Advanced Current Mirrors
and Opamps

David Johns and Ken Martin
University of Toronto
(johns@eecg.toronto.edu)
(martin@eecg.toronto.edu)
Wide-Swing Current Mirrors

- Used to increase signal swing in cascode mirror
- Bias drains of Q2 and Q3 close to triode region
- I_{bias} set to nominal or max value of I_{in}
Wide-Swing Current Mirrors

- Q3 and Q4 act like a single transistor

\[V_{\text{eff}} = V_{\text{eff}2} = V_{\text{eff}3} = \sqrt{\frac{2I_{D2}}{\mu_n C_{ox}(W/L)}} \] \hspace{1cm} (1)

- Q5 has same drain current but \((n + 1)^2\) times smaller

\[V_{\text{eff}5} = (n + 1)V_{\text{eff}} \] \hspace{1cm} (2)

- Similarly

\[V_{\text{eff}1} = V_{\text{eff}4} = nV_{\text{eff}} \] \hspace{1cm} (3)

\[V_{G5} = V_{G4} = V_{G1} = (n + 1)V_{\text{eff}} + V_{tn} \] \hspace{1cm} (4)

\[V_{DS2} = V_{DS3} = V_{G5} - V_{GS1} = V_{G5} - (nV_{\text{eff}} + V_{tn}) = V_{\text{eff}} \] \hspace{1cm} (5)

- Puts Q2 and Q3 right at edge of triode
Wide-Swing Current Mirrors

- Min allowable output voltage
 \[V_{\text{out}} > V_{\text{eff}1} + V_{\text{eff}2} = (n + 1)V_{\text{eff}} \]
 (6)

- If \(n = 1 \)
 \[V_{\text{out}} > 2V_{\text{eff}} \]
 (7)

- With typical value of \(V_{\text{eff}} \) of 0.2 V, wide-swing mirror can operate down to 0.4 V

- Analyzed with \(I_{\text{bias}} = I_{\text{in}} \). If \(I_{\text{in}} \) varies, setting \(I_{\text{bias}} \) to max \(I_{\text{in}} \) will ensure transistors remain in active region

- Setting \(I_{\text{bias}} \) to nominal \(I_{\text{in}} \) will result in low output impedance during slewing (can often be tolerated)
Design Hints

• Usually designer would take \((W/L)_5\) smaller to bias \(Q_2\) and \(Q_3\) slightly larger than minimum

• To save power, bias \(Q_5\) with lower currents while keeping same current densities (and Veff)

• Choose lengths of \(Q_2\) and \(Q_3\) close to minimum allowable gate length (since \(Vds\) are quite small)
 — maximizes freq response

• Choose \(Q_1\) and \(Q_4\) to have longer gate lengths since \(Q_1\) often has larger voltages (perhaps twice minimum allowable gate length)
 — Reduces short-channel effects
Enhanced Output-Impedance Current Mirror

- Use feedback to keep Vds across Q2 stable

\[R_{\text{out}} \approx g_{m1} r_{ds1} r_{ds1} (1 + A) \]

- Limited by parasitic conductance between drain and substrate of Q1
Simplified Enhanced Output-Impedance Mirror

- Rather than build extra opamps, use above
- Feedback amplifier realized by common-source amplifier of Q₃ and current source $I_{B₁}$
Simplified Enhanced Output-Impedance Mirror

• Assuming output impedance of I_{B1} is equal to r_{ds3}, loop gain will be $(g_{m3}r_{ds3})/2$, resulting in

$$r_{out} \approx \frac{g_{m1}g_{m3}r_{ds1}r_{ds2}r_{ds3}}{2}$$

(9)

• Circuit consisting of Q4, Q5, Q6, I_{in}, and I_{B2} operates like a diode-connected transistor — results in accurate matching of I_{out} to I_{in}

• Note that shown circuit is NOT wide-swing — requires output to be $2V_{eff} + V_{tn}$ above lower supply
Wide-Swing with Enhanced Output Impedance

- Add wide-swing to improve output voltage swing

- Q3 and Q7 biased at 4 times current density — 2V_{eff}
- Requires roughly twice power dissipation
- Might need local compensation capacitors
Folded-Cascode Opamp

