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The Legendre polynomial expansion method (LPEM), which has been successfully applied to homogenous and
longitudinally inhomogeneous gratings [J. Opt. Soc. Am. B 24, 2676 (2007)], is now generalized for the efficient
analysis of arbitrary-shaped surface relief gratings. The modulated region is cut into a few sufficiently thin
arbitrary-shaped subgratings of equal spatial period, where electromagnetic field dependence is now smooth
enough to be approximated by keeping fewer Legendre basis functions. The R-matrix propagation algorithm is
then employed to match the Legendre polynomial expansions of the transverse electric and magnetic fields
across the upper and lower interfaces of every slice. The proposed strategy then enhances the overall compu-
tational efficiency, reduces the required memory size, and permits the efficient study of arbitrary-shaped grat-
ings. Here the rigorous approach is followed, and analytical formulas of the involved matrices are given.
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1. INTRODUCTION

Arbitrarily shaped surface relief gratings are among the
most difficult to analyze, owing to the longitudinal inho-
mogeneity along their grooves, and yet find promising po-
tentiality in a wide range of applications, e.g., in inte-
grated optics, nanophotonics, quantum electronics, and
spectroscopy [1]. It is therefore essential to have a fast,
simple, rigorous, stable, and versatile method to deal with
these structures. The rigorous coupled-wave analysis
(RCWA) is one of the simplest and most well-liked meth-
ods, which was popularized by Moharam and Gaylord
about 30 years ago [2,3]. This method yields a set of
coupled differential equations, which can be easily trans-
formed into a simple eigenvalue problem for lamellar
gratings. It is also applicable for the analysis of successive
lamellar structures, which can represent the staircase ap-
proximation of an arbitrary-shaped surface relief grating.
Although originally facing numerical instabilities in the
analysis of deep gratings, the method was soon redeemed
by employing the R-matrix propagation algorithm, scat-
tering matrix method [4], and enhanced transmittance
matrix approach [5]. The remaining problem was then to
find a fast converging formulation in the analysis of me-
tallic gratings in TM polarization. This was also done us-
ing the correct Fourier factorization technique, which
brought forth spectacular results [6-8]. The RCWA is
therefore among the most suitable techniques available
for the analysis of lamellar dielectric and/or metallic grat-
ings. In the analysis of arbitrarily shaped gratings, how-
ever, this method inevitably relies on the staircase ap-
proximation, whose accuracy has been impugned in a
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fairly recent paper, where it has been shown that using
the staircase approximation renders some nonalgorithmic
artifacts in TM polarization [9].

This problem can be overcome by applying the differen-
tial method (DM), which employs numerical integration
to solve almost the same set of coupled differential equa-
tions governing the transverse electromagnetic field de-
pendence in the vertical direction along the grooves. Once
the convergence rate of the DM is improved by employing
the fast Fourier factorization (FFF) technique [10,11], it
can effectively analyze almost all common grating struc-
tures. Still, two remaining problems are to be faced. First,
the numerical integration of a large set of equations could
be time consuming and computationally burdensome.
Second, numerical instabilities are likely to be encoun-
tered in the analysis of thick gratings, for which either
the S-matrix or R-matrix propagation algorithm is
needed to break up the whole structure into sufficiently
thin slices [10].

One other approach to successfully analyze surface
relief gratings is the coordinate transformation method
developed by Chandezon et al. (C-method) [12]. Although
this method outsmarts the RCWA in the analysis of sur-
face relief gratings [13], it has two intrinsic problems that
make it inappropriate for some important structures.
First, the convergence of the formulation is somewhat
slow for surface relief gratings with sharp edges [14]. This
problem, which can be subdued by applying the adaptive
spatial resolution technique (ASR) [15], is especially pro-
nounced whenever the slope of the surface relief profile
tends to infinity, e.g., in binary gratings. Second, it is not
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directly applicable to volume gratings and surface relief
gratings whose grooves are filled with inhomogeneous
materials [16,17].

