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Abstract—This letter proposes a dictionary learning algorithm
for solving the grid mismatch problem in direction of arrival
(DOA) estimation from both the array sensor data and from the
sign of the array sensor data. Discretization of the grid in the
sparsity-based DOA estimation algorithms is a problem which
leads to a bias error. To compensate this bias error, a dictionary
learning technique is suggested which is based on minimizing a
suitable cost function. We also propose an algorithm for estima-
tion of DOA from the sign of the measurements. It extends the
Iterative Method with Adaptive Thresholding (IMAT) algorithm
to the one bit compressed sensing framework. Simulation results
show the effectiveness of the dictionary learning based algorithms
in comparison to the counterpart algorithms in DOA estimation
both from the sensors’ data and from the sign of the sensors’
data.

Index Terms—Direction of Arrival, Compressed sensing, Sign
of the measurements, Dictionary learning, Steepest-descent.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation is a well-known
problem which has many applications in wireless com-

munications [1], radar [2] and sonar [3]. Some of the classical
algorithms for DOA estimation are conventional beamformer
[4], Minimum Variance Distortionless Response (MVDR) [5]
and MUSIC [6]. Sparsity-based algorithms are also suggested
for DOA estimation which exploit the spatial sparsity of the
sources in a discrete grid [7]-[10]. These algorithms suffer
from the problem of grid mismatch, i.e. the true DOAs are not
on the discretized sampling grid. To deal with this problem,
an off-grid DOA estimation is suggested which uses sparse
Bayesian inference [11]. [12] uses the errors in variables (EIV)
model which treats the grid mismatch as an additive error
matrix and proposes a block sparse estimator for grid matching
and sparse recovery. A super-resolution compressed sensing
algorithm is also suggested for joint parameter learning and
sparse signal recovery [13].

The first contribution of this letter is to suggest to use
a dictionary learning algorithm to solve the grid mismatch
problem for DOA estimation from the measurements of the
array sensor output. It is performed by an alternate dictionary
update plus a sparse recovery algorithm. This idea is not
new and the similar idea is also used in [13], [14] and [15].
The current work and [13] have different update strategies.
The current work uses a two-stage alternating optimization
scheme, whereas [13] uses an iterative reweighted scheme
for joint dictionary and sparse signal refinement. The latter
scheme is less likely to be stuck in undesirable local minima,
as pointed out in [13]. A Total Least Squares (TLS) algorithm
is used for sparse recovery in [14], where perturbation appear
in both data vector as well as in the regression matrix. [15]
solves the problem of basis mismatch by an iterative, biconvex
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search algorithm. In contrast to these counterpart algorithms,
our algorithm uses a simple steepest-descent algorithm for
dictionary update. In addition, we use an Iterative Method
with Adaptive Thresholding (IMAT) [16], [17] for the sparse
recovery step.

On the other hand, the one bit compressed sensing has
been extensively investigated recently [18]-[21]. According
to compressed sensing (CS) theory, a sparse signal can be
reconstructed from a number of linear measurements which
could be much smaller than the signal dimension [22]-[23]. In
the one bit compressed sensing framework, it is proved that
an accurate and stable recovery can be achieved by using only
the sign of linear measurements [19].

The main novelty and second contribution of this paper is
to estimate the DOAs using the sign of the measurements of
an array output. This is done previously in [24] before the
advent of the one bit compressed sensing framework. [24]
presented two one bit DOA estimator based on covariance
matrix reconstruction and empirical probability estimation.
Both of these two methods need multiple snapshots of array
output data. On the other hand, in this letter, we use the
one bit compressed sensing framework for DOA estimation
which needs only one snapshot of the array output data. At
first, a sparse recovery algorithm called IMAT [16], [17] is
generalized to use for one bit DOA estimation. Similar to
sparsity-based algorithms for DOA estimation, this algorithm
suffers from the problem of grid mismatch which means
that the true DOAs are not on the discretized sampling grid.
Therefore, secondly, an iterative dictionary learning algorithm
is used for solving the problem of grid mismatch.

Simulation results both in DOA estimation from the array
sensor output or from the sign of the measurements of the array
sensor output, show that the dictionary learning can improve
the accuracy of DOA estimations.