- Compensation achieved using load capacitor
- As load increases, opamp slower but more stable
- Useful for driving capacitive loads only
- Large output impedance (not useful for driving resistive loads)
- Single-gain stage but dc gain can still be quite large (say 1,000 to 3,000)
- Shown design makes use of wide-swing mirrors
- Simplified bias circuit shown
- Inclusion of Q12 and Q13 for improved slew-rate
Folded-Cascode Opamp

\[A_V = \frac{V_{out}(s)}{V_{in}(s)} = g_{m1}Z_L(s) \] \hspace{1cm} (10)

\[A_V = \frac{g_{m1}r_{out}}{1 + s r_{out} C_L} \] \hspace{1cm} (11)

- \(r_{out} \) is output impedance of opamp (roughly \(g_m r_{ds}^2 / 2 \))
- For mid-band freq, capacitor dominates

\[A_V \approx \frac{g_{m1}}{sC_L} \] \hspace{1cm} (12)

\[\omega_t = \frac{g_{m1}}{C_L} \] \hspace{1cm} (13)
Folded-Cascode Opamp

- Maximizing g_m of input maximizes freq response (if not limited by second-poles)
- Choose current of input stage larger than output stage (also maximizes dc gain)
- Might go as high as 4:1 ratio
- Large input g_m results in better thermal noise
- Second poles due to nodes at sources of Q5 and Q6
- Minimize areas of drains and sources at these nodes with good layout techniques
- For high-freq, increase current in output stage
Folded-Cascode Slew-Rate

- If Q2 turned off due to large input voltage

\[SR = \frac{I_{D4}}{C_L} \]

(14)

- But if \(I_{\text{bias2}} > I_{D3} \), drain of Q1 pulled near negative power supply
- Would require a long time to recover from slew-rate
- Include Q12 (and Q13) to clamp node closer to positive power supply
- Q12 (and Q13) also dynamically increase bias currents during slew-rate limiting (added benefit)
- They pull more current through Q11 thereby increasing bias current in Q3 and Q4
Folded-Cascode Example

Design Goals

• +-2.5V power supply and 2mW opamp with 4:1 ratio of current in input stage to output stage
• Set bias current in Q11 to be 1/30 of Q3 (or Q4)
• Channel lengths of 1.6um and max width of 300um with Veff=0.25 (except input transistors)
• Load cap = 10pF

Circuit Design

\[
I_{\text{total}} = 2(I_{D1} + I_{D6}) = 2(4I_B + I_B) = 10I_B \tag{15}
\]

\[
I_B = I_{D5} = I_{D6} = \frac{I_{\text{total}}}{10} = \frac{(2\text{mW})/5\text{ V}}{10} = 40 \mu\text{A} \tag{16}
\]

\[
I_{D3} = I_{D4} = 5I_{D5} = 200 \mu\text{A} \tag{17}
\]
\[I_{D1} = I_{D2} = 4I_{D5} = 160 \mu A \] (18)

- To find transistor sizing:

\[
\left(\frac{W}{L} \right)_i = \frac{2I_{Di}}{\mu_i C_{ox} V_{effi}^2}
\] (19)

rounding to nearest factor of 10 (and limiting to 300um width) results in

\(Q_1 \)	300/1.6	\(Q_6 \)	60/1.6	\(Q_{11} \)	10/1.6
\(Q_2 \)	300/1.6	\(Q_7 \)	20/1.6	\(Q_{12} \)	10/1.6
\(Q_3 \)	300/1.6	\(Q_8 \)	20/1.6	\(Q_{13} \)	10/1.6
\(Q_4 \)	300/1.6	\(Q_9 \)	20/1.6		
\(Q_5 \)	60/1.6	\(Q_{10} \)	20/1.6		

- Widths of \(Q_{12} \) and \(Q_{13} \) were somewhat arbitrarily chosen to equal the width of \(Q_{11} \)

- Transconductance of input transistors
\[g_{m1} = \sqrt{2I_{D1} \mu_n C_{ox} (W/L)_1} = 2.4 \text{ mA/V} \] (20)

- Unity-gain frequency

\[\omega_t = \frac{g_{m1}}{C_L} = 2.4 \times 10^8 \text{ rad/s} \Rightarrow f_t = 38 \text{ MHz} \] (21)