More recently, a nonmodal method by Fourier expan-
sion has been introduced, where the RCWA formulation is
combined with Galerkin’s method, and Maxwell’s equa-
tions in Fourier space are analytically projected onto the
Hilbert space spanned by the Legendre polynomial basis
functions [17,18]. In this fashion, the RCWA set of coupled
differential equations is converted to a well-behaved alge-
braic system of equations, thanks to which it is possible to
dispense with the conventional propagation algorithms
that would be otherwise necessary for circumventing nu-
merical difficulties associated with the presence of grow-
ing evanescent waves. This approach, here being referred
to as the Legendre polynomial expansion method (LPEM),
is particularly effective in the analysis of a special cat-
egory of longitudinally inhomogeneous gratings for which
the permittivity profile e(x,z) happens to be separable in
the Cartesian coordinate system, i.e., e(x,z)=¢€.(x)€,(2)
[18]. This is not, however, the most general case that can
arise in the analysis of arbitrary-shaped gratings. In par-
ticular, a large number of Legendre polynomial terms is
needed to accurately approximate the harmonically rich
Floquet orders of deep surface relief gratings. This prob-
lem, which evokes burdensome memory and time-
consuming computations, especially for metallic gratings
in TM polarization, is here tackled by cutting the struc-
ture into successive sufficiently thin slices. In each slice,
then, the electromagnetic field dependence of space har-
monics is smooth enough to be approximated by keeping
only a few Legendre polynomial terms. In this fashion,
the size of the involved matrices dwindles away and no
heavy computational burden is incurred. To this end, a
duly adapted R-matrix propagation algorithm is here pro-
posed, and a new effective approach based on the LPEM
is devised for the analysis of arbitrary-shaped gratings.
The decomposition of the modulated area into a few slices
is shown to be indispensable for metallic gratings illumi-
nated by TM-polarized plane waves, for which the LPEM
becomes too time consuming to be of practical use unless
the whole structure is represented by a stack of a few
arbitrary-shaped subgratings of equal spatial period. In
this latter case, the FFF rule is also applied to ensure the
fast convergence of the proposed formulation.

This paper is organized as follows: The formulation of
the proposed method for both major polarizations is pre-
sented in Section 2, where the proper R-matrix propaga-
tion algorithm for this nonmodal technique is introduced
for what we believe to be the first time. Several numerical
examples are then given in the following sections, where
the proposed technique is compared with the most popu-
lar methods available for the analysis of arbitrary-shaped
gratings, i.e., the DM, the RCWA, and the C-method.
Plots of convergence of diffraction efficiencies are pre-
sented versus the number of dividing slices and the num-
ber of retained Legendre polynomial terms. The energy
balance criterion and the validity of the reciprocity theo-
rem are also numerically tested, and a metallic grating
with resonant anomalies is analyzed. In comparison with
the DM and the RCWA algorithm, the presented approach
is numerically shown to be superior in performance. In
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comparison with the C-method, on the other hand, the
proposed technique is shown to be superior in generality
and versatility. Conclusions are finally made in Section 5.

2. FORMULATION

A typical arbitrary-shaped surface relief grating is
depicted in Fig. 1, where the grating profile is described
by an arbitrary yet periodic function f(x),

flx+Ag) =flx), 1)

where Ag is the grating period.

It is quite well known that the normalized electric field
vector outside the grating region can be expressed by the
following Rayleigh expansion:
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for [=1,3 (representing regions 1 or 3).

The index i, which is running from —o to +o, stands for
the ith space harmonic corresponding to the ith
backward-diffracted order in region 1, (z<0) and the
forward-diffracted order in region 3, (z>d). The R; and T;
coefficients denote the normalized electric field vector of
the ith reflected and transmitted Floquet order, respec-
tively. The z component of the wave vector, k,y; is either
negative real (propagating wave) or positive imaginary
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Fig. 1. Geometry of a typical surface relief grating represented
as a stack of L arbitrary-shaped subgratings.
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(evanescent wave). Likewise, for region 3, k,3;, is either
positive real (a propagating wave) or negative imaginary
(an evanescent wave). Furthermore, & stands for the
incident-wave polarization unit vector and is given by

y TE
u= {y . (6)

cos ax — sin a2 ™

Inside the grating area (0 <z<d), on the other hand, the
electric and magnetic fields are both pseudoperiodic and
can be expressed in terms of coupled space harmonics
governed by a set of ordinary differential equations [19].
This set of equations is here solved by using Galerkin’s
method with Legendre polynomial basis functions. To this
end, the overall structure is divided into L successive
slices of planar gratings where, within each slice, the elec-
tromagnetic field dependence is found in terms of fewer
Legendre basis functions. The above-mentioned division
of the structure into multilevel arbitrary-shaped subgrat-
ings, however, should not be confused with the conven-
tional staircase approximation, where the individual lay-
ers are sufficiently thin to be considered uniform binary
index gratings.

