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Abstract—This paper considers the problem of interpolating
signals defined on graphs. A major presumption considered
by many previous approaches to this problem has been low-
pass/band-limitedness of the underlying graph signal. However,
inspired by the findings on sparse signal reconstruction, we
consider the graph signal to be rather sparse/compressible in the
Graph Fourier Transform (GFT) domain and propose the Itera-
tive Method with Adaptive Thresholding for Graph Interpolation
(IMATG]I) algorithm for sparsity promoting interpolation of the
underlying graph signal. We analytically prove convergence of the
proposed algorithm. We also demonstrate efficient performance
of the proposed IMATGI algorithm in reconstructing randomly
generated sparse graph signals. Finally, we consider the widely
desirable application of recommendation systems and show by
simulations that IMATGI outperforms state-of-the-art algorithms
on the benchmark datasets in this application.

Index Terms—Graph Signal Interpolation, Sparse Signal Re-
construction, The Iterative Method with Adaptive Thresholding
for Graph Interpolation (IMATGI), and Recommendation Sys-
tems.

I. INTRODUCTION

Interpolating signals defined on graphs is a basic problem
that has found numerous applications in a variety of fields
such as sensor networks, data classification, brain-imaging
and recommendation systems [1-4] The aim of interpolation
is to find missing values of a graph signal from its values
on a subset of the nodes assuming a particular signal model
e.g. band limitedness in the GFT (Graph Fourier Transform)
domain, Sparsity, and etc. Different algorithms have been
proposed for this problem so far [SH10] (See [12]for an
extensive review).

The K-Nearest Neighbor (KNN) method proposed in [9] is
a basic technique that uses an efficient Lanczos procedure for
recursive data partitioning and reconstructs the unknown signal
values using a weighted combination of the known values on
the k-nearest nodes [10]. It is known that KNN overlooks
the dependencies existing between the known samples. How-
ever, more computationally demanding algorithms have been
proposed by [5, 8 [10] that take more similarity factors into
account and thus provide more accurate estimates.

The method proposed by [6]] shows improved performance
regarding both accuracy and computational efficiency and
serves as a benchmark for performance comparisons in this
research. [[6] proposes a Regularization Based Method (RBM)
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in order to minimize a cost function consisting of both
signal smoothness and the square reconstruction error. Fur-
thermore, it proposes the Iterative Least Square Reconstruction
(ILSR) method for graph signal reconstruction based on band-
limitedness. (6] also provides a comprehensive comparison be-
tween the performance of state-of-the-art interpolation meth-
ods for the application of recommendation systems working
on three benchmark datasets of Movielens [13], Jester [14]
and Books [15].

The Iterative Weighting Reconstruction (IWR) and Iterative
Propagation Reconstruction (IPR) methods were proposed by
[L6] to reconstruct band-limited graph signals by the idea
of division to sub-graphs. Compared to ILSR in [6], these
methods achieve improved convergence rates, however the
partitioning technique creates isolated local-sets which leads
to reluctant sampling vertices.

In [12], a three layer cluster division is proposed which is
similar to [L6] but reduces the sampling rate by removing the
isolated vertex sets.

Contributions: As observed above, a major presumption
that has been considered in many previous works on graph
signal interpolation [SH7, [12] [17] is that the signal defined on
the graph is band-limited and there are a few prior works
that assume sparsity [18, [19]. In this work, we consider
the graph signal to be sparse/compressible rather than band-
limited in the GFT domain i.e. it has a few non-negligible
coefficients spread along the whole GFT range without prior
knowledge of their locations. We propose the Iterative Method
with Adaptive Thresholding for Graph Interpolation IMATGI)
for sparsity promoting reconstruction of graph signals. We
provide the convergence analysis for the proposed method
and show its efficient performance by simulations. Another
key contribution of this work is that we show (by extensive
simulations on the benchmark datasets used by [5, [6],[20-
22] that applying the sparse signal assumption by IMATGI
significantly improves the interpolation performance in the
widely desirable application of recommendation systems. This
observation brings us to the conclusion that the natural Movies,
Jokes, Books and etc. datasets better match the sparse signal
assumption rather than the classic band-limitedness.

