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Abstract- Classical sampling theorem states that by using an 

anti-aliased low-pass filter at the Nyquist rate, one can transmit 

and retrieve the filtered signal. This approach, which has been 

used for decades in signal processing, is not good for high quality 

speech, image and video signals where the actual signals are not 

low-pass but rather sparse. The traditional sampling theorems do 

not work for sparse signals. Modern approach, developed by 

statisticians at Stanford (Donoho and Candes), give some lower 

bounds for the minimum sampling rate such that a sparse signal 

can be retrieved with high probability. However, their approach, 

using a sampling matrix called compressive matrix, has certain 

drawbacks: Compressive matrices require the knowledge of all 

the samples, which defeats the whole purpose of compressive 

sampling! Moreover, for real signals, one does not need a 

compressive matrix and we shall show in this invited paper that 

random sampling performs as good as or better than compressive 

sampling. In addition, we show that greedy methods such as 

Orthogonal Matching Pursuit (OMP) are too complex with 

inferior performance compared to IMAT and other iterative 

methods. Furthermore, we shall compare IMAT to OMP and 

other reconstruction methods in term of complexity and show the 

advantages of IMAT. Various applications such as image and 

speech recovery from random or block losses, salt & pepper 

noise, OFDM channel estimation, MRI, and finally spectral 

estimation will be discussed and simulated. 
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I. INTRODUCTION 

In this invited paper, we would like to show the advantages of 
iterative thresholding for the recovery of sparse signals for 
various applications such as Salt & Pepper noise removal, 
nonuniform sampling of biomedical images, spectral and 
channel estimation. Our main contention is that the proposed 
iterative methods are faster and much less complex than the 
compressed sensing approaches such as Orthogonal Matching 
Pursuit (aMP). 

II. ITERATIVE METHOD WITH ADAPTIVE THRESHOLDING 

(IMAT) 

IMAT was fIrst introduced in [1] and [2]. Despite of most 
of the existing reconstruction methods which are designed to 
deal with I-D signals, IMAT can be easily adapted to be used 
for 2 and 3-D signals. Figure 1. depicts the steps of IMA T in 
details. 
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Figure I. Block diagram of IMA T 

In this block diagram, the DT and IDT blocks are Discrete 
Transform and its inverse, respectively. Let x be a sparse signal 
in an arbitrary domain (B 1) where we have a subset of its 
samples in another domain (B2). The DT block is used for 
transforming the signal from the sparsity domain (BI) to 
information domain (B2). To initialize, the signal is estimated 
as an all-zero block. Then, the estimated signal is transformed 
into information domain (B2), and the samples are replaced. 
Next, the signal is sparsed using an adaptive thresholding ftIter 
which does not pass the components below a specifIc threshold 
value. In order to retrieve all the coeffIcients of the signal, the 
threshold is set to a large value at fIrst and decays 
exponentially as the iteration number increases. After a number 
of iterations, the estimated signal becomes more similar to the 
original one. 

III. SPARSE SIGNAL PROCESSING USING IMA T 

In this section, various applications of IMAT are illustrated 
and the simulation results are presented. 

A. Comparison ojiMATwith OMP 

In this subsection, we thoroughly investigate the 
performance of IMA T for signal compression and Compressed 
Sensing (CS) [3], [4] and illustrate its superiority to the popular 
sparse recovery method coined as Orthogonal Matching Pursuit 
(aMP) [5]. The sampling process used in lMAT differs from 
that of the ordinary CS recoveries. IMAT takes random 
samples of the signal by applying a simple binary mask to the 
image. While sampling in the ordinary CS is done by taking 
linear combinations of the signal coeffIcients using 
measurement matrices which should satisfy special constraints 
like low mutual coherence or the so-called Restricted Isometry 



Property (RIP) [6] to guarantee an exact recovery with a high 
probability. 

