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Abstract—Adaptive thresholding methods have proved to yield
high Signal-to-Noise Ratio (SNR) and fast convergence for sparse
signal recovery. Recently, it was observed that the robustness of
a class of iterative sparse recovery algorithms such as Iterative
Method with Adaptive Thresholding (IMAT) outperforms the
well-known LASSO algorithm in terms of reconstruction quality,
convergence speed, and the sensitivity to the noise. In this paper,
we introduce a new method towards sparse signal recovery from
random samples (RS) of the sensing matrix or its generalized
version Compressed Sensing (CS) problem. The logic of this
method is based on iterative projections of the thresholded signal
onto the null-space of the sensing matrix. The simulations results
reveal that the proposed method has the capability of yielding
noticeable output SNR values when the number of samples
approaches twice the sparsity number, while other methods fail to
recover the signals when approaching this number. We have also
extended our algorithm to Matrix Completion (MC) scenarios
and compared its efficiency to other well-known approaches for
MC in the literature.

Index Terms—Null-space Projection, Sparse Signal, Adaptive
Thresholding, CS and RS, Matrix Completion.

I. INTRODUCTION

Compressed Sensing (CS) [1]] [2] [3] has grown to become
one of the most widespread problems of interest due to its
various applications. Greedy algorithms such as Orthogonal
Matching Pursuit (OMP) [4] are among the very first algorithms
used for sparse recovery. These algorithms have been dominated
by robustness of algorithms introduced later on in the literature
including LASSO [5] and, IMAT [6]], and RLS method[7] in
terms of the reconstructed signal Signal-to-Noise Ratio (SNR).
The general CS problem formulation is as follows:

l[z[lo (1)
y = Pz,

min
s.t.

where @ is the sensing (measurement) matrix, y is the
measurement vector, and x is the main signal assumed to be
sparse. A special case of interest is RS where the measurement
matrix has random zeros and ones in its diagonal [8]. This
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formulation is for the scenario when the noise is absent. In
the presence of the noise, the formulation changes as follows:

[0 2)
ly — ®z[|5 <.

min
s.t.

The solution to under-determined linear system is the sparsest
1

solution if ||z||p < ) Where 1(®) is the coherence of
the matrix ® [9]. Knowing this, we have developed a new
method which converges to the sparsest solution knowing the
fact that if the solution is unique, it will be the sparsest one.
The intuition behind our method will be elaborated in section
II. Now, we briefly go over the most well-known methods in

sparse recovery in signal processing.

A. Brief Review over Efficient Sparse Recovery Methods in the
Literature

We briefly review the methods we wish to consider in
our comparisons. We briefly mention how they work and
additionally their features and characteristics. Later on, in the
simulations section we will also investigate the types of data
we use and the accuracy, sensitivity to noise, and the required
number of samples in order to recover the main signal. We
will compare diverse aspects of the introduced methods to
our proposed method called Iterative Null-space Projection
Method with Adaptive Thresholding (INPMAT). In general,
sparse recovery methods could be classified into three main
groups: 1- [;- minimization approaches, 2- Greedy methods,
and 3- [y approximation methods.

1) li-minimization approach:

Lasso

We approximate [y - norm with its closest convex surrogate
which is /- norm. Therefore, the resulting problem formulation
is as follows:

min

s.t.

IR (3)
ly — @[3 <.

The dual of the problem (3)) is the following, which is known
as LASSO minimization problem:
min ||z]|y + | @z — y][3 C)
st. A>0



The LASSO is known to yield sparse solutions for = in addition

to resistance to noise. In this section we review Lasso method.

Lasso is the following minimization problem:
min [ly — @[3 + Allz||x (5)

.The optimal X is obtained by sweeping the grid of values and
minimizing error on the test set. The solution to Lasso can
be derived by many different implementations. One approach
in solving the /;-norm minimization problem is the ADMM
method [10].

2) Greedy approach:

OMP and CoSaMP: In [4], we can find how OMP works.

CoSaMP method is introduced in [11] as a greedy method in
recovering sparse signal. These two are somehow similar to
each other in terms of the structure; however, the CoSaMP is
more complicated and could be considered as a generalized
OMP. The general behavior of this method is that in high
SNR input scenarios it can recover the signal provided that it
has enough samples or measurements in the under-determined
setting. These two methods require to know the sparsity
level which is considered as a drawback in comparison to
the INPMAT which is independent of knowing the sparsity
level. In Analysis and simulations section, we will see that the
INPMAT requires far fewer samples in order to recover the
main signal than OMP and COSaMP.

