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Analytical Approach for Analysis of Nonuniform
Lossy/Lossless Transmission Lines

and Tapered Microstrips
Mohammad Hadi Eghlidi, Khashayar Mehrany, and Bizhan Rashidian

Abstract—In this paper, distribution of voltage along a general
nonuniform transmission line is expanded in an appropriate
form, and by employing an approach similar to conventional and
modified differential transfer matrix methods already proposed
for optical structures, analytical expressions are obtained for
voltage/current distributions and reflection/transmission coeffi-
cients. This method shows great accuracy in different test cases
and has been found to be superior to the well-known analytical
method of small reflections. Notwithstanding, the overall accuracy
of proposed approach is further improved by introducing the tech-
nique of multiple divisions. In particular, lossy/lossless tapered
microstrip lines are examined, and excellent results are obtained.
In deriving the formulation, a rigorous approach is followed and
no simplifying assumptions are made; however, thanks to the
analytical nature of the proposed method, high computational re-
sources are not needed, and the results can be obtained extremely
fast. This feature makes it suitable for optimization and synthesis
of nonuniform transmission lines.

Index Terms—Analytical methods, microstrip, nonuniform
transmission line, tapered microstrip, transfer matrix, transmis-
sion line.

I. INTRODUCTION

REGARDING the miniaturization and ever higher density
packing of electronic devices, there is a high demand for

having fast and reliable methods of analyzing the most widely
used components of very large scale integration (VLSI) circuits
and microwave integrated circuits. Nonuniform transmission
lines are one of those components, and they have been ex-
tensively used by microwave engineers in many applications,
including impedance matching [1], pulse shaping [2], antennas
[3], pulsed circuits [4], filters [5], and analog signal processing
[6]. Thanks to their ability to provide a smooth connection
between high-density integrated circuits and their chip carriers,
they also exist in many very large scale integration (VLSI)
interconnections [7], [8]. As all of these applications call for an
efficient, fast, and reliable method of analysis, many different
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techniques have been developed for analyzing nonuniform
transmission lines over the past 60 years. The reflection co-
efficient of voltage/current along the transmission line can be
expressed by a nonlinear Ricatti-type differential equation,
whose general solution does not exist analytically [1]. This
lack of general analytical solutions has spurred the use of
different numerical techniques [9], [10] for analysis of the most
general case. Notwithstanding, the theories of exponential [1],
[11], [12], parabolic [13], [14], cosine squared [14], linearly
tapered [15], and power-law transmission lines [16] are well
established. However, finding an analytical solution for general
nonuniform transmission lines is still commendable. Such a
solution can be specifically useful in fast analysis, synthesis
[17], [18], and optimization [19] of desired structures.

In this paper, a differential transfer matrix method (DTMM)
is employed for analyzing tapered transmission lines, where,
by expanding voltage distribution in terms of unknown coeffi-
cients, analytical formulas for voltage/current distributions and
transmission/reflection coefficients are found. This proposed
approach is capable of analyzing the most general nonuni-
form lossy/lossless transmission lines, whose characteristic
impedance and propagation coefficient can both be position-de-
pendent. Fortunately, high computational resources are not
needed, and the proposed technique has a short run time. It
should be noted that the DTMM has been previously reported
for studying the wave propagation in one-dimensional (1-D)
and nonhomogeneous isotropic [20]–[22] and anisotropic [23]
optical structures. Furthermore, some special treatments in
multisection structures are discussed, and new techniques of
geometrically uniform and electrically uniform multiple divi-
sions are introduced for improving the accuracy of the proposed
method.

The organization of this paper is as follows. In Section II, the
main formulation of the method for calculation of differential
transfer matrix and voltage/current distributions is introduced.
In Section III, reflection/transmission coefficients are derived,
and some special cases are further discussed. In Section IV, the
accuracy of the presented method and its superiority to the ana-
lytical small reflection method [1], [5] is proven by some numer-
ical examples. In particular, tapered microstrip lines are investi-
gated in Section V. Finally, conclusions are made in Section VI.