In the following subsections, therefore, we will find a
set of algebraic equations governing the electromagnetic
field dependence of both major polarizations inside the
grating region, within the /th arbitrary-shaped subgrat-
ing between z;_; and z;. We will then propose an adapted
R-matrix algorithm to fully solve the problem.

A. TE Polarization

In accordance with the Floquet theorem, TE-polarized
electromagnetic fields within the grating can be written
in terms of the coupled space harmonics:

E = [S,i(2)7lexp(~jkyx), (7)

H= |23 (U3 + Uselexpl- k). (®)
Mo

Substitution of Eqgs. (7) and (8) into Maxwell’s equa-
tions then renders the following set of ordinary differen-
tial equations:

ds,(z)
dz

=.jk0Uxi(Z)’ (9)

deL(Z) kxi 2
it el e S,i(2) + 2, €6_,(2)S,,(2) |, (10)
0 p

or in the concise matrix form,

d[S,(2)]

=Jkol[U.(2)], (11)

d[U,(z)] . K,\? s

— "= -= , 12
FR L [Le]] 7y [S,(2)] (12)

where I is the identity matrix, Ky is a diagonal matrix

whose (i,7) element is k&,;, €,,(z) denotes the mth Fourier

coefficient of €(x,z), [[ €]] represents a Toeplitz matrix with
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the (i,p) entry being equal to ¢_,(2), [S,(2)] is a column
vector constructed by S,;(z) functions, and [U,(2)] is a col-
umn vector constructed by U,;(z) functions.

This set of linear differential equations can now be
transformed into an algebraic system of equations by fol-
lowing Galerkin’s method, i.e., by expanding the coupled
space harmonics in terms of Legendre polynomial basis
functions:

S,i(2) = >, kP, (8), (13)
m=0

U,i(z) = >, 1P, (9. (14)
m=0

Here ¢=[2(z-z;_1)-d;]/d; is a scaling factor, P,, (&)
stands for the mth normalized Legendre polynomial, and
d; denotes the thickness of the /th layer shown in Fig. 1.

The above-mentioned polynomial expansion of space
harmonics as given in Eqs. (13) and (14) is substituted in
Egs. (9) and (10):

2 , ,
(;)E honPr&) = ko 2 P& =0, (15)
L/ m m

2 . kxi 2 .
<_)E t,P1,(8) +jko X, Pry(8) <—) hi, = 2 € p(OhE,
dl m m kO P
=0, (16)

where P, (£) is the derivative of P,,(é).

The resultant equation should then be analytically pro-
jected onto the Hilbert space spanned by the Legendre
polynomials:

2
(—)E RokP, Py = ko 2, t(Py Py =0, (17)

dlm m

2

2 ) kZ; )
— ) (PP +— > (BE(P,, P, — jko
dl m kO m

XE h£1<Pn7Ei—me>> =0, (18)

P

where (f,g)=/ flf(f)g(é)dg stands for the inner product of
any two arbitrary functions in Ly(-1,1) and consequently

0 m+n
(P, P,) = 2 (19)
_— m=n,
2m + 1
P pr 2 m-n=odd, m-n>0, 0
< n» m>_ 0 Oth ( 0)

and (P,, _,(&)P,,) should be numerically calculated.

All the summations in these expressions should be in-
evitably truncated; therefore, the indices of summations
m, n, and i are here assumed to run from 0 to M -1, 0 to
M -2, and —-N to N, respectively. This gives rise to a set of
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2(2N+1)(M-1) independent equations with 2M(2N+1)
unknown coefficients, which can be arranged in the con-

cise matrix form

l

Q™ [[h.'”]} =0, (21)
[£).]

where QTE is a 2(2N+1)(M-1) X 2(2N+1)M matrix given

in Appendix A and [(jfn] and U‘m] are column vectors whose

(i+N)M+m+1 element is i}, and ¢}, respectively.

The missing equations can be found once the appropri-
ate boundary conditions, i.e., the continuity of the trans-
verse electric and magnetic fields across the upper and
lower interfaces of the /th slice at z=z;,_; and z=z;, are
duly applied. This is done in Subsection 2.C, where each
layer is represented by a layer ¥ matrix [4].