Notations: Throughout this paper, we denote scalar values
and vectors by italic and regular lowercase letters, respectively.
Matrices and sets are denoted by boldface and regular upper-
case letters. Finally, calligraphic letters denote mathematical
operators and F{.},(.)" and ||.||2 are expected value, matrix
transposition and the second vector norm, respectively.

The rest of this paper is organized as follows. Section
introduces the proposed IMATGI algorithm. Section [[II] ana-



Iytically discusses the reconstruction capability of IMATGI.
Section includes the simulation results and performance
comparisons and finally section |V| concludes the paper.

For further reproduction of the reported simulation results,
MATLAB codes are made available on ee.sharif.edu/ ~
boloursaz.

II. THE PROPOSED IMATGI ALGORITHM

In this subsection, we present the proposed Iterative Method
with Adaptive Thresholding for Graph Interpolation IMATGI)
algorithm. This algorithm assumes that the underlying graph
signal is sparse/compressible in the Graph Fourier Domain
(GFT) and gradually extract the significant signal components
by iterative thresholding of the estimated signal with a de-
creasing threshold. This technique is inspired by the previous
findings on sparsity promoting reconstruction of regular sig-
nals from missing samples [23].

Consider an undirected graph G = (V,E) with V as
the set of vertices and E as edges. Denote by L the sym-
metric normalized Laplacian matrix for this graph as de-
fined by [6]. Now, decompose L = UAU?® in which A =
diag(A1, A2, -+, \,) is a diagonal matrix of non-negative
eigenvalues and U = [uj,ug, -+ ,u,] is a unitary matrix
containing the corresponding eigenvectors.

Now, define the corresponding graph signal as a function
f: V — R and denote it by the vector f € R where the
ith component represents the signal value on the ¢th vertex.
Considering the eigenvectors u; as the basis vectors and the
corresponding eigenvalues A; as the graph frequencies (as
defined by [12]), this signal can be transformed into the Graph
Fourier Transform (GFT) domain by f=U't.

In the graph interpolation problem, the signal entries are
known only on a subset of nodes S and we aim to interpolate
the unknown signal values on S°. Define the diagonal sampling
matrix Snxn = diag(si, s2, -+, $n) in which ith diagonal
element is defined by:

s={y 4SS 1)
0 if ¢S

Hence, the sub-sampled signal is given by f; = Sf. Utilizing
this notation, the proposed IMATGI algorithm is presented in
Table [l The idea of reconstructing sparse graph signals by
sequential thresholdings according to the IMATGI update rule
(2) is a rational guess that is inspired by the Iterative Hard
Thresholding (IHT) [24] and Iterative Method with Adaptive
Thresholding (IMAT) [23]] algorithms in the literature of spar-
sity promoting reconstruction of regular signals from missing
samples.

In Table I f and f; denote the original signal and its
reconstructed version at the kth algorithm iteration. A is the
relaxation parameter that controls the convergence rate of the
algorithm and 7(.) denotes the thresholding operator. The
thresholding block operates elementwise on the input vector
and sets the vector entries with absolute values below the
threshold to zero. The threshold value ¢(k) is decreased expo-
nentially by t(k) = Be~“* where k is the iteration number.
The algorithm parameters \,3,c are optimized empirically for
fastest convergence.

TABLE I
STEPWISE PRESENTATION FOR IMATGI

IMATGI Algorithm for Sparse Signal Reconstruction on Graphs

Require: GO = (V, E)
* Compute normalized Laplacian matrix
Inputs:
* SnxnN: The sampling matrix
* e Stopping criteria
* (a, B,\): Algorithm Parameters
Output:
. %lez The reconstructed signal
Algorithm:
« Initialization f = f; = Sf,fo = Oy x1,k =1
e While (ka — fkfll‘ > 6)
- Calculate the threshold as: t(k) = e~k
- Perform the thresholding as: g;, = U(7 (U'fy))
- Perform the recursion as:

fretr1 = (Inx N — AS)gy, + M 2)
- f=fe
Ck—k41
e End While

III. CONVERGENCE ANALYSIS

In this section, we discuss convergence of the proposed
IMATGTI algorithm. To proceed, we need to prove the fol-
lowing lemma.