II. ANALYSIS OF NONUNIFORM TRANSMISSION LINES

The voltage wave in each point of a transmission line is com-
posed of a right traveling wave and a left traveling wave. In a ta-
pered transmission line, which is shown schematically in Fig. 1,
the amplitudes of these waves are dependent on the coordinate,
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Fig. 1. Illustration of a tapered transmission line terminated with a matched
load.

i.e., . Here, the following form for the voltage distribution is
expanded in terms of two forward and backward waves:

(1a)

where is the characteristic impedance at point , and
are unknown functions to be determined later. Also

(1b)

in which denotes the propagation constant.
It should be noted that the characteristic impedance and prop-

agation constant could be complex to account for lossy struc-
tures. One can conclude the following form for the current dis-
tribution:

(2)

To find the unknown functions , we follow the differ-
ential method used in [20]–[24]. For this purpose, one can lo-
cally consider and as piecewise constant functions that
are equal to and on the left side of the point and

and on the right side of the same point.
Then, the continuity of voltage at point is written as

(3)

Further simplification of the preceding equation in the lim-
iting case of yields

(4)

Similarly, using the continuity of current at point and as-
suming lead to

(5)

Equations (4) and (5) can be written in the matrix form as

(6)

in which and

(7)

where is the derivative of the function .
The solution to (6) can be written as

(8)

where is a 2 2 matrix and is referred to as the transfer
matrix from 0 to . This matrix can be approximately calculated
by the following equation [20]–[24]:

(9)

in which can be expanded as

(10)

However, noting that is an off-diagonal matrix, one can
draw a conclusion in the form of (11), shown at the bottom of
this page, where

(12a)

(12b)

(11)
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Finally, it can be easily verified that

(13a)

(13b)

where are constants, ’s are given by (12a)
and (12b), and ’s are the elements of the matrix . These
equations together with (1) and (2) give a solution for voltage
and current distributions.

III. SPECIAL CONSIDERATIONS

Here, reflection and transmission coefficients are derived,
some modifications indispensable in analysis of cascaded
structures are discussed, and, finally, the multiple division
technique is introduced for augmenting the overall accuracy of
the obtained results.

A. Reflection and Transmission Coefficients

The reflection and transmission coefficients of a tapered
transmission line placed within the region of are
derived in this subsection. Assume that a right-traveling wave
is incident upon the medium from the left boundary at .
It can be shown that the reflection and transmission coefficients
are respectively given by (14) and (15), shown at the bottom
of this page, where ’s are the elements of transfer matrix

, ’s are defined by (12a) and (12b), and .

Furthermore, is the reflection caused by the mismatch at the
end of tapered transmission line and is given by

(16)

in which is the load impedance connected to the end of the
tapered line.

In the special case of using the tapered transmission line as
a matching section in which there is no mismatch at the end of
the tapered line or, equivalently, , becomes zero,
then (14) and (15) reduce to

(17)

(18)

B. Cascaded Structures

In the case where tapered transmission lines are connected
to each other, the overall transfer matrix can be computed by
using the following formula:

(19)

Here, denotes the transfer matrix associated with the th ta-
pered section and can be calculated by using (11). Also, ,
which we refer to as the jump matrix, is associated with the in-
terface between the two consecutive sections and . These
jump matrices can be computed by pursuing the subsequent pro-
cedure.

Considering as the interface point between the two
successive sections and and writing down the continuity

(14)

(15)
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Fig. 2. Illustration of tapered lines with triangular and exponential distributions
used in the examples.

condition of voltage and current distributions at the interface
result in

(20)

where and , respectively, refer to the points just before
and after the point and is the jump matrix of the th inter-
face given by (21), as shown at the bottom of this page, where
one reference point, i.e., , has been chosen for all con-
stituent sections.