- Slew rate \textit{without} clamp transistors

\[\text{SR} = \frac{I_{D4}}{C_L} = 20 \text{ V/\mu s} \] (22)

- Slew rate \textit{with} clamp transistors

\[I_{D12} + I_{D3} = I_{bias2} = 320 \mu A \] (23)

\[I_{D3} = 30I_{D11} \] (24)

\[I_{D11} = 6.6 \mu A + I_{D12} \] (25)
• Solving above results in

\[I_{D11} = 10.53 \, \mu A \] \hspace{1cm} (26)

which implies

\[I_{D3} = I_{D4} = 30I_{D11} = 0.32 \, mA \] \hspace{1cm} (27)

leading to slew-rate

\[\text{SR} = \frac{I_{D4}}{C_L} = 32 \, \text{V/\mu s} \] \hspace{1cm} (28)

• More importantly, time to recover from slew-rate limiting is decreased.
Current-Mirror Opamp

\[\text{Q1} \quad \text{Q2} \quad \text{Vin} \quad \text{Vout} \quad \text{CL} \quad \text{1:K} \quad \text{1:1} \quad \text{KI_D1} \quad \text{KI_D2} \quad \text{I_b} \quad \text{V_{out}} \quad \text{C_L} \]
Current-Mirror with Wide-Swing Cascodes

\[I_{D14} = KI_1 = KI_b/2 \]
Current-Mirror Opamp

\[A_V = \frac{V_{out}(s)}{V_{in}(s)} = Kg_{m1}Z_L(s) = \frac{Kg_{m1}r_{out}}{1 + sr_{out}C_L} \approx \frac{Kg_{m1}}{sC_L} \quad (29) \]

- **K** factor is the current gain from mirrors

\[\omega_t = \frac{Kg_{m1}}{C_L} = \frac{K\sqrt{2ID_1\mu_nC_{ox}(W/L)_1}}{C_L} \quad (30) \]

- If output capacitance set max speed, higher **K** results in higher speed
- If second-poles set max speed, higher **K** results in lower speed (increases capacitances of nodes)
- A reasonable choice for a general-purpose opamp is **K** = 2 (for max speed, **K** = 1)
Current-Mirror Opamp Slew-Rate

\[SR = \frac{KI_b}{C_L} \] \hfill (31)

- For given power, SR maximized by large \(K \)
- Example: \(K = 4 \) results in 4/5 of total bias current used in charging \(C_L \)
- Usually has better SR than folded-cascode
- Usually has better bandwidth than folded-cascode
- Folded-cascode has better thermal noise
Current-Mirror Opamp Example

Design goals

Same as in folded-cascode. Use K=2

Circuit Design

- With 2mW power limit and 5V supply, $I_{\text{total}} = 400 \ \mu A$

$$I_{\text{total}} = (3 + K)I_{D1}$$ \hspace{1cm} (32)

$$I_{D1-7} = I_{D9} = I_{D11} = I_{D13} = 80 \ \mu A$$ \hspace{1cm} (33)

$$I_{D8} = I_{D10} = I_{D12} = I_{D14} = 160 \ \mu A$$ \hspace{1cm} (34)

$$I_b = 160 \ \mu A$$ \hspace{1cm} (35)

and setting V_{eff} around 0.25V, we find transistor sizes...

- Resulting in:
<table>
<thead>
<tr>
<th>Q_1</th>
<th>300/1.6</th>
<th>Q_7</th>
<th>60/1.6</th>
<th>Q_13</th>
<th>30/1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_2</td>
<td>300/1.6</td>
<td>Q_8</td>
<td>120/1.6</td>
<td>Q_14</td>
<td>60/1.6</td>
</tr>
<tr>
<td>Q_3</td>
<td>60/1.6</td>
<td>Q_9</td>
<td>60/1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_4</td>
<td>60/1.6</td>
<td>Q_{10}</td>
<td>120/1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_5</td>
<td>60/1.6</td>
<td>Q_{11}</td>
<td>30/1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_6</td>
<td>60/1.6</td>
<td>Q_{12}</td>
<td>60/1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[g_{m1} = \sqrt{2I_{D1}\mu_n C_{ox}(W/L)_1} = 1.7 \text{ mA/V} \] \hspace{1cm} (36)

\[\omega_t = \frac{Kg_{m1}}{C_L} = 3.4 \times 10^8 \text{ rad/s} \Rightarrow f_t = 54 \text{ MHz} \] \hspace{1cm} (37)

\[SR = (KI_b)/C_L = 32 \text{ V/\mu s} \] \hspace{1cm} (38)