For the fIrst simulation, the two methods are applied for the 
recovery of compressively sampled image. As the complexity 
burden of OMP increases with the size of the signal, this 
algorithm should be applied to non-overlapping blocks of the 
image separately. To have a fair comparison, we use the same 
procedure for IMA T. Since OMP is designed for I-d signals, 
each image block should be vectorized, e.g. , row by row or 
column by column. However, IMA T can sample the 2-d 
signals directly by exploiting 2-d mask. Hence, IMA T, unlike 
OMP can exploit the spatial correlation of the image using 2-d 
transforms. The simulation time can be considered as a 
measure for the complexity of the methods. Figure 2. and 3, 
respectively, depict the simulation time and PSNR of the two 
methods (OMP and IMAT) versus the block size. 
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Figure 2. The simulation time versus block size for the baboon image 
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Figure 3. PSNR versus block size for baboon image 

According to these fIgures, the simulation time of IMA T 
decreases with increasing the block size while its performance 
improves slightly. Therefore, we can use IMA T for the whole 
image. In the case of OMP method, although the performance 
of OMP improves for larger block sizes, it takes an intolerable 
amount of simulation time. The block size of 8x8 provides a 
tradeoff between the performance of OMP and its simplicity. 
For this block size, the averaged PSNR over 10 iterations has 
been depicted versus the sampling rate in Figure 4. 
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Figure 4. PSNR versus sampling rate for baboon image 

As it can be seen, the PSNR of the recovered image using 
the IMAT method is higher than that of OMP. In the 
simulations, the IMA T method is applied for recovering a 
signal from random samples. On the other hand, the OMP 
method utilizes a linear combination of all the signal 
coeffIcients. In order to have a fair comparison with the IMA T, 
we should only use the OMP method with a sparse matrix that 
combines only random samples. Figure 4. shows the OMP with 
random samples. According to this fIgure, the performance of 
OMP degrades even further. 

B. Iterative methods for random sampling 

In this section, a number of iterative methods are described 
for random sampling. In the Iterative Hard Thresholding 
(IHT) [7] method, a certain number (the sparsity number) of 
the largest coeffIcients of the DFT representation of the signal 
are selected at each iteration. After performing the inverse 
DFT, non-distorted samples of the received signal are replaced 
in the information domain signal. The modifIed IHT method is 
very similar to the IHT method. The only difference is that at 
the ith iteration of the modifIed IHT method, all of the DFT 
coeffIcients of the signal except the ith largest are set to zero. 
After a number of iterations, the original signal can be 
recovered without having any knowledge of the sparsity of the 
underlying signal. The other iterative method simulated here is 
the modifIed IMA T. At each iteration of this method, the 
algorithm selects a variable number, P, of largest coeffIcients 
of the signal, where 

p = {kl + i x k2 i < K} 
K otherwise • (1) 

where j is the iteration number. The parameters kl, k2 and K 
are selected by trial and error. In this work, we have set kl, k2 
and K to 5000, 700, 15000, respectively. The simulation results 
of various reconstruction methods for the baboon image are 
depicted in Figure 5. As IHT method needs sparsity number for 
successful reconstruction, the image is sparsed with a rate of 
50%, i. e. 50% of its FFT coeffIcients are set to zero for IHT to 
work. For the other methods, no pre-processing of the image is 
needed. 
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Figure 5. PSNR of IMAT, modified IHT, and modified IMAT versus 
sampling rate for the baboon image. 

According to this figure, the modified IMA T and modified 
IHT exhibit similar perfonnances which are slightly better than 
that of IMA T for higher percentage rates. IHT seems to be the 
worst. 

C. MRi Reconstruction using lMAT 

In this subsection, we will address the problem of Magnetic 
Resonance Image (MRI) reconstruction and provide the details 
of how this can be tackled by IMA T. In MRI, the 
reconstruction problem corresponds to the computation of the 
image from an incomplete set of its samples in the Fourier 
domain. In fact, according to some predefined sampling 
patterns, the Fourier samples of the image are obtained by 
applying a strong static magnetic field and a radio frequency 
magnetic field on a subject. The samples of the image in the 
Fourier domain are then mapped to the Cartesian grid [8][9]. 
The sampling pattern is usually either spiral or radial which 
cause the reconstruction procedure to be more accurate. For 
practical reasons, it is of crucial importance to decrease the 
sampling rate and increase the processing speed. 