On the other hand, each tapered section can have its own ref-
erence point, i.e., , for the th section. In this case, the
continuity of voltage and current in an arbitrary interface point

leads to a different jump matrix given by (22), as shown at
the bottom of this page.

C. Technique of Multiple Divisions

It will be shown in Section IV that, as the contrast of
within the analyzed tapered line increases, the accuracy of the
presented method declines. However, the whole tapered line
can be divided into multiple divisions, each of them forming a
subsection whose impedance profile is of lower contrast.

Fig. 3. Polar locus of voltage and current of triangular tapered line for L=� =

1:4, Z = 50, and Z = 100. (a) Voltage. (b) Current. Here, the voltage is
normalized to the voltage at x = 0.

Now, these constituent subsections, i.e., multiple divisions,
should be cascaded by following the procedure set forth in
Section III-B. The improved accuracy gained by following this
technique is numerically demonstrated in Section IV.

It should be noted that different strategies can be chosen
for breaking the whole structure into its constituent multiple
divisions. For instance, the overall structure can be uniformly
divided into subsections of equal lengths. This approach is
called the technique of geometrically uniform multiple divi-
sions. However, this is not always the best choice, and it can
be shown that, with a fixed number of constituent subsections,

(21)

(22)
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Fig. 4. Error of the normalized reflection coefficient versus normalized fre-
quency for a triangular tapered line with Z = 50 and Z = 300. Inset:
normalized reflection coefficient versus normalized frequency.

Fig. 5. Relative error of the normalized reflection coefficient versus normalized
frequency for the triangular tapered line analyzed in Fig. 4.

Fig. 6. Error of the normalized reflection coefficient versus normalized fre-
quency for an exponential tapered line with Z = 50 and Z = 300. Inset:
normalized reflection coefficient versus normalized frequency.

an appropriate strategy of dividing the structure into subsec-
tions of different lengths can lead to better results. One other
approach whose superiority over the geometrically uniform
division strategy is shown in Section IV is the one for which
the following criterion is considered in breaking the entire
transmission line into its constituent subsections:

(23)

Here, and denote the impedance at the beginning and end
of the th subsection, respectively. It should be also noticed that

Fig. 7. Relative error of the normalized reflection coefficient versus normalized
frequency for the exponential tapered line analyzed in Fig. 6.

TABLE I
TEST CIRCUIT PARAMETERS [15]

All lengths in mils.

Fig. 8. Microstrip circuits used for experimental verification of the proposed
method [15].

, , and stands for the total number
of divisions. In this paper, this technique has been referred to
as the technique of electrically uniform multiple divisions. Em-
ploying such an approach in breaking the whole transmission
line into subsections results in multiple divisions, whose ra-
tios of impedance values at the beginning and at the end of it,
i.e., for different values of , are equal to each other.
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Fig. 9. Scattering parameters of test circuits A–D on low-loss substrates versus frequency: (a) circuit A, (b) circuit B, (c) circuit C, and (d) circuit D. Results of
measurements are extracted from [15].

As for the accuracy of the proposed method depending on the
contrast of impedance variations within the line, this way of di-
viding the line into several cascaded subsections heuristically
seems more efficient compared with other possible approaches
of multiple divisions.

IV. NONUNIFORM TRANSMISSION LINES

Here, the applicability of the proposed method in obtaining
voltage/current distributions and tapered line characteristics are
investigated by analyzing some specific examples of nonuni-
form transmission lines. The superiority of our analytical
method to the widely used small reflections method [1] is also
shown. Furthermore, the improvement obtained by following
the technique of multiple divisions is numerically demon-
strated. The results obtained by following the conventional
numerical method of cascading uniform transmission lines [7],
[8], [25] are used to examine those results obtained by applying
our method.

The first example to be studied is a tapered line with the char-
acteristic impedance given by

(24)

where , , and stand for the length of the transmission
line, the load impedance, and the reference impedance, respec-
tively. In accordance with [1], this profile is associated with
a tapered line of triangular distribution, where
is a triangular function. This profile is plotted in Fig. 2.

