \) [35]. We implemented \(M=4 \)
on one chip which, by the chaining of four chips, allows the realization of a 16-step VD. The complete design of the chip was carried out with 2μ CMOS standard cells and Random Access Memories (RAMs) for the buffering, which totaled 120 mm² chip area (see Figure 10). With a clock frequency of 50 MHz (simulation) each chip achieves a rate of decoding of 50 MHz. Thus a 1 Gb/s (1 GHz) decoding rate could be achieved by cascading 20 chips. Assuming 1μ technology, dynamic latches, Memories (RAMs) for the buffering, which totaled 120 mm², were included. A full custom design of the CSM (which was used here to achieve high efficiency), this 1 Gb/s VD could be implemented on a single 200 mm² chip, which certainly shows that this concept is realizable today (for a small number of states).

Algorithm-Level Parallelization

Here we want to show how, by exploiting knowledge of asymptotic algorithmic behavior, the VA can be paralleled at the algorithm-level.

Asymptotic Algorithmic Properties

If a VD starts decoding in the midstream of the data, i.e., somewhere in the middle of the trellis, a period of initial synchronization occurs until it decodes exactly as if it had been working from the beginning [49]. The important fact that has to be noticed is that the period of initial synchronization is limited, i.e., after processing D steps of the trellis, acquisition has occurred with high probability. It can be shown that the period of D steps that has to be processed for acquisition (with high probability) is exactly as long as the survivor depth, D = 50 MHz. As mentioned above, if all N paths that are decoded by carrying out the ACS-recursion are traced back in time, they merge at time k − D. Therefore we can summarize the algorithm-level information in a scheme of decoded paths of the VA as shown in Figure 11. When a block of E steps has been processed (e.g., interval (k − E, E)), the first D steps have to be discarded as being too unreliable due to initial synchronization. In the section of the last D steps the uniquely decoded path branches out to N paths, one leading to each state. Solely by exploiting this algorithmic knowledge new parallel VD architectures were derived [44] [50] [51].

We do not want to go into the details of the parallel VD solutions cited above, but want to give a feeling of why the information about the decoded paths of a processed block of the trellis shown in Figure 11 can be exploited. Assume that a VD would only process a block of finite length of E steps of the trellis. Then, as can be seen in Figure 11, a section of E - 2D steps of the path has been decoded. Thus any block of the trellis can be decoded by processing an additional D preceding and D following steps. Hence, on this block level no feedback exists that can therefore be exploited to derive parallel VD architectures that we refer to as acquisition methods [44] [50] [51].

An especially efficient method of parallel Viterbi decoding that can be mapped onto very efficient architectures can be derived, if the algorithm-level knowledge is combined with the algebraic word-level transformation shown above. This is done by examining the M-step VA for M > D. By exploiting the knowledge of the limited survivor depth it can be shown that

\[C_{in} \text{ case of pipeline interleaving the processing circuit has to be clocked with the same high speed as the data rate } 1/T \text{ and therefore, is limited by the maximum clock rate of the technology chosen.} \]

In case of pipeline interleaving the processing circuit has to be clocked with the same high speed as the data rate 1/T and therefore, is limited by the maximum clock rate of the technology chosen.

the M-step transition matrix \(M_{Ak} \) than is linearly dependent, i.e., of rank one. (Hence computing one column and one row uniquely determines \(M_{Ak} \).) This allows a modification of the ACS-recursion to a purely feedforward expression, the basis of deriving the very efficient minimized method [27] [50] [52].

Implementation Examples

To prove the feasibility of the acquisition methods we designed a VD-chip whose layout is given in Figure 12. This VD is a module of a ring architecture. It can be configured to a ring of modules where the total decoding rate is linearly dependent on the number of modules in the ring. The design was carried out such that a ring configuration of 5 chips achieves a decoding rate of 120 Mb/s for decoding 6-state 8 PSK trellis coded modulation [53]. Each chip is a 2μ CMOS standard cell ASIC with 5 RAMs for the buffering and the SMU implementation. The relatively low clock rate of 15 MHz is due to the fact that the efficient high-speed carry-save ACSU was not yet derived at the point of this design. Hence, by designing the 100 Mb/s VD presented above as one VD-module, much higher decoding rates would be achievable.

The extremely high efficiency of the minimized method mentioned above is demonstrated by the layout of the VD chip in Figure 13. This VD was designed for the same 4-state linear

Table III. 600 Mb/s Viterbi Decoder Chip

<table>
<thead>
<tr>
<th>Technology</th>
<th>1.2 μCMOS, 170mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Clock</td>
<td>50 MHz → 600 Mb/s</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td>75,000 gates (300K Transistors)</td>
</tr>
<tr>
<td>Testing</td>
<td>Built-in Selftest (99% Fault Coverage)</td>
</tr>
<tr>
<td>Processing Power</td>
<td>Equivalent to 12 GOPS</td>
</tr>
</tbody>
</table>

Table IV. Parallel Viterbi Decoder Architectures

<table>
<thead>
<tr>
<th>Parallelization Level</th>
<th>Architecture*</th>
<th>Latency</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit-Level</td>
<td>Carry-Save ACSU</td>
<td>4D</td>
<td>N</td>
</tr>
<tr>
<td>Word-Level (M-Step VA)</td>
<td>Pipeline Architectures</td>
<td>2D</td>
<td>N²</td>
</tr>
<tr>
<td></td>
<td>Tree Architectures</td>
<td>2logD</td>
<td>N³</td>
</tr>
<tr>
<td>Algorithm-Level</td>
<td>Acquisition Methods</td>
<td>4D</td>
<td>N</td>
</tr>
<tr>
<td>All Three Levels</td>
<td>Minimized Method</td>
<td>3D</td>
<td>N</td>
</tr>
</tbody>
</table>