B. TM Polarization
Similarly, TM-polarized electromagnetic fields in the
modulated region can be written as follows:

E =3 [S.(2)% + S.i(2)2]exp(=jkyx), (22)
H- ;2 [U,(2)5 lexp(= jhy0). (23)
0 i

In TM polarization, however, the inevitable truncation of
the Fourier-based expansions and the discontinuity of the
permittivity profile can considerably slow down the con-
vergence rate of the Floquet expansion. Consequently, the
FFF rule should be applied to appropriately resolve the
issue [11]. This results in the following set of coupled
ordinary differential equations:

d [Sx] MTM11 MTM12 [Sx]
E[[Uﬂ} {MM MTM”M[UyJ]’ Y
M™11-K_GB, (25)
M™M2 =K _GK,/k, +jkol, (26)
M™21 - jp (A +[[1/€]] ! - jBGB), 27
M™V22 - BGK,, (28)

where [[1/€]] represents a Toeplitz matrix whose (i,p)
element is ei’_lp(z), [S.] is a column vector constructed
by S,;(z) functions, [U,] is a column vector constructed by

U,(z) functions, and
A=[le]]l-[[Vel™, (29)
A=A[[%], (30)
B = A[[cs]], (31)
G=-j(le]ll-A)". (32)

In these expressions, [[c]] and [[s]] stand for the
Toeplitz matrices whose (i,p) elements are the (i—p)th
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Fourier coefficient of the c(x) and s(x) functions, respec-
tively, where c(x)=cos 6(x), s(x)=sin #(x), and 6(x)
=tan~! df/dx.

Once again, the preceding set of ordinary differential
equations should be projected onto the linear space
spanned by the Legendre basis functions. Each space har-
monic is therefore expanded in terms of the Legendre
polynomials,

+0%0

S.i(2) = >, @b, Pn(8), (33)
m=0

+o0

U,z)= > IL.P, (9, (34)
m=0

and the following set of algebraic equations is obtained:

2
> (q;gl<Pn,P;n> + >, g (P, MIMUIP, )
p

m

+ lf,’n<Pn,M£,M12Pm>> =0, (35)
p

2
b (l;d—<Pn,P;n> + 2 1P, MP, )
m l P

+> qi’n(Pn,MgMZle)) =0. (36)
p

Here, in contrast to the TE polarization, all the inner
product terms should be numerically integrated. The only
exception is the (P,,P, ) term, which is analytically given
in Eq. (20).

In the same way, all the summations in these expres-
sions should be inevitably truncated; i.e., the indices of
summations m, n, and ¢ run from 0 to M-1, 0 to M -2,
and -N to N, respectively. Therefore, the above-
mentioned algebraic equations can be recast in the follow-

ing matrix form:
- (5, Y .
AN

where Q™ is a 2(2N +1)(M 1) X 2(2N +1)M matrix given

in Appendix A and [(jﬁn] and [an] are column vectors whose
(I+N)M +m+1 element is qﬁn and lin, respectively.

This leaves us with 2(2N +1) missing equations, which
are to be found by applying the appropriate boundary con-
ditions. This is done in the next subsection, where each
layer is represented by its corresponding R matrix.

C. R-Matrix Algorithm

In this subsection, the R-matrix propagation algorithm is
given for TM polarization, where the transverse electric
S, and magnetic fields U, are linked across every two ad-
jacent layers and a layer r matrix, ¥, is affixed to the /th
interface:
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[S.4(z)] _~(1)TM{[Uy<zl>] }
[[ngl_l)]}‘r [0 (z01 (38)

Analysis of the TE polarization follows the same line,
where S, and U, are changed to S, and U,, respectively.

On the other hand, each space harmonic at z=z;_; and
z=z; is already expanded in terms of the Legendre poly-
nomial coefficients

@] [[U,)] ]
X[[zin]}‘[wy(zl_n] ’ 39

()] _[[SM)] ] 10
YN |~ LS o

where x and ¢ matrices are obtained by using Egs. (33)
and (34). Further details are given in Appendix A.

Now, combining these two latter sets of equations to-
gether with that of Eq. (37) can render the required ¥
matrix:

QTM -1
~ (2(2N+1)(M-1)) X (2(2N+1)M)
FOTM _ o * *

X(2(2N+1))X(2(2N+1)M)

0(2(2N 1)(M-1))X(2(2N+1))
x{ ’ My (41)

1(2(2N+1)) X(2(2N+1))

Once the layer r matrix is obtained, the following set of
recursion formulas can be used to obtain the stack R
matrix [4]:

) _=0) _ =0yl
R} =7 -T2,

) _=0zOR (-1
R} =FZ RY; ",

1 =1z (1y=(l
R} =- Ry VZOFY,

Ry =Ry + Ry VZUR( Y, (42)
where
z0 =&y -REY), (43)

and the recursion process is initialized by setting R
=7,

The overall R matrix should then be matched to the
Rayleigh expansion without the modulated area, where
the unknown R; and T coefficients, i.e., diffracted field
amplitudes, can be easily determined. In this fashion, the
overall diffraction efficiencies can be easily calculated
[18].