3) lo-approximation:

IHT: One can find how Iterative Hard Thresholding (IHT)
works in [12]]. This method applies one update followed by
one thresholding step. The thresholding is based on selecting
the s largest components; where s is the sparsity number, and
s is known to IHT, or using a hard threshold in each iteration.

IMAT: The Iterative Method with Adaptive Thresholding
is introduced in [[6] by Marvasti et al. This method and its
modified version IMATCS work as stated in [9]. One update
step is followed by thresholding with some value which is
shrinking during iterations exponentially. One can find two
implementation versions of IMAT in [13[]. In [14]], and [15],
we have seen that IMATCS can outperform Lasso in some
scenarios like dealing with missing data. IMAT has been shown
to be profitable as in microwave imaging [16]]. In general,
ierative methods are a large class of CS methods [17]], from
which we are focusing on IMAT.

SLO: The SLO method is first introduced in [18]]. It is based
on approximating the Ly-norm with a smooth function. The
implementations are also provided in the simulations section.

B. Review over Matrix Completion (MC)

We will also provide the extended version of our proposed
algorithm to MC problems. MC has become popular due to
the Netflix recommendation contest. MC for low rank matrices
have been scrutinized recently by many authors, and various
methods have been developed towards dealing with this problem
such as [19]], [20], and [21]. In general, MC is an extended
version of sparse recovery in matrix domains. Considering
certain constraints for sparse signals such as the number of

required samples, or the rank of the sensing matrices lead to
unique recovery of the sparse signal. The concept of low-rank
matrices is similar to sparse matrices in some sense. In fact, low
rank induces sparsity in matrix domain. In order to deal with
matrix completion, the convex surrogate of the rank function
is considered, and the problem to be solved is as follows:

X* = argminy ||Pp(X — A)|[3 + AlIX]|, ©)

where Pg(.) is the projection onto the observation index set,
and || X ||« is the trace norm of X. X* is supposed to be the
reconstructed matrix. We use the concept of INPMAT in order
to extend the problem to the matrix completion scenario. We
mention the methodology briefly in section IV and provide
related simulations in section VI. The rest of the paper is
organized as follows: In section II, we introduce INPMAT.
In section III, we provide noise analysis. In section IV, we
provide an extension of the method to matrix completion. In
section V, we take a detour to provide a modified version of
our algorithm which is derived by looking into our formulation
from a different perspective and provide the heuristics. Finally,
we conclude the paper in the last section.

II. INPMAT PROCEDURE

Now, we introduce our method. Algorithm [I] provides the
procedure of INPMAT. Let 2* denote the signal recovered after
k-th step. Let 7% denote the diagonal matrix which indicates
the support of the recovered signal on its diagonal in the k-th
iteration. 1’s on the diagonal show that the element is non-
zero and 0’s show the opposite. Let I(.) denote the indicator
function of the expression inside the parentheses, i.e, it returns
1 if the expression inside the parentheses is true and returns
0 otherwise. First, we project the signal onto the subspace
created by the eigenvectors of the diagonal matrix 7" in each
step. This is in fact equivalent to confining the signal index to
the support determined by the nonzero elements of the diagonal
of the matrix 7. The projected vector is heuristically the closest
solution with sparsity number equal to the dimension of the
subspace formed by T to the set Sg = {z : y = Px}. The
reason is that knowing the support we only need to apply a
pseudo-inverse to find the sparsest solution which has minimum
local distance to Sg. Indeed, we wish the components outside
the support to shrink as much as possible. Next, we aim to
project the resultant image onto Sg, i.e. we wish to find the
solution to be in the set of points holding in the constraint
y = ®x . That is why we project the thresholded signal onto
the Sg. We iteratively continue these steps until the stopping
criterion holds. The stopping criterion is as follows:

ly — @a*|]3 > € 7

Now, we proceed to mention the concept of adaptive
thresholding that we use in this paper. The constraint y = ®x
forces the solutions of [p-norm minimization to fall in the
translated null-space of ®, i.e, S¢. Simultaneously, we are
looking forward to finding the vector in this set which is the
sparsest solution.



A. Geometric Interpretation

We consider all s-dimensional subspaces, and we show
that projecting x onto each of these subspaces followed
by projecting back onto the Sg reaches a new solution of

y = ®x whose components outside the support shrink, i.e.

[[(I —T)z**1|2 < ||(I —T)z*||2. In addition, we also desire
to make the solution sparser. Thus, we regularize the residual
defined above with T'r(T) to make the solution sparser. As a
result, the objective function we minimize is as follows:

I(1 = T)al|3 + XTr(T)

min (8)

2€PTyIN(P)
We denote the objective in [§] with f(x, ).

