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The Legendre polynomial expansion method (LPEM), which has been successfully applied to homogenous and
longitudinally inhomogeneous gratings [J. Opt. Soc. Am. B 24, 2676 (2007)], is now generalized for the efficient
analysis of arbitrary-shaped surface relief gratings. The modulated region is cut into a few sufficiently thin
arbitrary-shaped subgratings of equal spatial period, where electromagnetic field dependence is now smooth
enough to be approximated by keeping fewer Legendre basis functions. The R-matrix propagation algorithm is
then employed to match the Legendre polynomial expansions of the transverse electric and magnetic fields
across the upper and lower interfaces of every slice. The proposed strategy then enhances the overall compu-
tational efficiency, reduces the required memory size, and permits the efficient study of arbitrary-shaped grat-
ings. Here the rigorous approach is followed, and analytical formulas of the involved matrices are given.
© 2008 Optical Society of America

OCIS codes: 050.2770, 050.1950, 050.7330, 000.3860.
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. INTRODUCTION
rbitrarily shaped surface relief gratings are among the
ost difficult to analyze, owing to the longitudinal inho-
ogeneity along their grooves, and yet find promising po-

entiality in a wide range of applications, e.g., in inte-
rated optics, nanophotonics, quantum electronics, and
pectroscopy [1]. It is therefore essential to have a fast,
imple, rigorous, stable, and versatile method to deal with
hese structures. The rigorous coupled-wave analysis
RCWA) is one of the simplest and most well-liked meth-
ds, which was popularized by Moharam and Gaylord
bout 30 years ago [2,3]. This method yields a set of
oupled differential equations, which can be easily trans-
ormed into a simple eigenvalue problem for lamellar
ratings. It is also applicable for the analysis of successive
amellar structures, which can represent the staircase ap-
roximation of an arbitrary-shaped surface relief grating.
lthough originally facing numerical instabilities in the
nalysis of deep gratings, the method was soon redeemed
y employing the R-matrix propagation algorithm, scat-
ering matrix method [4], and enhanced transmittance
atrix approach [5]. The remaining problem was then to

nd a fast converging formulation in the analysis of me-
allic gratings in TM polarization. This was also done us-
ng the correct Fourier factorization technique, which
rought forth spectacular results [6–8]. The RCWA is
herefore among the most suitable techniques available
or the analysis of lamellar dielectric and/or metallic grat-
ngs. In the analysis of arbitrarily shaped gratings, how-
ver, this method inevitably relies on the staircase ap-
roximation, whose accuracy has been impugned in a
1084-7529/08/071564-10/$15.00 © 2
airly recent paper, where it has been shown that using
he staircase approximation renders some nonalgorithmic
rtifacts in TM polarization [9].
This problem can be overcome by applying the differen-

ial method (DM), which employs numerical integration
o solve almost the same set of coupled differential equa-
ions governing the transverse electromagnetic field de-
endence in the vertical direction along the grooves. Once
he convergence rate of the DM is improved by employing
he fast Fourier factorization (FFF) technique [10,11], it
an effectively analyze almost all common grating struc-
ures. Still, two remaining problems are to be faced. First,
he numerical integration of a large set of equations could
e time consuming and computationally burdensome.
econd, numerical instabilities are likely to be encoun-
ered in the analysis of thick gratings, for which either
he S-matrix or R-matrix propagation algorithm is
eeded to break up the whole structure into sufficiently
hin slices [10].

One other approach to successfully analyze surface
elief gratings is the coordinate transformation method
eveloped by Chandezon et al. (C-method) [12]. Although
his method outsmarts the RCWA in the analysis of sur-
ace relief gratings [13], it has two intrinsic problems that
ake it inappropriate for some important structures.
irst, the convergence of the formulation is somewhat
low for surface relief gratings with sharp edges [14]. This
roblem, which can be subdued by applying the adaptive
patial resolution technique (ASR) [15], is especially pro-
ounced whenever the slope of the surface relief profile
ends to infinity, e.g., in binary gratings. Second, it is not
008 Optical Society of America
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irectly applicable to volume gratings and surface relief
ratings whose grooves are filled with inhomogeneous
aterials [16,17].
More recently, a nonmodal method by Fourier expan-

ion has been introduced, where the RCWA formulation is
ombined with Galerkin’s method, and Maxwell’s equa-
ions in Fourier space are analytically projected onto the
ilbert space spanned by the Legendre polynomial basis

unctions [17,18]. In this fashion, the RCWA set of coupled
ifferential equations is converted to a well-behaved alge-
raic system of equations, thanks to which it is possible to
ispense with the conventional propagation algorithms
hat would be otherwise necessary for circumventing nu-
erical difficulties associated with the presence of grow-