Consider X as the desired image to be reconstructed. Let Y 
be the 2-D Discrete Fourier Transform (DFT) of the image, i.e. , 

Y = DFT(X) (1) 

The problem of MRI reconstruction can be stated as computing 
X from a number of samples of Y. The image signals have 
sparse representation in some well-known domains such as 
Discrete Cosine Transform (DCT) and various types of 
wavelets. Therefore, one can think of the sparse representation 
of the medical images in these domains. We consider Dual
Tree Complex (DTC) wavelet as the sparsity domain. Now, let 
Z be the DTC transform of X: 

Z= DTC(X). (2) 

From (1), we have: 

X = IDFT(Y) (3) 

where IDFT indicates the Inverse Discrete Fourier Transform . 
By replacing (3) into (2), one can write: 

Z = DCT( IDFT(Y) ). (4) 

Now, let r denote the composite transformation DTC 0 

IDFT. Therefore, (4) can be written as: 

Z= r(Y) (5) 

where, obviously r is an invertible linear function. On the other 
hand, according to (2): 

X= IDTC(Z) (6) 

where IDTC indicates the Inverse Dual-Tree Complex wavelet 
transfonn. Therefore, computing X out of Y is equivalent to 
obtaining Z from Y. From Compressed Sensing point of view 
and according to (5), Z is a sparse representation of Y. Our 
method is to fmd Z out of samples of Y by means of IMA T. In 
fact, Z is in the sparse domain and Y is in the infonnation 
domain. The DT block (Figure 1. is the operation r as defined 
in (5). After finding Z, X can be easily obtained according to 
(6). We implemented our proposed method in various 
situations and compared it with other best-known existing 
algorithms. Figure 6. depicts the reconstruction result for image 
phantom the sampling pattern consists of vertical lines. This 
figure confirms the capability of proposed method in low 
sampling rates. 

Figure 6. Reconstruction of Phantom image from sparse sample: ( a) original 
image, (b) sampling mask,( c) reconstructed image. 

In Figure 7. , our method is compared to the original image. 
In this case, the sampling pattern is radial and the simulations 
are performed for image phantom. As depicted in this figure, 
our method performs very well. 

a)original image b )radial mask 



e) IMAT 

Figure 7. Image reconstruction from sparse samples using IMAT. 

D. Salt-and-Pepper noise removal based on lMAT 

In this subsection, the application of IMAT in image 
denoising is illustrated. Salt-and-Pepper is a common noise that 
corrupts images during the acquisition procedure or 
transmission through communication channels. This kind of 
noise affects the image by changing the value of a percentage 
of pixels to minimum or maximum available magnitude. Let X 
be a noise-free image, and Y be the noisy image. The Salt-and
Pepper noise can be modeled as: 

Y=X+N (7) 

The matrix N indicates the salt-and-pepper noise that 
changes the value of some pixels of X. The problem here is to 
recover X from Y [1]. We can exploit the sparsity of the 
images to remove their noise. We consider the DTC wavelet as 
the DT transform introduced in IMAT. The problem of 
recovering an image from its salt-and-pepper noisy version is 
equivalent to a sparse signal recovery problem. Suppose that Y 
is the noisy version of an image as defined in (7). The noise 
free pixels of Y are the ones whose amplitudes are unequ?l. to 
the maximum or minimum allowed value. Thus, the posItIOn 
and amplitude of noise free pixels are known. The noise-free 
image, X can be reconstructed by applying the IMA T 
algorithm to the noisy image defmed ?y Y. The noi?e free 
pixels of Y are the information domam samples whIch are 
substituted in each iteration of the IMA T algorithm. To show 
the power of the IMA T in image denoising, this algorithm is 
applied to Lena corrupted with Salt-and-Pepper noise with 
different values of noise percentage. The simulation results of 
the proposed method are compared with other reconstruction 
methods such as Adaptive Median Filter (AMF) [9], 
Progressive Switching Median Filter (PSMF) [1.0)' Detail
Preserving Median Filter (DPMF) [11], DeCISIOn-Based 
Algorithm (DBA) [12], Edge-Preserving Algorithm 
(EPA) [13], Switching-based Adaptive Weighted Mean filter 
(SA WM), Iterative Mean filter (AIM) in Figure 8. 
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Figure 8. PSNR of different denoising methods for Lena image 