Theorem 1. Two-step projections onto the k-dimensional
support subspace, and S¢ leads to decrease in the contraction
operator ||(I —=T)x*||3, ie, ||(I—-T)x**1||2 < ||(I-T)z*||3.

Proof: By Pythagorean theorem we have,
1(1 = T)a® |5 = ||la* — ™3 + (|« = T2™3 )
Similarly,
[l =Tt |5 = || Ta® — T2 M5+ ||(I-T)=" 3 (10)
Thus,

(I = T)z*||3 = (11)
T (% — ¥ |13+ [|[(T = T)a* |3 + [|2* — 213
= ||(I = T)a™|3 > |(I = T)z" 1|3 (12)

|
First, we argue that if instead of using pseudo-inverse, we
fix T, and project x onto S¢ and T iteratively, the result of

iterations converges to the solution by the pseudo-inverse [22].

Iterative methods do not have the complexity of computing
pseudo-inverse. Theorem [I] proves how the iterative method
which could be used instead of pseudo-inverse method
converges to a locally optimal point.

B. Algebraic Interpretation

Lemma 1. Let { denote the set of all diagonal matrices with
diagonal entries in the interval [0,1]. The objective in (§) is
convex w.r.t T over ¢ and also w.r.t .

Proof: Convexity w.r.t x is obvious since the objective is
quadratic in z if we fix 7. Now We assume that z is fixed.
The T'r is a convex operator; therefore, it is enough to show
that the first term is convex in 7. Let t = [t1, ta, ....t,] denote
the diagonal of T'. Now, if we define h(t) = ||(I —T)z||3 then
the Hessian could be calculated as H;;(h([t])) = 2?2, H;; =
0, Vi # j. Thus the Hessian is positive-definite and the proof
is complete.

|

It is obvious that setting A to oo leads to minimizing the
lo-norm of the signal x. Thus, we start with the best /o-norm
solution for z, i.e. setting x = <I>Ty. Then, we shrink A and

Algorithm 1 INPMAT
Input:
A measurement matrix ® € R"™*"
A measurement vector y € R™
Output:
A recovered estimate X € R™ of the original signal.
procedure INPMAT(y, ®, x)
x0 ¢« ®fy
k+0
thr + max(]z°|)
while ||y — ®2*(|3 > € do
T «+ diag(I(|z*| > thr))
st = (eT™)Ty
o 20 4 (1 — o1 P)s*
thr + max(|(I — T")z*|)
k+—k+1
end while
return X < X
end procedure

k

find the solution for each problem and then set the updated
solution as the starting point for the next iteration which leads
to sparsifying the sequence of solutions for each problem.

Theorem 2. Let the minimum distance between S¢ and all
the subspaces induced by the set of matrices in ( which do
not intersect Sg be denoted by €. Also let k be the sparsity
number of the sparsest solution to[8] then the optimal solution
of the pr02lglem is the sparsest (best lo- norm) solution if
0< A< T

Proof: if T € ( intersects with S, then there is a solution
to the y = ®z which is inside the subspace induced by T'.
We have assumed that the sparsity number for solution is k,
and the solution is unique, therefore this intersection point has
sparsity number larger than k. Thus, AXT'r(T) > Ak and as a
result f(x,T) > f(a*,T*) = Ak, where x* is the sparsest
solution and T is the support of x*.
If T € ¢ does not intersect Sq, then ||(I — T)z||3 > €. We
have assumed that A < €2/k. Thus, f(z,T) > ||(I - T)z|3 >
€= k> Ne= f(z*,T). n

C. INPMAT Implementation Knowing Sparsity Number

We can easily adapt the INPMAT to the case when we
know sparsity. We do this by changing the stopping criterion
in Algorithm [I]to a new criterion which stops if the number of
iterations exceeds the sparsity number. Finally, knowing sparsity
number, we can confine the output signal to the support formed
by the s largest components. We compared the performance
of INPMAT in this case with the previous methods when they
also have the knowledge of the sparsity number.

ITI. NOISE ANALYSIS
In this section, we analyze how the reconstruction quality
varies w.r.t noise power. In the general noisy model, we can
assume the CS model is modified as follows:

y=®x +¢ (13)



Let ¢ denote the i.i.d Gaussian noise vector which is added to
the observation vector. We assume ¢ ~ N (0, 021).