ng evanescent waves. This approach, here being referred
o as the Legendre polynomial expansion method (LPEM),
s particularly effective in the analysis of a special cat-
gory of longitudinally inhomogeneous gratings for which
he permittivity profile ��x ,z� happens to be separable in
he Cartesian coordinate system, i.e., ��x ,z�=�x�x��z�z�
18]. This is not, however, the most general case that can
rise in the analysis of arbitrary-shaped gratings. In par-
icular, a large number of Legendre polynomial terms is
eeded to accurately approximate the harmonically rich
loquet orders of deep surface relief gratings. This prob-

em, which evokes burdensome memory and time-
onsuming computations, especially for metallic gratings
n TM polarization, is here tackled by cutting the struc-
ure into successive sufficiently thin slices. In each slice,
hen, the electromagnetic field dependence of space har-
onics is smooth enough to be approximated by keeping

nly a few Legendre polynomial terms. In this fashion,
he size of the involved matrices dwindles away and no
eavy computational burden is incurred. To this end, a
uly adapted R-matrix propagation algorithm is here pro-
osed, and a new effective approach based on the LPEM
s devised for the analysis of arbitrary-shaped gratings.
he decomposition of the modulated area into a few slices

s shown to be indispensable for metallic gratings illumi-
ated by TM-polarized plane waves, for which the LPEM
ecomes too time consuming to be of practical use unless
he whole structure is represented by a stack of a few
rbitrary-shaped subgratings of equal spatial period. In
his latter case, the FFF rule is also applied to ensure the
ast convergence of the proposed formulation.

This paper is organized as follows: The formulation of
he proposed method for both major polarizations is pre-
ented in Section 2, where the proper R-matrix propaga-
ion algorithm for this nonmodal technique is introduced
or what we believe to be the first time. Several numerical
xamples are then given in the following sections, where
he proposed technique is compared with the most popu-
ar methods available for the analysis of arbitrary-shaped
ratings, i.e., the DM, the RCWA, and the C-method.
lots of convergence of diffraction efficiencies are pre-
ented versus the number of dividing slices and the num-
er of retained Legendre polynomial terms. The energy
alance criterion and the validity of the reciprocity theo-
em are also numerically tested, and a metallic grating
ith resonant anomalies is analyzed. In comparison with

he DM and the RCWA algorithm, the presented approach
s numerically shown to be superior in performance. In
omparison with the C-method, on the other hand, the
roposed technique is shown to be superior in generality
nd versatility. Conclusions are finally made in Section 5.

. FORMULATION
typical arbitrary-shaped surface relief grating is

epicted in Fig. 1, where the grating profile is described
y an arbitrary yet periodic function f�x�,

f�x + �G� = f�x�, �1�

here �G is the grating period.
It is quite well known that the normalized electric field

ector outside the grating region can be expressed by the
ollowing Rayleigh expansion:

E1 = ûe−jk10·r + �
i=−�

+�

Rie
−jk1i·r �2�

or z�0 in region 1, and

E3 = �
i=−�

+�

Tie
−jk3i·�r−dẑ� �3�

or z�d in region 3.
In these expressions, r=xx̂+zẑ, k1i=kxix̂+kz1iẑ, and

3i=kxix̂+kz3iẑ, where

kxi = k1 sin � − i
2�

�G
, �4�

kzli = �kl
2 − kxi

2 , kl =
2�

�
nl �5�

or l=1,3 (representing regions 1 or 3).
The index i, which is running from −� to +�, stands for

he ith space harmonic corresponding to the ith
ackward-diffracted order in region 1, �z�0� and the
orward-diffracted order in region 3, �z�d�. The Ri and Ti
oefficients denote the normalized electric field vector of
he ith reflected and transmitted Floquet order, respec-
ively. The z component of the wave vector, kz1i is either
egative real (propagating wave) or positive imaginary

ig. 1. Geometry of a typical surface relief grating represented
s a stack of L arbitrary-shaped subgratings.
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evanescent wave). Likewise, for region 3, kz3i, is either
ositive real (a propagating wave) or negative imaginary
an evanescent wave). Furthermore, û stands for the
ncident-wave polarization unit vector and is given by

û = �ŷ TE

cos �x̂ − sin �ẑ TM
. �6�

nside the grating area �0�z�d�, on the other hand, the
lectric and magnetic fields are both pseudoperiodic and
an be expressed in terms of coupled space harmonics
overned by a set of ordinary differential equations [19].
his set of equations is here solved by using Galerkin’s
ethod with Legendre polynomial basis functions. To this

nd, the overall structure is divided into L successive
lices of planar gratings where, within each slice, the elec-
romagnetic field dependence is found in terms of fewer
egendre basis functions. The above-mentioned division
f the structure into multilevel arbitrary-shaped subgrat-
ngs, however, should not be confused with the conven-
ional staircase approximation, where the individual lay-
rs are sufficiently thin to be considered uniform binary
ndex gratings.