II. SYSTEM MODEL

To obtain the general model of DOA estimation, consider
K sources in direction angles of θk, k = 1, · · · ,K in far-
field impinging independent narrowband signals sk(t), k =
1, · · · ,K into an array in an isometric environment. The
array include M omni-directional sensor placed in a line with
uniform distribution known as Uniform Linear Array (ULA).
The output vector of the array y(t) = [y1(t), · · · , yM (t)]T at
each time snapshot t can be modeled as:

y(t) = Ã(θ)̃s(t) + n(t) (1)

where s̃(t) = [s1(t), · · · , sK(t)]T is the source vector and
n(t) = [n1(t), · · · , nM (t)]T is the sensor array noise vector.
The array manifold matrix is Ã(θ) = [a(θ1), · · · ,a(θK)]M×K
and a(θk) = [1, e−j

2π
λ d sin(θk), · · · , e−j 2π

λ (M−1)d sin(θk)]T is
the steering vector which provides the delay information of
the kth source to the all sensors based on the geometry of
the array. The parameter d is the distance between adjacent
elements and λ = c

f represents the wavelength corresponding



1089-7798 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2016.2587674, IEEE
Communications Letters

2

to frequency f , and c is the velocity of wave propagation. The
array manifold Ã(θ) include K columns of steering vectors
related to K sources. By discretizing the spatial space into
finite angle points and settle the related steering vectors of
nonexistent of sources angles into the array manifold, the
extended array manifold is obtained and also by extending the
vector s(t) by adding zeros corresponding to the nonexistent
source angles, the sparse form of the problem is formulated
as

y(t) = A(θ)s(t) + n(t), (2)

where A(θ) is M × L extended array manifold and s(t) is
L× 1 extended source vector. L is the number of finite angle
points in the grids such that L � K and s(t) is K-sparse
which means only K elements of it is nonzero.
The One-bit form of the (2) can be obtained by replacing the
y(t) with csgn{y(t)}, i.e.

y(t) = csgn {A(θ)s(t) + n(t)} (3)

where csgn{x} = sign(Re(x))+jsign(Im(x)) is the complex
sign of x.

III. THE PROPOSED ALGORITHMS

In this section, we introduce a dictionary learning technique
for grid mismatch problem of estimated DOAs for both
formulation of (2) and (3). Also, we introduce an efficient
method to estimate the DOAs based on the model (3).

A. Dictionary learning based algorithms
Most of DOA estimators need to search on the discretized

grid and the problem is that the true angle may not fall into
grid, therefore, the grid mismatch occurs. To solve the off-
grid problem, we propose an iterative technique similar to
dictionary learning algorithms [25]. The suggested algorithm
includes two steps. At the first step, the dictionary A(θ) is
fixed and sparse vector s will be estimated by sparse recovery
algorithms such as the well known Orthogonal Matching Pur-
suit algorithm (OMP) or IMAT [16], [17]. At the second step,
we fix s and then update the dictionary A(θ) or equivalently
the angle vector θ. To update the dictionary, we propose to
minimize the following cost function

min
θ
‖y −A(θ)s‖22 . (4)

The cost function defined as F (θ) ,
(y −A(θ)s)

H
(y −A(θ)s). Therefore, using the steepest

decent, we can iteratively estimate the true DOA by learning
the array manifold matrix A. The steepest-descent iteration is

θ(i+1) = θ(i) − µ∇θF (θ) (5)

In the appendix A, it is proved that the final recursion for
updating the estimated angle vector θ at iteration i+ 1 is

θ(i+1) = θ(i) − µRe{c0eH [B(θ(i))�A(θ(i))]s} (6)

where µ is the step size parameter, c0 = −j 2πdλ , e = A(θ)s−
y is the error, B is the derivative of A with respect to θ and
is given in the appendix A, and � is element-wise product.
In the one-bit framework, We use a similar two step algorithm.
At the first step, the dictionary A(θ) is fixed and sparse vector
s will be estimated by one bit compressed sensing algorithms
such as BIHT [19] or binary IMAT which will be suggested
in section III-B. At the second step, we fix s and then update

the dictionary A(θ) or equivalently the angle vector θ. To
update the dictionary, we propose to minimize the following
cost function

min
θ
‖y − csgn(A(θ)s)‖22 . (7)

the cost function defined as H(θ) ,
(y − csgn {A(θ)s})H (y − csgn {A(θ)s}). Also
csgn {x} is approximated by a continuous function as
csgn {x} ≈ S(Re(x)) + jS(Im(x)) where the non-continuous
sign function is approximated by a continuous S-shaped
function S(x) = 1−exp(−x)

1+exp(−x) . This approximation is also used
in [26] for similar purpose. In the appendix B, it is proved
that the final recursive formula for updating the estimated
angle is as follows

θ(i+1) = θ(i) − µRe
{
c0e

H [B(θ(i))�A(θ(i))]s� d(θ(i))
}
(8)

where µ is the step size parameter, c0 = −j 2πdλ , e =
csgn {A(θ)s} − y is the error, B is the derivative of A with
respect to θ and is given in the appendix A and d(θ(i)) is the
derivative vector defined in appendix B.

