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Differential-Transfer-Matrix Based on Airy’s
Functions in Analysis of Planar Optical Structures

With Arbitrary Index Profiles

Nima Zariean, Peyman Sarrafi, Khashayar Mehrany, and Bizhan Rashidian

Abstract—A novel analytical method for solution of planar op-
tical structure with arbitrary refractive index profile is proposed.
This new method is founded on differential-transfer-matrices,
whose field solutions are based on Airy’s trial functions. In con-
trast to conventional Wentzel, Kramers, and Brillouin (WKB)
solutions, which diverge around the turning points, this approach
can be successfully used for exact calculation of various functions,
including eigenvalues of optical waveguides with arbitrary index
profiles, and complex reflection and transmission coefficients, even
at the presence of turning points. The method is rigorous and can
be applied for both major polarizations.

Index Terms—Airy functions, differential-transfer-matrix,
graded-index profiles, planar waveguide, Wentzel, Kramers, and
Brillouin (WKB) method.

1. INTRODUCTION

HANKS to the exponential growth of the fast computers
T and large memories, numerical methods are undoubt-
edly today’s most convenient techniques to analyze different
photonic devices and components. These methods cannot,
however, impart as much physical insight as closed form
expressions and semi-analytical methods usually do. In this
respect, different mathematical treatments of optical structures
together with their corresponding physical interpretations are
still popular with many scientists. Furthermore, measured with
the available numerical methods such as the finite element
method (FEM), the finite difference time domain method
(FDTD), etc., the aforementioned semi-analytical solutions and
approximations are much easier to be implemented. Therefore,
even though finding an exact solution to either the general form
of Schrodinger equation or the Helmholtz wave equation is
almost impossible, various closed form approximate solutions
attempting to give reasonably accurate results have been so far
reported.

Among others, WKB approximation [1]- initially introduced
by Wentzel, Kramers, and Brillouin, is one of the most famous
approaches of treating Schrodinger—Helmholtz equation. De-
spite its being widely used, the solution obtained by this method
diverges around the turning points and is applicable only to the
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slowly varying and continuous forms of the potential energy
or electric permittivity- depending on the type of the problem
at hand. However, its accuracy can be further improved by
employing a variational method using WKB expansions as
trial functions [2]. This modified approach yields very accurate
eigenvalues whenever the turning points are not too close to the
region of interest. Furthermore, similar higher order variational
method has been adapted for improving the overall accuracy
[3].

As for none of the WKB-based methods can properly handle
the problem caused by the turning points, a more rigorous ap-
proach based on the modified airy functions (MAF) was also
introduced. This approach, originally proposed by Langer [4],
was later successfully applied to planar optical waveguides and
quantum-well structures [5]-[8]. For most of the profiles, the
MAF method leads to more accurate results than the WKB.
Additionally, it does not suffer from the unwanted divergence
around the turning points. However, the latter (MAF) appropri-
ately combined with the former (WKB) is also capable of giving
convergent and accurate solutions to miscellaneous cases such
as planar optical waveguides, graded index fibers, and the cir-
cular slab waveguides [9]-[11].

Differential transfer matrix method (DTMM), being based
on WKB-like basis functions, has also been reported to ana-
lyze inhomogeneous yet arbitrary optical structures [12], [13].
Much like the original WKB method, DTMM diverges around
the turning points and cannot successfully yield accurate eigen-
values. In this manuscript, however, electromagnetic fields are
expanded in terms of Airy’s functions and a novel type of differ-
ential-transfer-matrix is given. This newly differential-transfer-
matrix faces no numerical difficulty around the turning points
and consequently yields accurate numerical results. In contrast
to most of the conventional approximate solutions, the proposed
method separately treats the TM as well as the TE polarized
waves.

The structure of this manuscript is as follows: the formulation
of the proposed method for both major polarizations, TE and
TM, is presented in Section II. In Section III, the affinity of the
proposed method with differential averaging in piecewise linear
media is discussed to provide some further insight about the
nature of the proposed formulation. Various numerical examples
are presented in Section IV. Finally, conclusions are made in
Section V.

0018-9197/$25.00 © 2008 IEEE
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Fig. 1. Illustration of the inhomogeneous optical structure used in examples.

II. FORMULATION

A. TE Polarization

Consider a one-dimensional isotropic, lossless, and non-mag-
netic inhomogeneous structure, shown in Fig. 1. For such a
structure, the tangential electric (y -component) and magnetic
(z -component) fields may be expressed as

E, = Ste(z) exp(—jk.2)

1

_j (Z_g) H. = Ure() exp(—jk.2)

(1a)

(1b)

where Stg(x), Urg(z), and k, represent the tangential electric
field amplitude, normalized tangential magnetic field amplitude,
and wavenumber in the z direction, respectively.