In the following subsections, therefore, we will find a
et of algebraic equations governing the electromagnetic
eld dependence of both major polarizations inside the
rating region, within the lth arbitrary-shaped subgrat-
ng between zl−1 and zl. We will then propose an adapted
-matrix algorithm to fully solve the problem.

. TE Polarization
n accordance with the Floquet theorem, TE-polarized
lectromagnetic fields within the grating can be written
n terms of the coupled space harmonics:

E = �
i

�Syi�z�ŷ�exp�− jkxix�, �7�

H =� �0

	0
�

i
�Uxi�z�x̂ + Uzi�z�ẑ�exp�− jkxix�. �8�

Substitution of Eqs. (7) and (8) into Maxwell’s equa-
ions then renders the following set of ordinary differen-
ial equations:

dSyi�z�

dz
= jk0Uxi�z�, �9�

dUxi�z�

dz
= jk0�− 	kxi

k0

2

Syi�z� + �
p

�i−p�z�Syp�z�� , �10�

r in the concise matrix form,

d�Sy�z��

dz
= jk0I�Ux�z��, �11�

d�Ux�z��

dz
= jk0	����� − 	Kx

k0

2
�Sy�z��, �12�

here I is the identity matrix, Kx is a diagonal matrix
hose �i , i� element is kxi, �m�z� denotes the mth Fourier

oefficient of ��x ,z�, ����� represents a Toeplitz matrix with
he �i ,p� entry being equal to �i−p�z�, �Sy�z�� is a column
ector constructed by Syi�z� functions, and �Ux�z�� is a col-
mn vector constructed by Uxi�z� functions.
This set of linear differential equations can now be

ransformed into an algebraic system of equations by fol-
owing Galerkin’s method, i.e., by expanding the coupled
pace harmonics in terms of Legendre polynomial basis
unctions:

Syi�z� = �
m=0

+�

hm
i Pm�
�, �13�

Uxi�z� = �
m=0

+�

tm
i Pm�
�. �14�

Here 
= �2�z−zl−1�−dl� /dl is a scaling factor, Pm�
�
tands for the mth normalized Legendre polynomial, and
l denotes the thickness of the lth layer shown in Fig. 1.
The above-mentioned polynomial expansion of space

armonics as given in Eqs. (13) and (14) is substituted in
qs. (9) and (10):

	 2

dl

�

m
hm

i Pm� �
� − jk0�
m

tm
i Pm�
� = 0, �15�

	 2

dl

�

m
tm
i Pm� �
� + jk0�

m
Pm�
��	kxi

k0

2

hm
i − �

p
�i−p�
�hm

p �
= 0, �16�

here Pm� �
� is the derivative of Pm�
�.
The resultant equation should then be analytically pro-

ected onto the Hilbert space spanned by the Legendre
olynomials:

	 2

dl

�

m
hm

i �Pn,Pm� 
 − jk0�
m

tm
i �Pn,Pm
 = 0, �17�

	 2

dl

�

m
tm
i �Pn,Pm� 
 + j

kxi
2

k0
�
m

	hm
i �Pn,Pm
 − jk0

��
p

hm
p �Pn,�i−pPm

 = 0, �18�

here �f ,g
=�−1
1 f�
�g�
�d
 stands for the inner product of

ny two arbitrary functions in L2�−1,1� and consequently

�Pn,Pm
 = �
0 m � n

2

2m + 1
m = n,

�19�

�Pn,Pm� 
 = �2 m − n = odd, m − n � 0,

0 oth
�20�

nd �Pn ,�i−p�
�Pm
 should be numerically calculated.
All the summations in these expressions should be in-

vitably truncated; therefore, the indices of summations
, n, and i are here assumed to run from 0 to M−1, 0 to
−2, and −N to N, respectively. This gives rise to a set of
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�2N+1��M−1� independent equations with 2M�2N+1�
nknown coefficients, which can be arranged in the con-
ise matrix form

QTE��h̄m
i �

�t̄m
i � � = 0, �21�

here QTE is a 2�2N+1��M−1��2�2N+1�M matrix given
n Appendix A and �q̄m

i � and �t̄m
i � are column vectors whose

i+N�M+m+1 element is hm
i and tm

i , respectively.
The missing equations can be found once the appropri-

te boundary conditions, i.e., the continuity of the trans-
erse electric and magnetic fields across the upper and
ower interfaces of the lth slice at z=zl−1 and z=zl, are
uly applied. This is done in Subsection 2.C, where each
ayer is represented by a layer r̃�l� matrix [4].