Theorem 3. We assume ® is RIP for k-sparse signals with
constant i, ie. Yxr € R™ : (1 — 0p)||zl]2 < ||Pz]|]2 <

(1 + dx)||z||2, then the variance of the output noise could
be bounded as:
L s L s
< out) < 14
1 5k.0 < Var(eout) 1_5ka (14)

Proof: Since ® is R.I.P for k-sparse signals with constant
0, we can conclude that

2|2 < ||@T2||2 <

[|]2 (15)

1

1 + 5k 1-— 6k
It is worth noting that the property in [15]is held on each and
every k columns of ® and ®' since we are working with k-
sparse signals. Therefore, we can claim that if the sensing
matrix ® has R.LP condition, then the [[2}th step in Algorithm
is acting on at most k-sparse signals, and as a result we can
establish the following bounds for noise terms at the output.

1
14 0 1 — 0

The eigenvalues of any projection matrix are either equal to

0 or 1. Therefore, using the [[3}th step of Algorithm [I] and

applying triangle inequality, we have the following bound for
the noise term in z*:

lell2 < [|@Tell2 < [lel]2 (16)

2 — 0

0< < —— e[l = —
< leoutllo < llello + =5 llell2 = T—5-

llell2 (A7)
|
We notice that the threshold is non-increasing and as a result,
we always work with at most k—sparse signals. In other words,
the recovered support size never exceeds the sparsity of the
main signal. Thus, we always can take advantage of the RIP

property and therefore, we can establish the following bound:

2—6,\°
Var(eout) < (1 — 6:) o2,

(18)

we have shown in theorem [2] that the recovered signal converges
to the original signal. If we denote the initial SNR as SN Ry,
then for the output SNR we have the following:

1-4
SN Roui > SN Ry + 20log < ’“) , (19)

2 — O

which shows that for small values of J; the recovery SNR
does not fall off 6dB of the initial SNR; however, it could be
very large depending on the sensing matrix and could even
lead to large values of SNR in sparse recovery according to the
reconstruction power of the algorithm. The achieved bound;
however, is simply a lower bound. In simulations, we will see
that the reconstructed SNRs are not necessarily sticking to this
bound and are usually larger than this bound.

A. Noise alleviation using Tikhonov regularization

When the matrix @ is ill-posed, the noise term in the
initiation point can become significant. The reason is that
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Figure 1. The Comparison of INPMAT phase transition curve with Lasso
phase transition curve. The horizontal axis is normalized sparsity number. The
vertical axis is normalized dimension.

if we select the least square minimizer of ||y — ®z||2 as our
starting point, i.e.:

¥ = o1 (dz +¢). (20)

we observe that the term ®'e (noisy component) would be
noticeable if the condition number of sensing matrix is large.
In order to relieve the effect of noise in the starting point, we
use the Tikhonov regularization, i.e. we use the solution to the
following general minimization problem as the starting point:

2 = argmin ||y — ®x||2 + p||Tz||3, 21
where I in [21]is set to I,,x. 1 is the regularization parameter,
the choice of which is explained in [23], [24], [25].

IV. EXTENTION TO MATRIX COMPLETION

In [26]], Goldberg et al have improvised a method for matrix
completion for low rank scenarios. The thresholding on singular
values in their setting is carried out in an adaptive fashion.
In summary, they have made an update at each iteration and
thresholded the singular values in order to make the eigenvalues
vector more sparse. Now, we provide intuition on how to
extend INPMAT to matrix Completion problems. We call the
extension of our algorithm to this scenario: Matrix Imputation
with method of Adaptive Thresholding (MIMAT), where o.(X)
is the c-th singular value of matrix X, Pq is the projection
operator onto the observed entries index set, and P is the
projection onto the compliment of the set (2.

V. SIMULATION RESULTS

We implemented our simulations for two general cases. First,
we assumed we know the sparsity number, and implemented all
the methods including ours. In this case, we provided two types
of figures. First, we fixed the input SNR, and varied the number
of measurements, and plotted the output SNR versus the number
of measurements. In the other type of figure, we plotted the
output SNR versus input SNR while we have fixed the number
of measurements. We also plotted all the figures mentioned
above for the case when we do not have the knowledge of



Algorithm 2 MIMAT
1: Input:

2: Initially observed matrix A

3: Stopping Criteria €1, €2

4: Output: R

5: A completed matrixX of the original matrix
6: procedure MIMAT(A, €1, €2)

7: Q<+ {(i,j) : Ay; #0}

8: c+1

9: k<0

10: po < |[All2

11: Zo 0,

12: while ||Po(A — Zy)||% > €1 do

13: while || X1 — Xk”% > €9 do

14: [UZVT] « SVD(Xy)

15: Xyi1 + Umax(Z — pgI,0)VT
16: Zit1 < Xkt

17: pr1  0c(Xiy1)

