Exercise 1. Determine a state space realization and the corresponding transfer function for the following system. Is this system stable?

![Figure 1: Exercise 1](image)

Exercise 2. Discuss the stability analysis of the following characteristic equations.

(a) $S^{10} + 3S^9 - 6S^8 + 4S^7 + S^5 + 12S^4 + S^3 + 9S^2 - 1 = 0$

(b) $S^4 + 2S^3 + 2S^2 + 4S + 5 = 0$

(c) $S^8 + 3S^7 + 5S^6 + 9S^5 + 9S^4 + 9S^3 + 7S^2 + 3S + 2 = 0$

Exercise 3. For the following system with the reference input r and the output y,

$$\ddot{y} + 6\dot{y} + 11y + Ky = \ddot{r} - r$$

determine K such that all roots of the characteristic equation lie inside the region Ω.
Exercise 4. For both positive and negative gain, sketch (by hand!) the root loci for the pole-zero plots shown in figure 3.

Exercise 5. Sketch (by hand) the loci of the closed-loop poles for $K > 0$ for systems with the following open-loop transfer functions:

(a) $G(s) = \frac{K(s + 2)}{s(s + 1)(s + 3)(s + 4)}$

(b) $G(s) = \frac{K(s + 3)}{s(s + 2)(s^2 + 2s + 2)}$

(c) $G(s) = \frac{K(s + 2)^2}{s^2(s^2 + 2s + 2)}$
Exercise 6. The linearized model for the attitude of a rocket (neglecting the moment of inertia of the engine) has a transfer function of the form

\[G(s) = \frac{K}{s^2 - a^2}. \]

Let \(K = 1 \) and \(a = 1 \). The open-loop system is clearly unstable, so we need to design a controller \(G_c(s) \) to stabilize the system, as shown in Figure 4. The input \(\delta \) is the angle of the thrust vector, and the output \(\theta \) is the rocket attitude angle.

![Figure 4: Exercise 7](image)

(a) Suppose we use a proportional controller: \(G_c(s) = K_c \). Sketch the root locus for the closed-loop system. Can we stabilize the rocket attitude by using this type of controller?

(b) Now suppose we try to cancel the pole in the right half-plane, using a controller of the form \(G_c(s) = \frac{K_c(s-1)}{s+p} \), where \(p \) is some positive real number. Sketch the root locus for \(p = 2 \). Is this type of controller likely to work in real-life? Why or why not?

(c) Now use a PD controller of the form \(G_c(s) = K_p + K_ds \). Using root locus methods, determine the values of \(K_p \) and \(K_d \) so that the closed-loop system will be stable with a 2\% settling time of 4 seconds, and a damping ratio \(\zeta \approx 0.7 \).