. TM Polarization
imilarly, TM-polarized electromagnetic fields in the
odulated region can be written as follows:

E = �
i

�Sxi�z�x̂ + Szi�z�ẑ�exp�− jkxix�, �22�

H =� �0

	0
�

i
�Uyi�z�ŷ�exp�− jkxix�. �23�

n TM polarization, however, the inevitable truncation of
he Fourier-based expansions and the discontinuity of the
ermittivity profile can considerably slow down the con-
ergence rate of the Floquet expansion. Consequently, the
FF rule should be applied to appropriately resolve the

ssue [11]. This results in the following set of coupled
rdinary differential equations:

d

dz��Sx�

�Uy�� = − �MTM11 MTM12

MTM21 MTM22���Sx�

�Uy�� , �24�

MTM11 = KxGB, �25�

MTM12 = KxGKx/k0 + jk0I, �26�

MTM21 = jk0�A + ��1/���−1 − jBGB�, �27�

MTM22 = BGKx, �28�

here ��1/��� represents a Toeplitz matrix whose �i ,p�
lement is �i−p

−1 �z�, �Sx� is a column vector constructed
y Sxi�z� functions, �Uy� is a column vector constructed by
yi�z� functions, and

� = ����� − ��1/���−1, �29�

A = ���c2��, �30�

B = ���cs��, �31�

G = − j������ − A�−1. �32�

In these expressions, ��c�� and ��s�� stand for the
oeplitz matrices whose �i ,p� elements are the �i−p�th
ourier coefficient of the c�x� and s�x� functions, respec-
ively, where c�x�=cos ��x�, s�x�=sin ��x�, and ��x�
tan−1 df /dx.
Once again, the preceding set of ordinary differential

quations should be projected onto the linear space
panned by the Legendre basis functions. Each space har-
onic is therefore expanded in terms of the Legendre

olynomials,

Sxi�z� = �
m=0

+�

qm
i Pm�
�, �33�

Uyi�z� = �
m=0

+�

lm
i Pm�
�, �34�

nd the following set of algebraic equations is obtained:

�
m
	qm

i
2

dl
�Pn,Pm� 
 + �

p
qm

p �Pn,Mip
TM11Pm


+ �
p

lm
p �Pn,Mip

TM12Pm

 = 0, �35�

�
m
	lm

i
2

dl
�Pn,Pm� 
 + �

p
lm
p �Pn,Mip

TM22Pm


+ �
p

qm
p �Pn,Mip

TM21Pm

 = 0. �36�

ere, in contrast to the TE polarization, all the inner
roduct terms should be numerically integrated. The only
xception is the �Pn ,Pm� 
 term, which is analytically given
n Eq. (20).

In the same way, all the summations in these expres-
ions should be inevitably truncated; i.e., the indices of
ummations m, n, and i run from 0 to M−1, 0 to M−2,
nd −N to N, respectively. Therefore, the above-
entioned algebraic equations can be recast in the follow-

ng matrix form:

QTM��q̄m
i �

�l̄m
i � � = 0, �37�

here QTM is a 2�2N+1��M−1��2�2N+1�M matrix given
n Appendix A and �q̄m

i � and �l̄m
i � are column vectors whose

i+N�M+m+1 element is qm
i and lm

i , respectively.
This leaves us with 2�2N+1� missing equations, which

re to be found by applying the appropriate boundary con-
itions. This is done in the next subsection, where each
ayer is represented by its corresponding R matrix.

. R-Matrix Algorithm
n this subsection, the R-matrix propagation algorithm is
iven for TM polarization, where the transverse electric
x and magnetic fields Uy are linked across every two ad-

acent layers and a layer r matrix, r̃�l�, is affixed to the lth
nterface:



A
w

z
n

w
a

g
m

r
m

w

a
=

R
t
a
o
[

i
w
s
i
t
o
d
e
t
s

n
p
p

3
A
T
a
c
s
i
fi
=
i
g
s
o
w

L
t
m
r
C

o
t
a
o
s
(
t
=
e
t
m
t
m
o
n
s
i
s
t
t

A

C

C

1568 J. Opt. Soc. Am. A/Vol. 25, No. 7 /July 2008 Khavasi et al.
��Sx�zl��

�Sx�zl−1��� = r̃�l�TM��Uy�zl��

�Uy�zl−1��� . �38�

nalysis of the TE polarization follows the same line,
here Sx and Uy are changed to Sy and Ux, respectively.
On the other hand, each space harmonic at z=zl−1 and