18: Xpt1 PQ(A) +Pq. (Xk+1)
19: k< k+1
20: end while

21: c+—c+1

22: end while

23: return X

24: end procedure

the sparsity number. We briefly summarize our observations
as follows: We observe that working with small number of
measurements (approaching twice the sparsity number), our
method outperforms other methods in reconstruction as shown
in Figures When we increase the measurements number,
all methods perform similarly and give high SNR values.
This could be observed in Figures [6| and [0] In Figure [6] the
difference between the performance of different methods does
not exceed 10dB. Therefore, the dominance of INPMAT shows
itself for low sampling rates as in Figures and [7} In
Figures ] and 3] the input SNR is fixed to be 40dB. The
output SNR is computed for all methods versus sampling
rate. INPMAT reaches the highest SNR values. INPMAT
reconstructs the signal with high SNR even for about 20%
sampling rate, while the performances of other methods fall
for even larger sampling rates.

In Figure |1} we notice that the phase transition curve for our
method falls above the one for Lasso, i.e. the lasso phase
transition curve falls below 50% success rate phase transition
curve of INPMAT [27]], which shows the resistance of our
method in recovery to noise level in the input. In Figure
,we compared MIMAT to Soft-Impute, SVT, and SLO. Our
method outperforms SVT and Soft-Impute as well as SLO. The
performances of MIMAT and SLO are approximately similar
for missing data percentage less than 60%. However, MIMAT
outperforms SLO for missing data percentage greater than 80%
as provided in The Root Mean Squared Error (RMSE) for
MIMAT is 0.2 less than RMSE of SLO. Soft-Impute never
reaches RMSE less than 0.2. The SVT performance is also
worse than MIMAT for the same missing percentages. For

Output SNR vs. Sampling rate, Input SNR = 40 dB, sparsity is known in the simulations
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Figure 2. the signal size is n = 700, sparsity equal to 40.

instance, for 65 % missing percentage, the MIMAT reaches
RMSE of 0, yet SVT has RMSE around 0.3. In Figures
[IT] [T2] [13] and [14] we have compared the reconstruction power
of the proposed method in various sampling rates for the
two sensing methods of random sampling and the Gaussian
measurenments. We can clearly see that when the available
measurements are small, random sampling method has the
capability of better reconstruction than Gaussian measurment.
In Figure [T1] where the sampling rate is 25%, we can see that
the Gaussian measurment method of sensing fails to reconstruct
the signal while RS reconstructs the signal and achieves 80 dB
as the output SNR for the input SNR of 160 dB. In sampling
rate of 37.5 %, the Gaussian measurement method performs
better but still cannot achieve the performgnce by RS. For
instance, in Figure for input SNR of 150 dB, RS sensing
method performs 70dB above Gaussian measurement method.
For sampling rates above 50 %, their performance tend to
become similar and both achieve similar SNR values as in
Figures [I3] and [T4]

The computational complexity for different algorithms were
also measured in deifferent settings and the runtimes did not
show a same pattern, and varied based on the used setting.
Thus, we refrain from providing runtime table for a specific
setting due to the variable behavior. In general, the runtime by
INPMAT and MIMAT were comparable to other methods. The
runtime achieved by INPMAT for example, never exceeded
twice the minimum runtime achieved by other methods in
msecs.

VI. CONCLUSION

We have introduced a new algorithm towards sparse signal
recovery for CS, RS, and MC. The simulation results have
shown that this sparse recovery method outperforms the well-
known methods such as Lasso, OMP, SLO, and IMAT in terms
of the SNR. A variation of this method which does not depend
on computing pseudo-inverse at each step and works iteratively
is more robust and faster in comparison to other mentioned
methods. Simulation rsults imply that RS sensing measurement
significantly outperforms the Gaussian meeasurement. The
improvement is more pronounced at lower sampling rates. We
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the signal size is n = 700, sparsity equal to 40.
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the signal size is n = 700, sparsity equal to 40.



Output SNR vs. Input SNR, Sampling rate = 42.8%, sparsity is unknown in the simulations
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Figure 9. the signal size is n = 700, sparsity equal to 40.
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Figure 10. error comparison for matrix completion on a 60 x 110 matrix of
rank 10.

have also observed that the extension of this idea to matrix
completion also outperforms SVT, Soft-Impute, and SLO.

Future Works

We can modify the objective function we started working
with as considering /;-norm term for components outside
the support instead of lo-norm. In order to minimize this
objective function, we should solve [; Residual Shrinkage
Minimization problem. The motivation to use this concept is
that this formulation heuristically results in more resistance to
noise. Thus, we do not have to regularize the initiation point as
stated in section III, A. Additionally, using /;-norm guarantees
more precision in signal recovery since [;-norm is a better
surrogate for /y- norm than [, residual.
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