*All architectures with equivalent trace-back SMU.
convolutional code (constraint length \(K = 3\)) that underlines the chip design shown above (see Figure 9). The chip is designed with 1.2\(\mu\) standard cells and 3 RAMs for buffering and consumes 170 mm\(^2\) chip area. Taking into account a minimum clock frequency of 50 MHz and the fact that a block of \(D = 12\) steps is decoded per chip in parallel, results in a decoding rate per chip of at least 600 Mb/s. This is already more than 20 times the rate of the fastest commercial VD chip available to date [22](see Table I). Some key facts of the chip which is currently being sent to fabrication are given in Table III.

The minimum system configuration, which needs 2 chips, achieves 1.2 Gb/s, and multiples hereof are obtained by using more chips in parallel.

Conclusions

For very high throughput rates not only the inherent parallelism of an algorithm needs to be extracted, but additional parallelism has to be introduced. For this sake three levels exist, namely the bit-, word-, and algorithm-level.

Even though the ACS-recursion presents a bottleneck for high-speed implementations of the Viterbi algorithm, additional parallelism can be introduced at all three levels. At the bit-level the derivation of nonlinear carry-save arithmetic allows pipelining the ACS-recursion between the bit-levels, such that the critical path is extremely short and independent of the word-length. At the word-level the two operations of the ACS-recursion were identified to form an algebraic structure that allowed an algebraic transformation such that the bottleneck was eliminated. Finally, at the algorithm-level asymptotic behavior was exploited to derive parallel processing architectures. Furthermore, it was pointed out that by combining the word- and algorithm-level, a very efficient minimized method can be derived which, when the bit-level carry-save optimizations are used, allows the realization of Viterbi decoders up to the Gb/s range on one chip in present-day technologies.

The different solutions span a wide space, as is summarized in Table IV. To achieve an extremely small latency one has to pay by increased complexity of \(O(N^3)\) (tree architecture) whereas the combination of all three levels (minimized method) is a good compromise between latency and complexity.

The Viterbi algorithm is only one specific example of a large set of algorithms which is of interest to design parallel processing architectures. Therefore, it is important to derive methodologies and tools of how to introduce additional parallelism into algorithms. The basic tools applied here were CS-arithmetic at the bit-level, semi-ring algebra at the word-level, and exploiting acquisition properties at the algorithm-level. We believe that the generalizations of all three methods of finding solutions at each level are a step in this direction [9].

However, a lot of work remains to be done.

Acknowledgment

The authors want to thank numerous students that helped designing the VLSI case studies, and especially Herbert Dawid for carrying out the majority of the design work for the 600 Mb/s chip.

References

54 • May 1991 • IEEE Communications Magazine
References

Biography

Gerhard Fettweis is a visiting scientist at the IBM Almaden Research Center, San Jose, California. He received his Dipl.-Ing. and Ph.D. degree from the Aachen University of Technology, Aachen, Germany, in 1986 and 1990, respectively. During 1986 he worked at the Asea Brown Boveri (ABB) research laboratory, Baden, Switzerland, on his Diplom-thesis. His interests are in microelectronics and digital communications, especially the interaction between algorithm and architecture design for VLSI implementations.

Heinrich Meyr received the Dipl.-Ing. and Ph.D. degrees from the Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, in 1967 and 1973, respectively.

From 1968–1970 he held research positions at Brown Boveri Corporation, Zurich, and the Swiss Federal Institute for Reactor Research. From 1970 to the summer of 1977 he was with Hasler Research Laboratory, Bern, Switzerland. His last position at Hasler was Manager of the Research Department. During 1974 he was a visiting Assistant Professor with the Department of Electrical Engineering, University of Southern California, Los Angeles. Since the summer of 1977 he has been Professor of Electrical Engineering at the Aachen University of Technology (RWTH), Aachen, West Germany. His research focuses on synchronization, digital signal processing, and in particular, on algorithms and architectures suitable for VLSI implementation. In this area he is frequently in demand as a consultant to industrial concerns. He has published work in various fields and journals and holds over a dozen patents.

Mr. Meyr served as Vice Chairman for the 1978 IEEE Zurich Seminar and as an International Chairman for the 1980 National Telecommunications Conference, Houston, TX. He served as Associate Editor for the IEEE Trans. on Acoustics, Speech, and Signal Processing from 1982–1985, and as Vice President for International Affairs of the IEEE Communications Society.

SOREP TECHNOLOGY Corp.: A COMPLETE RANGE OF VITERBI DECODERS

VITERBI DECODERS

- SOR 5053 - 500 k bits/s
- SOR 5063 - 2 M bits/s
- SOR 5073 - 10 M bits/s
- SOR 3071 - 15 M bits/s

C MOS TECHNOLOGY
POWER SUPPLY - 5 V

STANDARD PRODUCT DIVISION

May 1991 - IEEE Communications Magazine • 55

Circle number 13

Authorized licensed use limited to: The University of Toronto. Downloaded on July 13, 2009 at 16:27 from IEEE Xplore. Restrictions apply.