=zl is already expanded in terms of the Legendre poly-
omial coefficients

���q̄m
i �

�l̄m
i � � = ��Uy�zl��

�Uy�zl−1��� , �39�

���q̄m
i �

�l̄m
i � � = ��Sx�zl��

�Sx�zl−1��� , �40�

here � and � matrices are obtained by using Eqs. (33)
nd (34). Further details are given in Appendix A.
Now, combining these two latter sets of equations to-

ether with that of Eq. (37) can render the required r̃�l�

atrix:

r̃�l�TM = ��Q�2�2N+1��M−1����2�2N+1�M�
TM

��2�2N+1����2�2N+1�M�
�−1

��0�2�2N+1��M−1����2�2N+1��

I�2�2N+1����2�2N+1��
� . �41�

Once the layer r matrix is obtained, the following set of
ecursion formulas can be used to obtain the stack R
atrix [4]:

R11
�l� = r̃11

�l� − r̃12
�l�Z�l�r̃21

�l� ,

R12
�l� = r̃12

�l�Z�l�R12
�l−1�,

R21
�l� = − R21

�l−1�Z�l�r̃21
�l� ,

R22
�l� = R22

�l−1� + R21
�l−1�Z�l�R12

�l−1�, �42�

here

Z�l� = �r̃22
�l� − R11

�l−1��−1, �43�

nd the recursion process is initialized by setting R�1�

r̃�1�.
The overall R matrix should then be matched to the

ayleigh expansion without the modulated area, where
he unknown Ri and Ti coefficients, i.e., diffracted field
mplitudes, can be easily determined. In this fashion, the
verall diffraction efficiencies can be easily calculated
18].

It should be noticed, however, that numerical overflow
s not expected in the LPEM, where forward and back-
ard exponential evanescent orders are absent and con-

equently the presented R-matrix propagation algorithm
s not necessary to secure the numerical stability. Still,
he algorithm is particularly necessary to improve the
verall computational efficiency; otherwise, the z depen-
ence of the coupled space harmonics will be harsh
nough to require a large number of Legendre basis func-
ions, the retaining of which can considerably enlarge the
ize of the involved matrices. This is especially pro-
ounced in the analysis of metallic gratings used in TM
olarization, gratings with a large contrast in their
ermittivity profile, or thick gratings.

. COMPARISON AMONG RCWA, DM,
ND LPEM

he proposed LPEM, the DM, and the RCWA algorithm
ll solve almost the same set of differential equations and
an be fairly compared against one another. This compari-
on is here made by the analysis of two surface relief grat-
ngs with a sinusoidal profile of groove depth whose speci-
cations, in accordance with Fig. 1, read as 2d=�=�G
1 	m, n1=1, and �=15°. In the first case, the refractive

ndex of region 3 is n3=1.5 and a dielectric sinusoidal
rating, which is hereafter referred to as case A, is con-
idered. In the second case, however, the refractive index
f region 3 is n3=1−5j and a metallic sinusoidal grating,
hich is hereafter referred to as case B, is dealt with.
The required run times of the DM, the RCWA, and the

PEM to achieve an accuracy of 1% in the largest diffrac-
ion efficiency of both major polarizations in the above-
entioned cases are given in Table 1. All the numerical

esults are obtained by using MATLAB on a PC (Intel
ore 2 Duo at 2 GHz and 1 Gbyte of RAM).
This table clearly shows that the proposed LPEM can

utperform both the DM and the RCWA. However, to fur-
her demonstrate the superiority of the LPEM, the
chieved relative error in the largest diffraction efficiency
f case A used in TE polarization is plotted in Fig. 2 ver-
us the elapsed run time of the DM (circles), the RCWA
triangles), and the LPEM (diamonds). In this figure, the
otal number of kept space harmonics is fixed at 2N+1
21 for all of the above-mentioned algorithms. The refer-
nce value for the calculation of the relative error is ob-
ained by using the C-method with 2N+1=201 space har-
onics, and then the accuracy of the DM, the RCWA, and

he LPEM is improved by increasing the number of nu-
erical steps used in the integration scheme, the number

f slices in the staircase approximation, and the total
umber of Legendre polynomial basis functions (LM), re-
pectively. It should be noticed that in this calculation M,
.e., the number of Legendre basis functions within each
lice, is fixed at 6. This figure clearly demonstrates that
he LPEM outpaces the DM and the RCWA in achieving
he lowest error level that could be possibly obtained by

Table 1. Required Run Times of the DM, RCWA,
and LPEM to Achieve an Accuracy of 1% in the

Largest Diffraction Efficiency of Both Major
Polarizations

Required Run Time (s)

pproach DM [11] RCWA [5] LPEM

ase A
TE polarization 0.042 0.008 0.004 with L=1
TM polarization 0.063 0.031 0.015 with L=1

ase B
TE polarization 0.117 0.100 0.039 with L=2
TM polarization 3.08 Very large 0.62 with L=17
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eeping 2N+1=21 space harmonics. This is not unex-
ected, as spectral analysis using polynomial expansion is
nown to outperform many other techniques in solving
rdinary differential equations [20,21].