It should be noticed, however, that numerical overflow
is not expected in the LPEM, where forward and back-
ward exponential evanescent orders are absent and con-
sequently the presented R-matrix propagation algorithm
is not necessary to secure the numerical stability. Still,
the algorithm is particularly necessary to improve the
overall computational efficiency; otherwise, the z depen-
dence of the coupled space harmonics will be harsh
enough to require a large number of Legendre basis func-
tions, the retaining of which can considerably enlarge the
size of the involved matrices. This is especially pro-
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nounced in the analysis of metallic gratings used in TM
polarization, gratings with a large contrast in their
permittivity profile, or thick gratings.

3. COMPARISON AMONG RCWA, DM,
AND LPEM

The proposed LPEM, the DM, and the RCWA algorithm
all solve almost the same set of differential equations and
can be fairly compared against one another. This compari-
son is here made by the analysis of two surface relief grat-
ings with a sinusoidal profile of groove depth whose speci-
fications, in accordance with Fig. 1, read as 2d=\N=Ag
=1 um, n1=1, and a=15°. In the first case, the refractive
index of region 3 is n3=1.5 and a dielectric sinusoidal
grating, which is hereafter referred to as case A, is con-
sidered. In the second case, however, the refractive index
of region 3 is n3=1-5; and a metallic sinusoidal grating,
which is hereafter referred to as case B, is dealt with.

The required run times of the DM, the RCWA, and the
LPEM to achieve an accuracy of 1% in the largest diffrac-
tion efficiency of both major polarizations in the above-
mentioned cases are given in Table 1. All the numerical
results are obtained by using MATLAB on a PC (Intel
Core 2 Duo at 2 GHz and 1 Gbyte of RAM).

This table clearly shows that the proposed LPEM can
outperform both the DM and the RCWA. However, to fur-
ther demonstrate the superiority of the LPEM, the
achieved relative error in the largest diffraction efficiency
of case A used in TE polarization is plotted in Fig. 2 ver-
sus the elapsed run time of the DM (circles), the RCWA
(triangles), and the LPEM (diamonds). In this figure, the
total number of kept space harmonics is fixed at 2N+1
=21 for all of the above-mentioned algorithms. The refer-
ence value for the calculation of the relative error is ob-
tained by using the C-method with 2N +1=201 space har-
monics, and then the accuracy of the DM, the RCWA, and
the LPEM is improved by increasing the number of nu-
merical steps used in the integration scheme, the number
of slices in the staircase approximation, and the total
number of Legendre polynomial basis functions (LM), re-
spectively. It should be noticed that in this calculation M,
i.e., the number of Legendre basis functions within each
slice, is fixed at 6. This figure clearly demonstrates that
the LPEM outpaces the DM and the RCWA in achieving
the lowest error level that could be possibly obtained by

Table 1. Required Run Times of the DM, RCWA,
and LPEM to Achieve an Accuracy of 1% in the
Largest Diffraction Efficiency of Both Major
Polarizations

Required Run Time (s)

Approach DM [11] RCWA [5] LPEM
Case A
TE polarization 0.042 0.008 0.004 with L=1
TM polarization  0.063 0.031 0.015 with L=1
Case B
TE polarization 0.117 0.100 0.039 with L=2
TM polarization  3.08 Very large 0.62 with L=17
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0 05 1 15
Computation time

Fig. 2. Computational efficiency of the DM (circles), the RCWA
(triangles), and the LPEM (diamonds).

keeping 2N+1=21 space harmonics. This is not unex-
pected, as spectral analysis using polynomial expansion is
known to outperform many other techniques in solving
ordinary differential equations [20,21].