- which is better than 20 V/\mu s for the folded-cascode opamp without clamp transistors
Linear Settling Time

- Time constant for linear settling time equals inverse of closed-loop 3dB freq, ω_{3dB} where

$$\omega_{3dB} = \beta \omega_t$$

(39)

where β is feedback factor and ω_t is unity-gain freq of amplifier (not including feedback factor)

- For 2-stage opamp, ω_t is relatively independent of load capacitance

- This is NOT the case where load capacitor is compensation capacitor (folded-cascode and current-mirror opamps)

- Need to find equivalent load capacitance
Linear Settling Time

\[\beta = \frac{1}{[s(C_1 + C_p)] + \frac{1}{sC_2}} = \frac{C_2}{C_1 + C_p + C_2} \quad (40) \]

\[C_L = C_C + C_{\text{load}} + \frac{C_2(C_1 + C_p)}{C_1 + C_p + C_2} \quad (41) \]
Linear Settling Time Example

- Given \(C_1 = C_2 = C_C = C_{load} = 5 \text{ pF} \) and \(C_p = 0.46 \text{ pF} \), find settling time for 0.1 percent accuracy (i.e. \(7\tau \)) for the current-mirror opamp

Solution:

- Equivalent load capacitance

\[
C_L = 5 + 5 + \frac{5(5 + 0.46)}{5 + 5 + 0.46} = 12.61 \text{ pF}
\]

(42)

which results in a unity gain freq of

\[
\omega_t = \frac{Kg_{m1}}{C_L} = \frac{2 \times 1.7 \text{ mA/V}}{12.61 \text{ pF}} = 2.70 \times 10^8 \text{ rad/s}
\]

(43)
Linear Settling Time Example

- Feedback factor given by
 \[
 \beta = \frac{5}{5 + 0.46 + 5} = 0.48
 \]
 \[\text{causing a first-order time constant}\]
 \[
 \tau = \frac{1}{\beta \omega_t} = 7.8 \text{ ns}
 \]
 \[\text{(45)}\]

- For 0.1 percent accuracy, we need a linear settling time of
 \[7\tau \text{ or 54 ns.}\]

- This does not account for any slew-rate limiting time.
Fully Differential Opamps

Advantages

- Use of fully-differential signals helps to reject common-mode noise and even-order linearities — rejection only partial due to non-linearities but much better than single-ended designs
- Fast since no extra current mirror needed

Disadvantages

- Requires common-mode feedback (CMFB) circuitry — sets average output voltage level, should be fast — adds some capacitance to output stage — might limit output signal swing
- Negative going single-ended slew-rate slower since set by bias current — not dynamic
Fully Differential Folded-Cascode Opamp

Q1 Q2
V_{in}

Q3 Q4
V_{B1}

Q11 Q12

Q5 Q6
V_{B2}

Q8 Q9
V_{B3}

Q7 Q10
V_{cntrl}

V_{out}

CMFB circuit

I_{bias}
Fully-Diff Current-Mirror Opamp

- V_{in}
- Q_1, Q_2
- I_{bias}
- V_{B3}
- Q_3, Q_4, Q_5, Q_6
- V_{out}
- V_{cntrl}
- CMFB circuit
Other Fully-Diff Opamps

Using 2 single-ended opamps

Rail-to-rail input common-mode range
Common-Mode Feedback Circuits

- Balanced signal on V_{out} does not affect V_{ctrl}
- Does not depend on small-signal analysis
Common-Mode Feedback Circuits

- Limited differential swing
- Should ensure CMFB loop is stable

\[V_A = V_{CM} - (V_{eff1} + V_{t1}) \]
\[V_{ref} = -(V_{eff1} + V_{t1}) \]
Common-Mode Feedback Circuits

- Useful for switched-capacitor circuits
- Caps Cs set nominal dc bias at bottom of Cc
- Large output signal swing allowed