Moreover, the diffraction efficiencies of the aforemen-
ioned surface relief gratings are examined to probe the
ccuracy and the convergence rate of the proposed
ethod. The transmitted diffraction efficiencies of the
1st, the zeroth, and the +1st orders, together with the
otal diffraction efficiency of the dielectric surface relief
rating in case A, are all summarized in Table 2, where
he proposed LPEM with N=5, M=6, and different values
f L is employed for both TE and TM polarizations. This
able clearly shows that increasing L can improve the en-
rgy balance of the calculated diffraction efficiencies This
s particularly true in TE polarization, for which L=5 is
igh enough to ensure that the energy balance criterion is
atisfied within a precision of about 10−8. In applying the
M, however, more than 1000 integration steps are

Table 2. Transmitted Diffraction Efficiencies of t
Diffracted Energy of the Dielectric Surface Relief

with N=5 and M=6 an

Transmitted E

−1st Order 0th Ord

E
1 0.1280789 0.69662
2 0.1281937 0.69639
3 0.1281940 0.69639
5 0.1281939 0.69639
10 0.1281939 0.69639
20 0.1281939 0.69639

M
1 0.8127049�10−1 0.84398
2 0.8194206�10−1 0.84265
3 0.8196372�10−1 0.84261
5 0.8195612�10−1 0.84262
10 0.8196147�10−1 0.84261
20 0.8196113�10−1 0.84262
50 0.8196109�10−1 0.84262

ig. 2. Computational efficiency of the DM (circles), the RCWA
triangles), and the LPEM (diamonds).
eeded to achieve the same precision. Such a high level of
ccuracy in holding the energy balance criterion is not ob-
erved for TM polarization, where L=50 cannot render a
recision of better than 10−4. It should be nonetheless no-
iced that better results are not obtained by using the con-
entional DM, and this somewhat low level of precision is
n real fact due to the FFF technique, which is applied to
mprove the overall convergence speed. Fortunately, the
runcation order N in applying the proposed LPEM
ethod can be increased to improve the energy balance

nd to push the total diffraction efficiency further toward
. For example applying the LPEM with N=20, M=6, and
=50 for the analysis of the same problem in TM polar-

zation renders a precision of about 10−6, i.e., a total dif-
raction efficiency of 0.99999665.

Additionally, the lossy metallic grating in case B is
ore closely examined, and plots of the convergence char-

st, 0th, and +1st Orders, Together with the Total
ing in Case A, Are All Calculated Using the LPEM
Different Values of L

cy

+1st Order
Total Diffracted

Energy

0.1588289 1.000063246582
0.1588820 1.000001134920
0.1588828 1.000000192145
0.1588828 1.000000002966
0.1588828 0.999999999649
0.1588828 0.999999999985

0.6706024�10−1 1.000178730737
0.6751512�10−1 0.999942117523
0.6753589�10−1 0.999940711633
0.6752787�10−1 0.999936680417
0.6752998�10−1 0.999939591549
0.6752963�10−1 0.999939765866
0.6752963�10−1 0.999939766240

ig. 3. TE polarized −1st reflected order of the metallic surface
elief grating in case B versus L and M in applying the LPEM
ith N=15.
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cteristic of the largest diffraction efficiency are provided,
here the total number of kept space harmonics is trun-

ated at 2N+1=31. In TE polarization, the results
btained by using the proposed LPEM are presented in
ig. 3, where the −1st reflected order is plotted versus
oth M and L. For the sake of comparison, the DM and
he staircase approximation based on the RCWA are em-
loyed to plot the convergence characteristics in Figs. 4(a)
nd 4(b), respectively. Along the same lines, the proposed
PEM, this time for the TM polarization, is applied and
he convergence characteristic is presented in Fig. 5,
here the zeroth reflected order is plotted versus M and
. Inasmuch as the staircase approximation is not valid

or this case in the TM polarization [9], the convergence
haracteristic of the RCWA is not presented; yet, that of
he DM is shown in Fig. 6, where the zeroth reflected
rder is plotted versus the number of integration steps.