Therefore, the overall dictionary learning based algorithm
for DOA estimation from the array output and from the sign of
the array output is summarized in Algorithm 1 and Algorithm
2.

Algorithm 1: Dictionary learning based DOA estimation
from the array sensor output
input :

Array output y ∈ RM×1 based on model (2)
output:

DOA estimation ŝ ∈ RL
Learned angle vector θ̂

s(0) ← 0;
θ(1) ← θ;
for i = 1 to DL Itermax do

Fixed A(θ(i)): s(i) ← SparseRecovery(y, A(θ(i)));
Fixed s(i): Dictionary learning based on (6);

end
ŝ← s(DL−Itermax);
θ̂ ← θ(DL−Itermax+1);

Algorithm 2: Dictionary learning based DOA estimation
from the sign of the array sensor output
input :

Array output y ∈ RM×1 based on model (3)
output:

DOA estimation ŝ ∈ RL
Learned angle vector θ̂

s(0) ← 0;
θ(1) ← θ;
for i = 1 to DL Itermax do

Fixed A(θ(i)):
s(i) ← Onebit SparseRecovery(y, A(θ(i)));
Fixed s(i): Dictionary learning based on (8);

end
ŝ← s(DL−Itermax);
θ̂ ← θ(DL−Itermax+1);
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B. One-Bit IMAT algorithm
In order to solve the DOA estimation problem based on

one-Bit model (3), we propose an iterative method namely
one-Bit Iterative Method and Adaptive Thresholding (One-Bit
IMAT or Binary IMAT). It extends the IMAT algorithm [16],
[17] for sparse recovery to the case of one bit sparse recovery
which finds the sparse vector s based on the sign of the data
as in the model (3). Therefore, the nonzero positions of vector
ŝ(t), are the estimated DOAs. The details of the algorithm are
illustrated in Algorithm 3. The thresholding operator T k(.) is
defined as [16], [17]:

T k(z) =

{
0 |z| < θ(k),
z Othewise,

(9)

where θ(k) = θ(0)exp(−kα) is the threshold sequence in
which θ(0) is a large initial threshold and α is the decay factor
[16], [17].

Algorithm 3: One Bit IMAT Algorithm
input :

Array output y ∈ RM×1
output:

DOA estimation ŝ ∈ RL
s0 ← 0;
for k = 1 to Itermax do

r← y − csgn
{
Ask−1

}
;

sk ← T k(sk−1 + λAHr);
end
ŝ← sItermax ;

IV. SIMULATION RESULTS

This section presents the simulation results. In the simula-
tions, two experiments were performed to show the efficacy
of the proposed dictionary learning based DOA estimation
algorithms. At first experiment, DOAs are estimated from
the array sensor output, while at the second experiment, they
are estimated from the sign of the array sensor output. We
considered three sources (K = 3) at angles θ1 = −12.50◦,
θ2 = 43.85◦ and θ3 = 76.80◦. The number of array elements
are assumed to be M = 25. For the discrete grid, the angle
interval [−90◦, 90◦] is divided into 90 equal bins with the step
of 2◦. The sensor array noise vector n(t) is considered to be
complex independent white Gaussian noise with zero mean.
The Signal to Noise Ratio (SNR) is defined as SNR(dB) =

10log(E{|As|2}
E{|n|2} ). For the performance metric, Mean Square

Error (MSE) of estimated angles is used which is defined as

MSE =
√

1
K

∑K
i=1(θi − θ̂i)2 which are averaged over 1000

independent monte carlo runs. The number of iterations of the
proposed dictionary learning based algorithm is selected as
100.

At the first experiment, we used IMAT algorithm [10]
for the sparse recovery in our proposed dictionary learning
based algorithm. Therefore, the performance of the Dictionary
Learning based IMAT (DL-IMAT) is compared to MUSIC [6],
OMP, `1-SVD [8], WSS-TLS[14] and IMAT [16], at different
SNRs. We used five snapshots of the array output for all the
algorithms because two of the competing algorithms need mul-
tiple snapshots. These two algorithms are MUSIC and `1-SVD.
For the other three single snapshot based algorithms (proposed
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Fig. 1. MSE versus SNR for DOA estimation from the array sensor output.
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Fig. 2. MSE versus SNR for DOA estimation from the sign of the array
sensor output.

algorithm, OMP and IMAT), average of the estimated angles
are used as the final estimation. For the proposed algorithm,
the step size parameter is selected as µ = 0.00001. For IMAT,
we used the initial threshold equal to θ(0) = Tmax = 20, the
decay rate equal to α = 0.05 and maximum number of 85
iterations. For `1-SVD, the parameter is selected high enough
β = 10 to yield sharp peaks [8]. The maximum number of
iterations of OMP is equal to the number of sources which
is K = 3. The results are shown in Fig 1. It shows that
the proposed dictionary learning based algorithm enhances the
performance of DOA estimation.