Fig. 3(a) and (b) shows the polar locus of voltage and current
along the tapered line for , , and .
Here, the voltage is normalized to the value of voltage at

. In Fig. 4, the incurred error of calculating a normalized
reflection coefficient by following our approach and the method
of small reflections is plotted versus normalized frequency.
Also, the relative error, in percentages, is shown in Fig. 5.
These figures clearly demonstrate the superiority of our method
over the method of small reflections. This example can also be
analyzed by the method introduced in [24]. The result is not
considerably different from the results of the proposed method.
The maximum relative difference between the results of two
methods is at most as high as 10 %.

As another example, a tapered line with the following char-
acteristic impedance is considered:

(25)

Again, , , and denote the length of the transmission
line, the load impedance, and the reference impedance, respec-
tively. Also, it is assumed that and . This
profile is associated with the tapered line of exponential dis-
tribution [1] and is shown in Fig. 2. In Fig. 6, the incurred
error of computing the normalized reflection coefficient versus
normalized frequency is plotted, where four different methods,
i.e., the small reflections method, the differential transfer matrix
with no divisions, the technique of cascading four geometrically
uniform divisions (four uniform divisions), and the technique
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Fig. 10. Scattering parameters of test circuit E on lossy substrate versus fre-
quency; results of measurement are extracted from [15].

of cascading four electrically uniform divisions (four nonuni-
form divisions), are compared with each other. Also, the corre-
sponding relative error, in percentages, is plotted in Fig. 7. These
figures noticeably demonstrate the superiority of using the cri-
terion (23) in applying the technique of multiple divisions.

V. TAPERED MICROSTRIP LINES

Tapered microstrip lines have been extensively used in
many applications and play an important role in microwave
engineering. These lines can be characterized by simple circuit
models, whenever the fringing fields are negligible and only
the dominant or quasi-TEM modes propagate along the line. In
this section, the model derived by Hammerstad and Jensen [26]
is employed to obtain the variation of the microstrip effective
dielectric constant and characteristic impedance as a function
of the width-to-height ratio , and then different microstrip
circuits are analyzed. It should be noted that this model also
takes the nonzero strip thickness and dispersion into account.

Five circuits, which were recently analyzed by Edwards et
al. [15], are considered to verify the accuracy of our proposed
method. These circuits, adapting the nomination of [15], are
designated as circuits A-E. Table I recapitulates the parame-
ters of these circuits. Two circuit configurations used in these
experiments are shown in Fig. 8. Figs. 9(a)–(d) and 10 show
the obtained results of test circuits A-D on low-loss substrates
and those of test circuit E on moderately lossy substrate, respec-
tively. Results of the measurements are those given in [15]. Our
results are in excellent agreement with experimental results. In
particular, compared with the results given in [15], following our
approach seems to render simulation results of better accuracy,
especially for test circuits C and D. This point can be explained
by considering the fact that none of the simplifying assumptions
made in [15], i.e., linearly varying effective permittivity and
linearly varying logarithm of characteristic impedance ,
are employed in our proposed method.

VI. CONCLUSION

A new analytical method has been introduced for analyzing
tapered transmission lines. This method is based on a suitable
expansion of voltage distribution with unknown coefficients ob-
tained by following a method similar to conventional and mod-
ified differential transfer matrix methods already employed for

the analysis of optical structures, where no simplifying assump-
tion is made and a rigorous approach is followed. Reflection
and transmission coefficients were derived, the method of ana-
lyzing cascaded structures was presented, and the techniques of
multiple divisions for improving the accuracy of the proposed
method were also introduced. The applicability of the proposed
method and its superiority to the well-known small reflections
method was shown via several numerical examples. In partic-
ular, nonuniform lossy/lossless microstrip lines were investi-
gated by following our proposed method.
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