. COMPARISON BETWEEN C-METHOD
ND LPEM

he LPEM, much like the DM and the RCWA, is a
ourier expansion method to solve the coupled set of dif-

erential equations governing the Fourier coefficients of
he field components in a Cartesian system. The
-method, on the other hand, is a coordinate-

ransformation-based differential method that introduces
nonorthogonal curvilinear coordinate system that maps

orrugated profiles to planar surfaces. It is indeed a fast
nd efficient strategy, which is applicable to arbitrary-
haped surface relief gratings with smooth and differen-
iable functions of groove depth. In this section, the com-
utational efficiency of the C-method and that of the
PEM are compared against each other.
In the first working example, the aforementioned cases
and B are reconsidered, and the required run times to

chieve an accuracy of 1% in the largest diffraction effi-
iency are given in Table 3. In these cases, the surface re-
ief profile is sufficiently smooth and can be very effec-
ively analyzed by using the C-method. The efficiency of
he LPEM is, however, comparable to that of the
-method except for the metallic sinusoidal grating used

ig. 4. TE-polarized −1st reflected order of the metallic surface
pplying the DM with N=15 (b) versus the number of slices in t
n TM polarization. This latter case cannot be analyzed
nless the whole structure is decomposed into L=17
ubgratings.

In the second case in point, symmetric trapezoidal sur-
ace relief gratings with base angle �=63.43° are ana-
yzed. Similarly, both dielectric and metallic types are
onsidered. In case C, a dielectric substrate with n3=1.5

grating in case B (a) versus the number of integration steps in
rcase approximation based on the RCWA with N=15.

ig. 5. TM-polarized zeroth reflected order of the metallic sur-
ace relief grating in case B versus L and M in applying the
PEM with N=15.

ig. 6. TM-polarized zeroth reflected order of the metallic sur-
ace relief grating in case B versus the number of integration
teps in applying the DM with N=15.
relief
he stai
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s worked out, and in case D, a metallic substrate with
3=1−5j is substituted for the dielectric. All other speci-
cations are similar to those of the previous study cases A
nd B. The required run times to achieve an accuracy of
% in the largest diffraction efficiency in the analysis of
hese two latter cases are then tabulated in Table 4. This
ime, the multilayer LPEM wins the upper hand, as the
rapezoidal surface profile in these cases happens to be
ondifferentiable and cannot be effectively analyzed with
he C-method unless the adaptive spatial resolution
echnique is employed [15].

Table 3. Required Run Times of the C-Method an
Diffraction Efficiency of Both M

pproach C-Method S

ase A
TE polarization 0.008 with N=4
TM polarization 0.008 with N=4

ase B
TE polarization 0.008 with N=4
TM polarization 0.005 with N=3

Table 4. Required Run Rimes of the C-Method an
Diffraction Efficiency of Both M

pproach C-Method S

ase C
TE polarization 0.051 with N=10
TM polarization 0.045 with N=10

ase D
TE polarization 0.011 with N=5
TM polarization 6.61 with N=62

Table 5. Incurred Reciprocity Error in Applying
the LPEM for the Analysis of Different Surface

Relief Gratings in Cases A–D

ase Reciprocity Error, e Parameters

ase A
TE polarization 1.998�10−9 N=5, M=6, L=2
TM polarization 2.095�10−10 N=5, M=6, L=2

ase B
TE polarization 1.114�10−9 N=15, M=6, L=20
TM polarization 1.128�10−10 N=15, M=6, L=20

ase C
TE polarization 8.334�10−6 N=5, M=6, L=2
TM polarization 2.214�10−6 N=5, M=6, L=2

ase D
TE polarization 6.996�10−10 N=15, M=6, L=20
TM polarization 6.403�10−6 N=15, M=6, L=20
Consequently, the proposed LPEM cannot outperform
he C-method if surface relief gratings with high-contrast
ermittivity profiles and differentiable functions of groove
epth are to be analyzed. On the other hand, discontinu-
us profiles, volume gratings, and surface relief gratings
ith inhomogeneously filled grooves cannot be directly
nalyzed with the C-method. The latter case, however,
an be analyzed by using an extension of the conventional
-method [22]. All these cases, however, have been suc-

essfully and directly analyzed by applying the proposed
PEM [18].
The calculated results of all these structures are then

erified against the reciprocity theorem [1]. Here the
ollowing reciprocity error parameter, e, is defined to

easure the symmetry of the calculated diffraction
fficiencies:

e =
�DE0��� − DE0�− ���

�DE0����
, �44�

here DEo� stands for the reflected zeroth-order diffrac-
ion efficiency as a function of the incident angle � and the
· � sign stands for the L2 norm. Insofar as the zeroth-
rder diffraction efficiency should be symmetrical with
espect to the incident angle, the above-mentioned error
arameter is ideally expected to be zero. This is tested in
able 5, where the reciprocity error parameter, e, is
umerically calculated for all the preceding cases A–D.
he incurred error, though nonzero, is small enough to
xonerate the proposed LPEM.

At the end of this section, a sinusoidal metallic grating
ade of aluminum �nAl=1.3−7.6j� is considered to

resent how the resonant scattering can be dealt with.