Moreover, the diffraction efficiencies of the aforemen-
tioned surface relief gratings are examined to probe the
accuracy and the convergence rate of the proposed
method. The transmitted diffraction efficiencies of the
—1st, the zeroth, and the +1st orders, together with the
total diffraction efficiency of the dielectric surface relief
grating in case A, are all summarized in Table 2, where
the proposed LPEM with N=5, M =6, and different values
of L is employed for both TE and TM polarizations. This
table clearly shows that increasing L can improve the en-
ergy balance of the calculated diffraction efficiencies This
is particularly true in TE polarization, for which L=5 is
high enough to ensure that the energy balance criterion is
satisfied within a precision of about 108, In applying the
DM, however, more than 1000 integration steps are
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066« 1
0.64
0.62 4

o
o

-1Istreflected order

21

Fig. 3. TE polarized —1st reflected order of the metallic surface
relief grating in case B versus L and M in applying the LPEM
with N=15.

needed to achieve the same precision. Such a high level of
accuracy in holding the energy balance criterion is not ob-
served for TM polarization, where L=50 cannot render a
precision of better than 104, It should be nonetheless no-
ticed that better results are not obtained by using the con-
ventional DM, and this somewhat low level of precision is
in real fact due to the FFF technique, which is applied to
improve the overall convergence speed. Fortunately, the
truncation order N in applying the proposed LPEM
method can be increased to improve the energy balance
and to push the total diffraction efficiency further toward
1. For example applying the LPEM with N=20, M=6, and
L =50 for the analysis of the same problem in TM polar-
ization renders a precision of about 1079, i.e., a total dif-
fraction efficiency of 0.99999665.

Additionally, the lossy metallic grating in case B is
more closely examined, and plots of the convergence char-

Table 2. Transmitted Diffraction Efficiencies of the —1st, Oth, and +1st Orders, Together with the Total
Diffracted Energy of the Dielectric Surface Relief Grating in Case A, Are All Calculated Using the LPEM
with N=5 and M =6 and for Different Values of L

Transmitted Efficiency

Total Diffracted

L —1st Order 0th Order +1st Order Energy

TE
1 0.1280789 0.6966239 0.1588289 1.000063246582
2 0.1281937 0.6963942 0.1588820 1.000001134920
3 0.1281940 0.6963924 0.1588828 1.000000192145
5 0.1281939 0.6963922 0.1588828 1.000000002966
10 0.1281939 0.6963922 0.1588828 0.999999999649
20 0.1281939 0.6963922 0.1588828 0.999999999985

T™
1 0.8127049x 101 0.8439878 0.6706024 < 101 1.000178730737
2 0.8194206 x 10! 0.8426590 0.6751512x 107! 0.999942117523
3 0.8196372x 107! 0.8426111 0.6753589x 107! 0.999940711633
5 0.8195612x 10! 0.8426233 0.6752787x 1071 0.999936680417
10 0.8196147x 107! 0.8426197 0.6752998 X 101 0.999939591549
20 0.8196113x 107! 0.8426203 0.6752963 < 107! 0.999939765866
50 0.8196109 % 101 0.8426203 0.6752963 % 107! 0.999939766240
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Fig. 4. TE-polarized —1st reflected order of the metallic surface relief grating in case B (a) versus the number of integration steps in
applying the DM with N=15 (b) versus the number of slices in the staircase approximation based on the RCWA with N=15.

acteristic of the largest diffraction efficiency are provided,
where the total number of kept space harmonics is trun-
cated at 2N+1=31. In TE polarization, the results
obtained by using the proposed LPEM are presented in
Fig. 3, where the —1st reflected order is plotted versus
both M and L. For the sake of comparison, the DM and
the staircase approximation based on the RCWA are em-
ployed to plot the convergence characteristics in Figs. 4(a)
and 4(b), respectively. Along the same lines, the proposed
LPEM, this time for the TM polarization, is applied and
the convergence characteristic is presented in Fig. 5,
where the zeroth reflected order is plotted versus M and
L. Inasmuch as the staircase approximation is not valid
for this case in the TM polarization [9], the convergence
characteristic of the RCWA is not presented; yet, that of
the DM is shown in Fig. 6, where the zeroth reflected
order is plotted versus the number of integration steps.

4. COMPARISON BETWEEN C-METHOD
AND LPEM

The LPEM, much like the DM and the RCWA, is a
Fourier expansion method to solve the coupled set of dif-
ferential equations governing the Fourier coefficients of
the field components in a Cartesian system. The
C-method, on the other hand, is a coordinate-
transformation-based differential method that introduces
a nonorthogonal curvilinear coordinate system that maps
corrugated profiles to planar surfaces. It is indeed a fast
and efficient strategy, which is applicable to arbitrary-
shaped surface relief gratings with smooth and differen-
tiable functions of groove depth. In this section, the com-
putational efficiency of the C-method and that of the
LPEM are compared against each other.