Lemma 1: Let's denote the GFT of the sub-sampled graph
signal by f, = U'Sf. Also, assume that the diagonal ele-
ments of the sampling matrix S are independent identically
distributed (iid) random variables coming from Bernoulli(p)
distribution (s; ~ Bernoulli(p), Vi). We have:

E{f} = pf
Eftrace((f, — ph)(f, — p)")} = (p — p°)e 3)
in which e is the energy of the graph signal defined as e = f'f.
Proof: For the first equation we have:
E{f,} = E{U*'Sf} = U'E{S}f = U*(pI)f = pU'f = pf (4)
For the second equation we write ():
f, — pf = USf — pUf = UY(S — pI)f (5)
Now substituting (3)) we get:
E{trace((f, — pf)(f, — p)")}
= E{trace(U%(S — pD)ff'(S — pI)'U)}
= E{trace((S — pDff (S — pI)*)}
= trace(E{(S — pI)*(S — pI)ff'}) (6)

Now note that S — pI is a diagonal matrix with E{(S —
p)!(S — pI)} = p(1 — p)I, hence we have:

E{trace((fs — pf)(fs — pf)")}
= p(1 — p)trace(ff') = p(1 — p)e )
O

Theorem 1: Under the assumptions of Lemma 1 (i.e.
s; ~ Bernoulli(p), Vi), and considering the IMATGI recon-
struction formula given in Table limg_ o0 fkis an unbiased
estimator of f for 0 < A < 2/p.



Proof: To prove this theorem, we need to show that
E{limg 00 fk} = for equivalently limg_, E{%k} = f
To this end, we define the sequence of error vectors e; =
f-FE {fk} and show that each element of e;, forms a geometric
progression with common ratio » = 1 — Ap. Hence, if
0 < A < 2/p the IMATGI reconstruction technique converges
linearly (of order 1) to the original graph signal in the mean.

Starting the algorithm from a zero initial condition, we have

fo = 0 and hence e = f. Also from the basic IMATGI
recursion we have f; = Af; and hence from Lemma 1
we get:

e; =f— E{fi} = (1-\p)f ®)

Now note that the basic IMATGI recursion can be rewritten
in transform domain as:

I:k+1 = Ut(INXN — )\S)gk + A/fg (9)

Taking expected value from both sides of (9) and utilizing
Lemma 1 yields:

E{fi1} = E{U (Inxn — AS)g;.} + Apf
= Ut (1 — \p)IE{U(T (U'ty))} + Apt

= (1 — A\p) E{T (U')} + \pf (10)
Utilizing (I0) we get:
err1(i) = — E{fer1}
= (1= p)f — (1 = Ap) E{T (U'f;)}
= (1= p)(f - E{T(fx)}) (11)

Now let's take an elementwise look at the final equation
(TT). Denote the ith element of the original signal, the esti-
mated signal and the error vector by f(7),f; (i) and ep41(7),

respectively. We get (12):
ert1(i) = (1= Ap)(E() — B{T (fx(0))})

Now if [f;(i)| > t(k), this element successfully passes the
threshold. In this case we can omit the thresholding operator
from the right side of (IZ) and we get (I3):

ent1 (i) = (1 — Ap)(f(i) — B{fi(i)})
= (1 - Ap)ex (i)

On the other hand, if |f; ()| < t(k) then fk(z) does not pass
through the threshold and we have E{T (fy)} = 0 and it is
obvious from that:

ept1(i) = (1 — Ap)f(i)

Hence, once a vector element passes through the thresh-
old in a specific iteration, its corresponding error sequence
converges linearly to zero provided that 0 < A < 2/p. As the
threshold is strictly decreasing and approaches zero as k — oo,
all vector elements will eventually pass through the threshold
and the proof is complete. O

12)

13)

(14)

In order to guarantee perfect reconstruction/convergence of
the IMATGI algorithm, we also need to show that the variance

of this unbiased estimator approaches zero as k — oo. Theo-
rem 2 explains this variance fluctuation issue as k approaches
infinity. Before proceeding to the formal statement of Theorem
2, lets define the support for the sparse graph signal f as
the set of all non-zero elements in its GFT representation as
Supp = {j[f(j) # 0}.