EM to Achieve an Accuracy of 1% in the Largest
Polarization in Cases A and B

Required Time (s)

ayer LPEM [18] Multilayer LPEM

with N=1, M=5 0.004 with N=1, M=5, L=1
with N=1, M=4 0.015 with N=1, M=4, L=1

with N=6, M=8 0.039 with N=6, M=5, L=2
Very large 0.62 with N=10, M=3, L=17

M to Achieve and Accuracy of 1% in the Largest
Polarizations in Cases C and D

Required Time (s)

Layer LPEM [18] Multilayer LPEM

with N=2, M=4 0.004 with N=2, M=4, L=1
with N=1, M=3 0.006 with N=1, M=3, L=1

with N=3, M=5 0.007 with N=3, M=5 L=1
ith N=17, M=35 1.77 with N=17, M=3, L=16
d LP
ajor

ingle-L

0.004
0.007

0.043
d LPE
ajor

ingle-

0.004
0.004

0.007
58 w
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he grating period is �G=0.5 	m, the incident wave illu-
inates the grating from air at �=14.929°, and the free-

pace wavelength is �=0.6328 	m [1]. The overall reflec-
ivity of this structure as a function of the grating
hickness is plotted in Fig. 7, where both the LPEM (solid
urve) and the C-method (dashed curve) are applied.
espite the resonant anomalies, an excellent agreement

s observed between the proposed LPEM and the
-method [1].

. CONCLUSION
he LPEM is here generalized for the efficient analysis of
rbitrary-shaped surface relief gratings. The modulated
egion is decomposed into a few sufficiently thin inhom-
eneous slices of equal spatial period, wherein electro-
agnetic field dependence is smooth enough to be ap-

roximated by keeping a small number of Legendre
olynomial basis functions. A rigorous approach is then
ollowed, and the R-matrix propagation algorithm is ap-
lied to the Legendre polynomial expansion of the space
armonics. In this fashion, the size of the involved matri-
es is reduced and the overall performance of the LPEM is
onsiderably enhanced. Different working examples are
onsidered to evaluate the computational efficiency of the
roposed approach against those of the DM, the RCWA,
nd the C-method.

PPENDIX A: CONSTRUCTION OF Q, �,
ND � MATRICES

he Q matrix represents the algebraic projection of
axwell’s equations onto the linear space spanned by

he Legendre basis functions. It is a 2�2N
1��M−1��2�2N+1�M matrix whose nonzero elements
ead as

QTE�n + �i + N��M − 1� + 1,m + �i + N�M + �2N + 1�M + 1�

= − jk �P ,P 
, �A1�

ig. 7. Resonance anomaly in the TM reflectivity of a sinusoidal
luminum grating: LPEM with N=20, M=3, L=150 (solid
urve), and the C-method (dashed curve).
0 n m
QTE�n + �i + N��M − 1� + �2N + 1��M − 1� + 1,m

+ �p + N�M + 1� = − jk0�Pn,	����� − 	Kx

k0

2


ip

Pm� ,

�A2�

QTE�n + �i + N��M − 1� + 1,m + �i + N�M + 1� =
2

dl
�Pn,Pm� 
,

�A3�

QTE�n + �i + N��M − 1� + �2N + 1��M − 1� + 1,m + �i + N�M

+ �2N + 1�M + 1� =
2

dl
�Pn,Pm� 
, �A4�

or TE polarization, and

QTM�n + �i + N��M − 1� + 1,m + �p + N�M + 1�

= �Pn,Mip
TM11Pm
, �A5�

QTM�n + �i + N��M − 1� + 1,m + �p + N�M + �2N + 1�M + 1�

= �Pn,Mip
TM12Pm
, �A6�

QTM�n + �i + N��M − 1� + �2N + 1��M − 1� + 1,m

+ �p + N�M + 1� = �Pn,Mip
TM21Pm
, �A7�

QTM�n + �i + N��M − 1� + �2N + 1��M − 1� + 1,m + �p + N�M

+ �2N + 1�M + 1� = �Pn,Mip
TM22Pm
, �A8�

QTM�n + �i + N��M − 1� + 1,m + �i + N�M + 1� =
2

dl
�Pn,Pm� 
,

�A9�

QTM�n + �i + N��M − 1� + �2N + 1��M − 1� + 1,m + �i + N�M

+ �2N + 1�M + 1� =
2

dl
�Pn,Pm� 
, �A10�

or TM polarization.
The � and � matrices have the following form for both
ajor polarizations:

� = �0 �12

0 �22
� , �A11�

� = ��12 0

�22 0� , �A12�

here

�12�i + N + 1,m + �i + N�M + 1� = 1, �A13�

�22�i + N + 1,m + �i + N�M + 1� = �− 1�m. �A14�

Please notice that indices n, m, i, and p run from 0 to
−2, 0 to M−1, −N to N, and −N to N, respectively.
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