E. Spectral Estimation 

In this section, we show how IMA T performs in evaluating 
the sparse frequency contents of a signal [14][15][16][17], 
Signal spectrum estimation methods are dependent on the 
features of the signal. For example, some methods can be used 
for wideband signals while others are useful for narrowband 
ones, Non-parametric methods, like periodogram, are robust 
with low complexity, but their resolution is low; consequently, 
parametric methods, which make some assumptions about 
signal, are desirable, Some classic methods, such as Prony, 
Pisarenko and MUltiple SIgnal Classification (MUSIC), have 
an acceptable performance under some conditions, For 
example, the Prony method performs well in noiseless cases 
and Pisarenko has a better performance at the presence of 
noise, while MUSIC outperforms both of them in noisy 
conditions. MUSIC is a method originally devised for high 
resolution source direction estimation in the context of array 
processing [2]. MUSIC can be understood as a generalization 
and improvement of the Pisarenko method, In the P�sarenko 
method we assume a one dimensional subspace to nOIse [17], 
while in MUSIC, we extend this method, using a noise 
subspace of dimension greater than one to improve the 
performance, We also use some kind of averaging over noise 
eigenvectors to obtain a more reliable signal estimator. The 
data model for the sum of exponentials plus noise can be 
written as: 

(8) 

where m is the number of observed samples and k is the 
parameter of sparsity, n is the noise vector and y is the 
observation vector. The correlation matrix of the observation is 
given by: 

(9) 

where the noise is assumed to be white with variance (j2. If we 
decompose R into its eigenvectors, k eigenvalues 
corresponding to the k-dimensional subspace of the first term 



of the above equation are essentially greater than the remaining 
m - k values, (Jz, corresponding to the noise subspace; thus, by 
sorting the eigenvalues, the noise and signal subspaces can be 
determined. Assume ro is an arbitrary frequency and e( w) = 
[1, eiw, ... , ei(m-l)] . The MUSIC method estimates the 
spectrum content of the signal at frequency ro by projecting the 
vector e(ro) into the noise subspace. When the projected vector 
is zero, the vector e( ro) falls in the signal subspace and most 
likely, ro is among the spectral tones. In fact, the frequency 
content of the spectrum is inversely proportional to the Lr 
norm of the projected vector: 

1 
PMU(w) = eH(w) n e(w) 

m 

TI= I v,v{ 
i=k+t 

(10) 

(11) 

where vi s are eigenvectors of R corresponding to the noise 
subspace. The k peaks of PMU(ro) are selected as the 
frequencies of the sparse signal. The determination of the 
number of frequencies (model order) in MUSIC is based on the 
Minimum Description Length (MDL) and Akaike Information 
Criterion (AIC) methods. In Figure 9. we compared the Mean 
Squared Error (MSE) of both methods as a function of SNR. 
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Figure 9. A comparison of the MSE of various spectral estimation methods. 

It was shown that, the MUSIC method performs better than 
a simple Fast Fourier Transform (FFT) while the lMA T 
outperforms both for any noise levels. Moreover, the MUSIC 
approach needs eigenvalue-decomposition which makes it 
more complex and its implementation is difficult. The IMAT 
only needs a hard threshold which makes it simpler. As a 
result, lMA T is attractive for spectral estimation. 