Theorem 2: Under the assumptions of Lemma 1 (i.e.
s; ~ Bernoulli(p), Vi), if the GFT component f} (i) passes
through the threshold in the kth iteration of the IMATGI
algorithm, this decreases the estimation variance defined as
o2 = E{trace((f,, — E{fs})(fx — E{f,})")} if i € Supp and
increases the variance for i & Supp

Proof: Let's partition the set of all GFT components passed
through the threshold at the kth iteration as Suppr, = Q;, |J Lk
in which Q,, represents the set of GFT components present in
the original signal support (Supp) and L denotes the rest.
Correspondingly, decompose g = U(T (U'fy)) as:

In which q,, is the portion due to the support components
and 1 is due to the non-support portion passed mistakenly
through the threshold. Similarly, let's decompose f as the sum
of its reconstructed portion q;, and a residual rj, as

f=q; +r; (16)
Now, substituting and in ) gives:
fk+1 = (INXN — )\S)gk + )\fs
= (IN><N — /\S)(qk + lk) + )\S(qk + I'k)
= ASr,, — ASl; +q;, + 1i (17

The last two terms in (q; and 1i) are not sub- sampled
and hence do not contribute to the estimation variance o7, ;.
Utilizing Lemma 1, we can compute o3 41 due to the sub-
sampled terms by (I8)

oty = B{trace((fr1 — E{fes1}) (i1 — E{fea )"}
=X (p—pHa, + N (p—p’er, (18)

In which ¢, = rfcrk and ¢, = IZIk denote the energies of
the residual and the portion due to the non-support components
mistakenly passed through the threshold. As each mistakenly
passed component ¢ ¢ Supp increases ¢, , it will consequently
increase the spectrum variance. Similarly, for a correctly
passed signal component 7 € Supp, €, and consequently the
spectrum variance o7 41 is decreased. The above discussion
completes the proof. O

Remark 1: As stated previously, due to the non-zero
spectrum variance, ) (i) is generally non-zero for ¢ ¢ Supp.
Hence, the threshold parameters must be adjusted such that
the threshold value always keeps above the standard deviation
at the kth iteration (e.g. t(k) > ~vok, v > 1) to prevent the
algorithm from picking up incorrect GFT components. In this
case, €, = 0 and the estimation variance is decreasing in each
iteration o7, < o}.

Corollary 1: Considering Theorem 1, we conclude that
the IMATGI estimation bias approaches zero as k approaches



infinity. On the other hand, the variance of the IMATGI
estimation is decreasing provided that the condition in Remark
1 (e, = 0,Vk) always holds. Now considering the fact that
the Mean Square Error (MSE) of the estimator is given by

™
MSE), = E{trace((f;, — f)(f, — E{t})")}

= trace((E{fy} — ©)(E{f;} — D)) + o7 (19)

As both terms in (1_1_75]) are decreasing, we conclude that
MSE]j is also decreasing. In other words, if the condition
in Remark 1 holds, the IMATGI algorithm strictly decreases
the Mean Square Error (MSE) of the estimated signal in each
iteration. As MSE is a convex cost function, these sequential
decreases converge to the unique global minimum.

Concluding this section, we have shown that perfect recon-
struction by the proposed IMATGI algorithm is possible if the
threshold parameters («, 3) are selected such that the condition
in remark 1 is satisfied, 0 < A < 2/p and k — oo.

IV. SIMULATION RESULTS

In this section we demonstrate efficient performance of
the proposed IMATGI algorithm by simulations on both
randomly generated sparse signals and three benchmark data
sets used in recommendation systems.

A. Generic Sparse Signals

In order to fairly evaluate the performance of the proposed
algorithm, we calculate and report the reconstruction SNR as

20):

It =113

where f and f denote the original and reconstructed graph
signals, respectively.

In this simulation scenario, we generate a graph with N =
1000 randomly located nodes and edges similar to [6]]. The
signal entries f(¢) associated with each node are taken from
the uniform random variable U (0, 1). Now, define the number
of sparse GFT components as k. In order to enforce sparsity of
the generated signal in the GFT domain, we project the random
signal onto the GFT domain (f = U'f), keep k entries with
largest absolute values and set all the other GFT components
to zero.