In the first working example, the aforementioned cases
A and B are reconsidered, and the required run times to
achieve an accuracy of 1% in the largest diffraction effi-
ciency are given in Table 3. In these cases, the surface re-
lief profile is sufficiently smooth and can be very effec-
tively analyzed by using the C-method. The efficiency of
the LPEM is, however, comparable to that of the
C-method except for the metallic sinusoidal grating used

in TM polarization. This latter case cannot be analyzed
unless the whole structure is decomposed into L=17
subgratings.

In the second case in point, symmetric trapezoidal sur-
face relief gratings with base angle #=63.43° are ana-
lyzed. Similarly, both dielectric and metallic types are
considered. In case C, a dielectric substrate with n3=1.5

Othreflected order

Fig. 5. TM-polarized zeroth reflected order of the metallic sur-
face relief grating in case B versus L and M in applying the
LPEM with N=15.
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Fig. 6. TM-polarized zeroth reflected order of the metallic sur-
face relief grating in case B versus the number of integration
steps in applying the DM with N=15.
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Table 3. Required Run Times of the C-Method and LPEM to Achieve an Accuracy of 1% in the Largest
Diffraction Efficiency of Both Major Polarization in Cases A and B

Required Time (s)

Approach C-Method

Single-Layer LPEM [18]

Multilayer LPEM

Case A
TE polarization
TM polarization

0.008 with N=4
0.008 with N=4

Case B
TE polarization
TM polarization

0.008 with N=4
0.005 with N=3

0.004 with N=1,
0.007 with N=1,

0.043 with N=6, M =8

5
=4

5 0.004 with N=1,
=4 0.015 with N=1,

0.039 with N=6, M =5, L=2

Very large 0.62 with N=10, M=3, L=17

Table 4. Required Run Rimes of the C-Method and LPEM to Achieve and Accuracy of 1% in the Largest
Diffraction Efficiency of Both Major Polarizations in Cases C and D

Required Time (s)

Approach C-Method

Single-Layer LPEM [18]

Multilayer LPEM

Case C
TE polarization
TM polarization

0.051 with N=10
0.045 with N=10

Case D
TE polarization
TM polarization

0.011 with N=5
6.61 with N=62

0.004 with N=2, M=4
0.004 with N=1, M=3

0.007 with N=3, M=5
58 with N=17, M=35

0.004 with N=2, M=4, L=1
0.006 with N=1, M=3, L=1

0.007 with N=3, M=5 L=1
1.77 with N=17, M=3, L=16

is worked out, and in case D, a metallic substrate with
n3=1-5j is substituted for the dielectric. All other speci-
fications are similar to those of the previous study cases A
and B. The required run times to achieve an accuracy of
1% in the largest diffraction efficiency in the analysis of
these two latter cases are then tabulated in Table 4. This
time, the multilayer LPEM wins the upper hand, as the
trapezoidal surface profile in these cases happens to be
nondifferentiable and cannot be effectively analyzed with
the C-method unless the adaptive spatial resolution
technique is employed [15].

Table 5. Incurred Reciprocity Error in Applying
the LPEM for the Analysis of Different Surface
Relief Gratings in Cases A-D

Case Reciprocity Error, e Parameters
Case A
TE polarization 1.998 x107? N=5,M=6,L=2
TM polarization 2.095x 10710 N=5,M=6,L=2
Case B
TE polarization 1.114x107° N=15, M=6, L=20
TM polarization 1.128 X 10710 N=15, M=6, L=20
Case C
TE polarization 8.334x 106 N=5,M=6,L=2
TM polarization 2.214x 106 N=5,M=6,L=2
Case D
TE polarization 6.996 x 10710 N=15, M=6, L=20
TM polarization 6.403 x 106 N=15, M=6, L=20

Consequently, the proposed LPEM cannot outperform
the C-method if surface relief gratings with high-contrast
permittivity profiles and differentiable functions of groove
depth are to be analyzed. On the other hand, discontinu-
ous profiles, volume gratings, and surface relief gratings
with inhomogeneously filled grooves cannot be directly
analyzed with the C-method. The latter case, however,
can be analyzed by using an extension of the conventional
C-method [22]. All these cases, however, have been suc-
cessfully and directly analyzed by applying the proposed
LPEM [18].