Substituting (1) into Maxwell’s equations and eliminating the
normal (x) component of the magnetic field, a set of coupled-
wave equations is found and can be written in a matrix form

0
Mrg(z) = ko [—nZ(m) N (%)2 0] (2a)
d [ Ste| STE
dz |:UTE:| Mz () |:UTE:| (25)

Now, the normalized tangential electromagnetic fields, i.e.,
Str(z) and Urg(z) can be rewritten in terms of two new pa-
rameters A(z) and B(z)

el o

where Qrg(z) is defined as

Ai(€) Bi(¢)
Qrr(z) = [ (—£12)Paire)  (=£F) 7 BiE ]
o : (4a)
.2
{(z) = ) (4)

(—%kz(.r))Q/?’ .

Prime denotes the differentiation with respect to ¢ and k(z)
represents the wevenumber in the x direction and is defined as
k(z) = kgy/n2(z) — N2 with N = k, /ko.

Here, the basis functions Ai(x) and Bi(x) represent the
Airy’s functions of the first and second kind respectively, and
are the solutions of the following equation:

2
% -z =0. )

It should be noticed that these basis functions satisfy the
second order Helmholtz equation of a medium in which the
wevenumber in the z direction, i.e., k() varies linearly. This
is in contrast to the WKB-like basis functions, i.e., forward and
backward plane waves, which satisfy the second order wave
equation of a medium in which k() is almost constant. There-
fore, these basis functions allow us to reasonably approximate
harsher variations of k(z) within the medium.

Now by using (3) one can write down

d STE _dQTE A d A
%[UTE:|_ I [B:|+QTE%[B:| (6)

where combining (2) and (6) together with some algebraic ma-
nipulation leads to

d [ A A
%{B} = Wrg(x) [B} 7
in which
d
Wre(r) = QreMreQTE — QEE%QTE- (8)

The state matrix Wk serves as a novel differential-transfer
matrix to obtain the overall transfer matrix

Aza) | 2 A(zy)
|:B(IC2):| = exp </I1 Wrrdz B(a) |- )
This combined with (3) now links the tangential electromag-

netic fields at x5, i.e., STr(22) and Urg(z2), and at z4, i.e.,
Str(z1) and Urg(z1), together

o | = e (| Wreds ) Qi)™

<[] o

B. TM Polarization

Once again, in the aforementioned inhomogeneous layer,
normalized tangential electromagnetic field amplitudes, i.e.,
Urm(z) and Stm (), can be formulated as

H, = Stm(z) exp(—jk.2) (11a)

1

. [ €0 2 .
j <%) E, = Urm(z) exp(—jk.2).

(11b)
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Similarly, substitution of (11) into the Maxwell’s equations and
elimination of the normal component () of the electric field,
yields the following set of coupled-wave equations:

0 2
Mo (z) = ko {—1+ 2} :L(g))2 0} (12a)
i STM STM
dx |:UTM Mru(x) Urm (126)

where QT (x) reads as (13), shown at the bottom of the page.
Here

(14a)

(14b)

Now, the overall transfer matrix of the medium can be ob-
tained in a similar fashion, where the tangential electromag-
netic fields at 5, i.e., Stm(22) and Uy (22), and at 1, i.e.,
Stm(z1) and Uty (1), are related according to the following

equations:
d
- {g] — Wi(a) [g] , (1s)

in which
-1 -1 d
Wrm(z) = QraMrvmQrvm — QTM%QTM (16)

and consequently

(5040 ] guato

oo ([, W) ande [FNES] 00

C. Extraction of Eigenmodes

The preceding transfer matrix formulation provides an easy
way to extract bounded states and eigenmodes. The fields tan-
gential to the boundaries at z = x; and © = x5 are related via
the following matrix product:
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the tangential fields corresponding to bounded modes must be
exponentially decaying for z < x4

S(z) = Ay exp(n(z — 1)) (19a)
U(z) = Ay %Zf exp(y1(z — 1)) (19b)
on’
and for z > x9
S(z) = Az exp(—y2(z — x2)) (19c¢)
U(z) = —As "YQZf exp(—7yz2(z — 2)) (19d)
k0n2

where 7; = ko(/N? —n? and f reads as 0 for TE polarized

waves and 1 for TM polarized waves.
Therefore, (18) can be rewritten as

A Ay
|:_ 722fA2:| =Y |: ’lefAI:| .

k0n2 konl'

(20)

Further simplifications of the preceding equation results in
the following matrix product:

Y11 + Y12 kg’::/?f -1 Al o o
Y21 + Y22 ko':llg 5 kofg - A, 0
1 2

whose determinant must be zero to support bounded states.
Here, y;; stands for the ijth element of the Y matrix.