F. OFDM Channel Estimation Using Channel Sparsity 

The problem of multipath channel distortion arises in all 
wireless communication systems where the transmitted signal 
is reflected from many scattering objects. This phenomenon 
causes the received signal to be a mixture of reflected and 
scattered versions of the transmitted signal. That is: 

k-l 
h(t, T) = L a1(t)O(T - T1(t)) (13) 

1=0 

where k is the number of taps, at is the Ith complex path 
gain, and T( is the corresponding path delay. In OFDM 
systems, the sampled version of channel impulse response in 
(13) presented in the DFT domain becomes: 

n-l 
'\" j2rril 

H[r,i] � H(rTf,it!.f) = L h[r,l]e--n- (14) 
1=0 

h[r, l] = h(rTf' iTs) (15) 

where Tf and n are the symbol length (including cyclic prefix) 
and the number of subcarriers in each OFDM symbol, 
respectively. M is the sub-carrier spacing and Ts = 1/ M is the 
sample interval. The above equation shows that for the rth 
OFDM symbol, H[r, i] is the DFT of h[r, 1]. 

Our goal in OFDM Channel estimation is to estimate the 
frequency response in (14) at each time slot of transmission. In 
other words, the channel frequency response should be 
estimated from the noisy values of the received samples at the 
pilot subcarriers. That is equivalent to solving the following 
equation for 

fj. = p. h + {). (16) tp tp tp 
where ip is an index vector denoting the pilot positions in the 

frequency spectrum, Hi
p 

is a vector containing the noisy 

values of the channel frequency spectrum in these pilot 
positions, and Fi

p
denotes the matrix obtained from taking the 

rows of the DFT matrix pertaining to the pilot positions. Di
p 

is 

the additive noise on the pilot points in the frequency domain. 
There is a vast literature on different estimation methods [19] 
to solve (16). The Least Square (LS) [19], Maximum 
Likelihood (ML) [20], Minimum Mean Squared Error 
(MMSE) [21], and Linear Minimum Mean Squared Error 
(LMMSE) [21], [22] techniques are among some of these 
methods. However, these methods do not exploit the inherent 
sparsity of the channel impulse response, therefore, they are 
not as exact. Therefore, we present a version of IMA T for 
OFDM channel estimation [23] which exploits channel 
sparsity to improve the accuracy of estimation and investigate 
its efficiency through a set of simulations. We apply our 
lMAT method to estimate OFDM channels formulated in (16). 
The main goal is to estimate h from Hi

p 
given that h has a 

few non-zero coefficients. To achieve our goal, we need an 
initial crude estimate lio, and a set of iterations with adaptive 
thresholding to remove fake taps. As the initial estimate, we 
use the pseudo-inverse of Fi

p 
which yields a solution with 

minimum lz-norm: � +- + + ho = F i Hi = F i F i h + F i fJ i (17) p p p p p p 
=2. F· HF· h+2.F· HfJ· fIJ tp tp _ N tp tp 

GNXN 

1 rlNpXNp 

(18) 

The non-zero coefficients of h are found through a set of 
iterations presented in (19) followed by adaptively decreasing 
thresholds: 

(19) 



hk(i) = 
{hk(i) 

o otherwise J (20) 

where A and k are the relaxation parameter and the iteration 

nwnber, respectively, and G = � Fip HFip as defined in (18). 

We conduct simulations to compare IMA T with other 
algorithms in OFDM channel estimation process. For OFDM 
simulations, the DVB-H standard was used with the 16-QAM 
constellation in the 2 K mode (211 FFT size). The channel 
profile was the Brazil channel D. Figure 10. Shows the Symbol 
Error Rate (SER) versus the SNR after equalizing using 
different sparse reconstruction methods such as conventional 
linear interpolation, OMP, Compressive Sampling 
(CoSaMP) [24], Gradient Projection for Sparse Reconstruction 
(GPSR) [25] and our proposed IMA T. 
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Figure 10. Comparison of SER (Symbol Error Rate) vs. SNR for conventional 
and sparsity based OFDM channel estimation methods and the IMA T for the 

Brazil channel at Fd = OHz (up) and Fd = 50Hz (down) 

As we see in Figure lO. , IMA T is able to almost perfectly 
(relative to ideal channel estimation case) estimate channel 
impulse response compared to other estimation methods. 
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