The calculated results of all these structures are then
verified against the reciprocity theorem [1]. Here the
following reciprocity error parameter, e, is defined to
measure the symmetry of the calculated diffraction
efficiencies:

IDE°(6) - DE°(- 0)|
e= s
IDE(6)|

(44)

where DE°6 stands for the reflected zeroth-order diffrac-
tion efficiency as a function of the incident angle 6 and the
||l sign stands for the L? norm. Insofar as the zeroth-
order diffraction efficiency should be symmetrical with
respect to the incident angle, the above-mentioned error
parameter is ideally expected to be zero. This is tested in
Table 5, where the reciprocity error parameter, e, is
numerically calculated for all the preceding cases A-D.
The incurred error, though nonzero, is small enough to
exonerate the proposed LPEM.

At the end of this section, a sinusoidal metallic grating
made of aluminum (np=1.3-7.6j) is considered to
present how the resonant scattering can be dealt with.
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Fig. 7. Resonance anomaly in the TM reflectivity of a sinusoidal
aluminum grating: LPEM with N=20, M=3, L=150 (solid
curve), and the C-method (dashed curve).

The grating period is Ag=0.5 um, the incident wave illu-
minates the grating from air at #=14.929°, and the free-
space wavelength is A=0.6328 um [1]. The overall reflec-
tivity of this structure as a function of the grating
thickness is plotted in Fig. 7, where both the LPEM (solid
curve) and the C-method (dashed curve) are applied.
Despite the resonant anomalies, an excellent agreement
is observed between the proposed LPEM and the
C-method [1].

5. CONCLUSION

The LPEM is here generalized for the efficient analysis of
arbitrary-shaped surface relief gratings. The modulated
region is decomposed into a few sufficiently thin inhom-
geneous slices of equal spatial period, wherein electro-
magnetic field dependence is smooth enough to be ap-
proximated by keeping a small number of Legendre
polynomial basis functions. A rigorous approach is then
followed, and the R-matrix propagation algorithm is ap-
plied to the Legendre polynomial expansion of the space
harmonics. In this fashion, the size of the involved matri-
ces is reduced and the overall performance of the LPEM is
considerably enhanced. Different working examples are
considered to evaluate the computational efficiency of the
proposed approach against those of the DM, the RCWA,
and the C-method.

APPENDIX A: CONSTRUCTION OF Q, x,
AND v MATRICES

The Q matrix represents the algebraic projection of
Maxwell’s equations onto the linear space spanned by
the Legendre basis functions. It is a 22N
+1)(M-1) X 2(2N+1)M matrix whose nonzero elements
read as

QEm+(+N)M-1)+1,m+(G+NM+ 2N+ 1M +1)
== jko(PyPr)s (A1)
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QEm+(+N)M-1)+2N+1)(M-1)+1,m

2
+(p+N)M+1)=_jkO Pn,<[[E]:|—(k_X> ) Pm ’
0 ip

(A2)

QEm+(+N)M-1)+1,m+(i+N)M+1)= ;<Pn,P,’n>,
| (A3)

QEm+(+N)M-1)+ 2N+ 1)(M -1)+ 1,m + (i + NM
+@N+1)M+1)= %(Pn,P,’n>, (A4)

for TE polarization, and
QM+ G+ NYM-1)+1,m+p+NM+1)
=(P,,M}""'P,), (A5)

QMu+(+NYM-1D)+1,m+(p+NM+2N+1)M+1)
=(P,,M}M?P,), (A6)

QMn+(G(+NYM-1)+ 2N +1)(M-1)+1,m
+(+N)M+1)=(P,,MM'P ), (A7)

QMn+((+NYM-1)+ 2N+1)M-1)+1,m+(p+NM
+ (2N + DM +1) = (P,,M[¥*P, ), (A8)
2
QMu+(G+NM-1D)+1,m+GE+N)M+1)= c7<P"’P’,">’
1
(A9)
QMu+((+NM-1)+2N+1) M- +1,m+G+NM
2
+@2N+1)M+1)= E(Pn,P,/n% (A10)
7

for TM polarization.
The x and ¢ matrices have the following form for both
major polarizations:

0
x= [ X”}, (A11)
0 X22
X 0
W= [ ” } (A12)
X22 0
where
X2l +N+1m+(@+NM+1)=1, (A13)

X2l +N+1m+(@+NM+1)=(-1)™. (A14)

Please notice that indices n, m, i, and p run from 0 to
M-2,0toM-1, -N to N, and —N to N, respectively.
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