To study the reconstruction performance of the proposed
algorithm, we randomly sub-sample these generic k-sparse
signals utilizing the sampling matrix S at rates ranging from
p=0.45 to p=0.65. We sweep the sparsity factor % from 10%
to 60%. For each sparsity factor and sampling rate, we repeatly
generate 100 random k-sparse signals, sample randomly at rate
p, reconstruct using 20 iterations of the proposed IMATGI
algorithm and report the average achieved SNR in Figl[l]

As observed in Fig[l] all curves experience a sudden knee-
like fall in reconstruction SNR as the sparsity factor increases.
This fall is considered as the boundary between successful
and unsuccessful reconstruction. As expected, the simulation

results reveal that as the sampling rate increases, the algorithm
can successfully reconstruct less sparse signals.

Note that as the number of iterations are bounded to 20
and the threshold parameters are not ideally trained in order
to guarantee that Remark 1 holds, perfect reconstruction
(infinite SNR value) is not observed in these simulations even
on the left hand of the knee-like fall.

B. Recommendation Systems

In this scenario we compare the performance of the pro-
posed IMATGI algorithm with the previously proposed graph
interpolation methods in the widely desirable application of
recommendation systems. To this end, we apply IMATGI
on three benchmark datasets widely used for performance
evaluations in recommendation systems [13H15]]. To have a
fair comparison between the performances of different meth-
ods, we report the normalized reconstruction RMSE values
achieved (as defined by [6]) in Table

Following an approach similar to [6]], each dataset is reduced
to a 100K randomly selected user-item sub-dataset and split
into 5 fold cross-validation sets. In each iteration we use four
subsets for training (i.e. is computing the graph and signal
values) and the last subset for testing the performance of the
algorithm [6].

Table [[Ij reports the RMSE values achieved by the proposed
IMATGI algorithm along with the previously reported results
for the other methods. As observed in this table, IMATGI
improves the reconstruction performance in comparison with
the literature. This is due to the fact that IMATGI utilizes the
more general assumption of sparsity rather than bandlimited-
ness of the underlying graph signals. In fact, in this scenario,
we observe that the real signals that arise in the application
of recommendation systems are rather sparse than bandlimited
(i.e. they have a few non-zero GFT components that may be
located far apart from each other rather than condensed in a
specific spectral range.)

60
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Fig. 1. The Reconstruction Performance for IMATGI

V. CONCLUSION

In this paper we proposed the Iterative Method with Adap-
tive Thresholding for Graph Interpolation IMATGI) algorithm



for sparsity promoting interpolation of signals defined on
graphs. We provided a formal convergence analysis for the
proposed IMATGI algorithm and finally demonstrated its
efficient reconstruction performance on both generic sparse
data and the benchmark datasets for recommendation systems.

TABLE 11
RMSE PERFORMANCE COMPARISON BETWEEN DIFFERENT GRAPH
INTERPOLATION TECHNIQUES FOR RECOMMENDATION SYSTEMS

Dataset KNN PMF RBM IRBM LSR ILSR IMATGI

Movielens[13]| 0.2482 0.2513 0.2414 0.2450 0.2514 0.2466 0.2406

Jester|14] 0.2348 0.2299 0.2304 0.2341 0.2344 0.2315 0.2130

BX- 0.2677 0.2093 0.1966 0.2138 0.2651 0.2828 0.1790
books[L5]

VI. ACKNOWLEDGMENT

Mahdi Boloursaz Mashhadi is supported by grants from
Sharif University of Technology (SUT) and the Iranian Na-
tional Science Foundation (INSF).

REFERENCES

[1] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J.
Honey, V. J. Wedeen, and O. Sporns, ‘“Mapping the
structural core of human cerebral cortex,” PLoS Biol,
vol. 6, no. 7, p. €159, 2008.

[2] A. Sandryhaila and J. M. Moura, “Discrete signal pro-
cessing on graphs: Graph filters.,” in ICASSP, pp. 6163—
6166, 2013.

[3] A. Sandryhaila and J. M. Moura, “Discrete signal pro-
cessing on graphs: Frequency analysis,” IEEE Transac-
tions on Signal Processing, vol. 62, no. 12, pp. 3042—
3054, 2014.

[4] S. Hoche, P. A. Flach, and D. Hardcastle, “A fast method
for property prediction in graph-structured data from
positive and unlabelled examples.,” in ECAI, vol. 2008,
pp- 162-166, 2008.