At the second experiment, the performance of the Dictionary
Learning based Binary IMAT (DL-BIMAT) is compared to
BIHT [19], BIMAT without dictionary learning (proposed in
this paper), One bit BCS [21] and Conventional BeamFormer
(CBF) [24] for different SNRs. Single snapshot is used for
all the algorithms. For the proposed algorithm, the step size
parameter is selected as µ = 0.0001. The maximum number
of iterations of BIHT is equal to 100. For BIMAT, we used
the initial threshold θ(0) = Tmax = 30 and decay factor α =
0.1 and maximum number of iterations is equal to 100. For
one bit BCS, the parameters are selected as Tol = 1e−6 and
maximum number of iterations equal to 500 as suggested in
[21]. The results are illustrated in Fig. 2. It shows that the
proposed dictionary learning based algorithm is significantly
outperforms the other algorithms. It also demonstrates that one
bit BCS is slightly better than BIMAT algorithm and BIMAT
is slightly better than BIHT.

V. CONCLUSION

We have proposed new iterative dictionary learning based
algorithms for DOA estimation from both the array sensor
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output and the sign of the array sensor output. These algo-
rithms solve the grid mismatch problem which occurs for
sparsity-based DOA estimation algorithms. Also, for DOA
estimation from the sign of the array sensor output, we use
the framework of one bit compressed sensing. For the sparse
recovery from the one bit measurements, a binary IMAT
algorithm is suggested which extends the IMAT algorithm to
the one bit compressed sensing framework. Simulation results
show that dictionary learning improves the accuracy of DOA
estimation.

APPENDIX A
FINAL RECURSION: FROM THE SENSOR DATA

By some calculation, the cost function can be formed as:

F (θ) = (y −A(θ)s)H (y −A(θ)s)
= yHy − yH(A(θ)s)− (A(θ)s)Hy − (A(θ)s)H(A(θ)s)

= yHy − 2Re
{
yHA(θ)s

}
− sHA(θ)

H
A(θ)s.

The partial derivative ∂
∂θF (θ) is as follows:

− ∂

∂θ

(
yHA(θ)s

)
− ∂

∂θ

(
A(θ)sHy

)
+

∂

∂θ

(
A(θ)sHA(θ)s

)
= −2Re

{
yH

∂(A(θ)s)

∂θ

}
+

(
∂(A(θ)s)H

∂θ

)
(A(θ)s)

+ (A(θ)s)H
(
∂(A(θ)s)

∂θ

)
= −2Re

{
yH

∂(A(θ)s)

∂θ

}
+

(
(A(θ)s)H

(
∂(A(θ)s)

∂θ

))H
+

(
(A(θ)s)H

(
∂(A(θ)s)

∂θ

))
= −2Re

{
yH

∂(A(θ)s)

∂θ

}
+ 2Re

{
(A(θ)s)H

(
∂(A(θ)s)

∂θ

)}
= 2Re

{(
(A(θ)s)H − yH

) ∂(A(θ)s)

∂θ

}
= 2Re

{
eH

∂(A(θ)s)

∂θ

}
.

Also the derivation of array manifold with respect to θ is:

∂

∂θ
(A(θ)s) = c0[B(θ)�A(θ)]s.

where c0 = −j 2πdλ , B = [b(θ1),b(θ2), · · · ,b(θL)], and
b(θi) = [0, cos(θi), 2 cos(θi), · · · , (M − 1) cos(θi)]

T .
Finally, put all things together, the final recursion in (6) is
obtained.

APPENDIX B
FINAL RECURSION: FROM THE SIGN OF THE SENSOR DATA

For one-bit DOA estimation, With the same procedure of
appendix A, the derivation of cost function with respect to θ
is as follow:

∂

∂θ
H(θ) = 2Re

{
eH

∂(csgn {A(θ)s})
∂θ

}
.

and the derivative of array manifold with respect to θ can be
obtained as:

∂

∂θ
(csgn {A(θ)s}) = c0[B(θ)�A(θ)]s� d(θ).

where c0 = −j 2πdλ , B(θ) = [b(θ1),b(θ2), · · · ,b(θL)],
b(θi) = [0, cos(θi), 2 cos(θi), · · · , (M − 1) cos(θi)]

T and
d(θ) = S

′
(Re(A(θ)s)) + jS

′
(Im(A(θ)s)) is the derivative

vector where S
′
(x) = 2exp(−x)

1+exp(−x) .
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