D. Calculation of Reflection Coefficient

The same procedure can be followed to obtain the reflection
and transmission coefficients of incident electromagnetic fields
for both major polarizations.

For a case of a plane wave incident from left, i.e., x < x1, nor-
malized incident, reflected, and transmitted waves- being repre-
sented by S;, S,., and S; respectively- are of the following form:

S; = exp(—Jkz, (x — 1)) (22a)
Sy = Rexp(jkz, (z — 1)) (22b)
St = T exp(—jkz, (v — 2)) (22¢)

where k.., = n; cos(f) and 6 denotes the angle of incidence.
Now, total tangential electromagnetic fields at the boundaries
o = x1 and x = x5 can be written as

Saa) ] _ v [ Stan) S©O)=1+R (23a)
ey =¥ o] e "

U(0) =(1-R) (—j ””gf> (23b)

where Y denotes the transfer matrix given in (10) and (17) for komny
the TE polarized and TM polarized waves, respectively. Now, Sd)y=T (23¢c)

n(@)Ai(C) n(a)Bi(C)
QrM(T) = | n(a)(=£r)/* 4 (OO0 (2) Ai(C)  n(@)(= ) B ()40 (2) Bi() (13)
n?(x) ko n?(x) ko
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k
Udy=T | —j—=_].
(d) ( Jk0n§f>

Substituting these four quantities in (18) leads to a linear set
of algebraic equations, whose solution for R, i.e., the complex
reflection coefficient can be expressed as

(23d)

.k .k Koy K
7 T3 — 9 T T T3
Y21 + 7 Fon2l Y1 —J ko] Y22 + RZ(ning)?T J12

. k. ko b :
Yo1 +J konéf Y11+ kon%f Y22 = RZ(nin,yor Y12
(24)

Again, y;; stands for the 7jth element of the Y matrix.
In a similar fashion, the complex transmission coefficient 7’
can be written down

Sy
T=—
Si

ks
2]@(%13/22 — Y12Y21)

= s ks ko kx '
Y21 +J kon%f Y11 +J kon'lif Y22 = 32 (nin,yer Y12
(25)

III. DIFFERENTIAL AVERAGING BASED ON PIECEWISE
LINEAR APPROXIMATION

In this section, the affinity of the proposed approach with
analysis of wave propagation by using piecewise linear approx-
imation in analysis of inhomogeneous structures is discussed.
The refractive index profile is divided into a number of sec-
tions, wherein linear interpolation of k2(x) is employed as an
approximate expression. In this fashion, £%(z) is assumed to be
linear within the [xgAz, zo] and [z, zo + Az] intervals. Con-
sequently, A(z) and B(x) will be constants equal to A(x) and
B(x) within the [zg Az, 9], and A(xo+ Az) and B(zo+ Ax)
within the [z, £¢ + Az]. Then the appropriate boundary condi-
tions impose (26a)—(26d), shown at the bottom of the page and

(Q1—2 is the transfer matrix across the arbitrary interface x.
Without loss of generality, (26a) can be written down as follows:

[A(a: + Az) A(:v)] | o7

B(z + Aa:)} = @emotan [B(a:)

Now, if k(z), A(z), and B(z) are analytic functions of x, the
preceding equation would be further simplified by applying the
Taylor series expansion

d | A(z) A(x) A(x)
— AT =~ Qi ntAs . (28
dz {B(z)} * {B(x) TN Qumaras | gy |- @8

Further simplification of this latter equation as Ax tends to

zero yields

Qm—»m-l—A:r -
Az

=i )

which brings in the same state matrix as the one already intro-
duced in (8). This approach shows that the mathematical formu-
lation as presented in previous section is strongly connected to
wave propagation in piecewise linear media.

(29)

IV. NUMERICAL EXAMPLES

In this section, different examples are presented to justify the
validity of the proposed approach. The examples belong to op-
tical structures; however, by change of dimensions and minor
redefinitions of parameters, quantum mechanical systems can
be analyzed along the same vein. All these examples are based
on two different profiles, both widely studied in literature.

A. Truncated Exponential Index Profile

Consider the structure shown in Fig. 2, which depicts an in-
homogeneous refractive index profile of the following form:

n(z) = {noexp [fln (2—0)} O<z<d

no z<0orzxz>d.