[5] S. K. Narang, A. Gadde, and A. Ortega, “Signal process-
ing techniques for interpolation in graph structured data,”
in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 5445-5449, 1EEE,
2013.

[6] S. K. Narang, A. Gadde, E. Sanou, and A. Ortega,
“Localized iterative methods for interpolation in graph
structured data,” in Global Conference on Signal and In-
Sformation Processing (GlobalSIP), 2013 IEEE, pp. 491-
494, TEEE, 2013.

[7]1 S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro,
“Interpolation of graph signals using shift-invariant graph
filters,” in Signal Processing Conference (EUSIPCO),
2015 23rd European, pp. 210-214, IEEE, 2015.

[8] M. Belkin and P. Niyogi, “Semi-supervised learning on
riemannian manifolds,” Machine learning, vol. 56, no. 1-
3, pp. 209-239, 2004.

[9] J. Chen, H.-r. Fang, and Y. Saad, “Fast approximate knn
graph construction for high dimensional data via recur-
sive lanczos bisection,” Journal of Machine Learning
Research, vol. 10, no. Sep, pp. 1989-2012, 2009.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L. Grady and E. Schwartz, “Anisotropic interpolation on
graphs: The combinatorial dirichlet problem,” CAS/CNS
Technical Report Series, no. 014, 2010.

M. Boloursaz, R. Kazemi, D. Nashtaali, M. Nasiri,
and F. Behnia, “Secure data over gsm based on alge-
braic codebooks,” in East-West Design Test Symposium
(EWDTS 2013), pp. 1-4, Sept 2013.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega,
and P. Vandergheynst, “The emerging field of signal
processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE
Signal Processing Magazine, vol. 30, no. 3, pp. 83-98,
2013.

Movielens data set. Available at http://www.grouplens.
org/.

Anonymous Ratings Data from the Jester Online Joke
Recommender System. Available at |http://www2.
informatik.uni-freiburg.de/.

Anonymous Ratings Data from the Jester Online Joke
Recommender SystemBook-Crossing Dataset. Available
at http://www2.informatik.uni-freiburg.de/.

X. Wang, P. Liu, and Y. Gu, “Local-set-based graph
signal reconstruction,” IEEE Transactions on Signal Pro-
cessing, vol. 63, no. 9, pp. 2432-2444, 2015.

A. Anis, A. El Gamal, S. Avestimehr, and A. Ortega,
“Asymptotic justification of bandlimited interpolation of
graph signals for semi-supervised learning,” in 2015
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5461-5465, 1EEE,
2015.

X. Zhu and M. Rabbat, “Graph spectral compressed
sensing for sensor networks,” in 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2865-2868, 1IEEE, 2012.

A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro,
“Sampling of graph signals with successive local ag-
gregations,” IEEE Transactions on Signal Processing,
vol. 64, no. 7, pp. 1832-1843, 2016.

T. Hofmann and D. Hartmann, “Collaborative filtering
with privacy via factor analysis,” in Proceedings of the
2005 ACM symposium on applied computing, pp. 791-
795, 2005.

C.-N. Ziegler, S. M. McNee, J. A. Konstan, and
G. Lausen, “Improving recommendation lists through
topic diversification,” in Proceedings of the 14th interna-
tional conference on World Wide Web, pp. 22-32, ACM,
2005.

K. Goldberg, T. Roeder, D. Gupta, and C. Perkins,
“Eigentaste: A constant time collaborative filtering algo-
rithm,” Information Retrieval, vol. 4, no. 2, pp. 133-151,
2001.

F. Marvasti, A. Amini, and et. al., “A unified approach to
sparse signal processing,” EURASIP journal on advances
in signal processing, vol. 2012, no. 1, p. 1, 2012.

T. Blumensath and M. E. Davies, “Iterative hard thresh-
olding for compressed sensing,” Applied and Computa-
tional Harmonic Analysis, vol. 27, no. 3, pp. 265-274,
2009.


http://www.grouplens.org/
http://www.grouplens.org/
http://www2.informatik.uni-freiburg.de/
http://www2.informatik.uni-freiburg.de/
http://www2.informatik.uni-freiburg.de/

	I Introduction
	II The proposed IMATGI algorithm
	III CONVERGENCE ANALYSIS
	IV Simulation results
	V Conclusion
	VI Acknowledgment