(30)

In Fig. 3, the TE polarized reflection coefficient of the struc-
ture is plotted versus normalized frequency. In this calculation,
where ng = 2.177, and n, = 2.220 and the angle of incidence

D] [ )]

(26a)

7=k (o)

Ai()BI(E) - () aie)Bie) Bile)Bi6) - (FEal)’ Bie)Bi)

@io=m 0 g2 3 .2 }
() A7 (&) + (0 ) T AV (€)Ai(&)  —Bi(6)Ai (&) + (Hnes ) Bi'(6) Ai()
(26b)
2
glz_% (26¢)
(=dek?(20))”
fym k?(zo + Az) — Lk*(zo + Az) Az (26d)

2
3

(—%kZ(mo + Az))
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Fig. 2. Exponential index profile plotted versus normalized distance.

x 10

Fig. 3. Reflection coefficient of the structure shown in Fig. 2 with
no = 2.177,n, = 2.220, and # = 30° for TE polarization. The solid
line represents the exact results and the circles stand for the proposed method.

is 30°, two different approaches are employed. The first, de-
picted by solid line in the figure, is based on the exact analytical
solution, which is available in terms of Bessel functions. The
second, plotted via circles, is obtained by following our pro-
posed method and is in good agreement with the exact results.

Furthermore, the bounded eigenmodes supported by this
structure are extracted for both major polarizations. This time,
the calculations were carried out for two different sets of
parameters. First, the values of the parameters are chosen to be
ng = 2.177, and ny = 2.220, where the dispersion diagram of
both major polarizations, i.e., normalized propagation constant
b = (N? — n2)/(n? — n2) versus normalized frequency
V = kod\/n2 —n3, is plotted in Fig. 4. To test the accuracy
of the proposed method, two different approaches, i.e., exact
analytical solution and polynomial expansion method [14],
[15], are employed and an excellent agreement between these
different approaches is observed.
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Fig. 4. Dispersion curves of a waveguide with exponential index profile for TE
and TM polarizations with no = 2.177, and n, = 2.220. Solid line: exact
solution; Circles: the proposed method; Dots: polynomial expansion approach.

Fig. 5. Dispersion curves of waveguide with exponential index profile for TE
and TM polarizations with no = 2.5 and n; = 3.8. Solid line: exact solution;
circles: the proposed method; dots: polynomial expansion approach.

Second, the values of the parameters are chosen to be ng =
2.5, and n, = 3.8. Now as the contrast between n, and ng in-
creases, the accuracy of the presented approach slowly declines.
Notwithstanding, such minor errors, which stem from the un-
realistically large values of msng, can be easily alleviated by
dividing the whole inhomogeneous structure into two cascaded
inhomogeneous layers for0 < z < d/2and d/2 < x < d.Each
one of these inhomogeneous sublayers now enjoys a lower con-
trast of n(x). By applying this simple technique, the dispersion
diagram of both major polarizations for this new case is also
plotted in Fig. 5, and once again, the excellent accuracy of the
proposed method is demonstrated.

Figs. 3-5 clearly show that the most accurate numerical
results as obtained by following the polynomial expansion
method and/or finely discretized staircase approximation tally
with those calculated by following our proposed method. This
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TABLE I
COMPARISON OF RELATIVE ERROR FOR B, NORMALIZED PROPAGATION
CONSTANT FOR TRUNCATED EXPONENTIAL PROFILE AT V = 4.0 AND
(@) ng = 2.177,n, = 2.220 AND (b) ng = 2.5,n; = 3.8

Transfer Matrix ~ Airy DTMM Airy DTMM Polynomial
(50 sublayers) (no sublayers) (2 sublayers) Expansion
(a) 6.4¢-5 2.3e-5 3.5¢-6 8.4e-8
(b) 9.1e-5 1.2¢-2 1.2e-3 2.4e-8
n_r- 4
)
=
My
-0.5 0.5
x'd

Fig. 6. Parabolic index profile plotted versus normalized distance.

point is further investigated in Table I, where the relative
error in calculation of the normalized propagation constants
in truncated exponential profiles by using standard transfer
matrix method with 50 homogeneous divisions, the polynomial
expansion method, and our method without any sublayers and
with 2 sublayers are summarized. Transfer matrix method with
4000 subdivisions is employed to calculate the relative error in
calculation of normalized propagation constants.

This table clearly demonstrates that the proposed method
overpowers the standard transfer matrix method with 50 ho-
mogeneous subdivisions in case (a). However, as the contrast
between ns and ng is increased in case (b), the accuracy of
the presented approach falls off. Yet, this is partially rectified
by using two cascaded differential transfer matrices as already
proposed. The relative error can be further reduced by using
further divisions in cascading Airy-based differential transfer
matrices, where 4 sublayers yield the relative error of 3.6e—4
and 8 sublayers yield the relative error of 9.4e—5, comparable to
that achieved by transfer matrix method with 50 subdivisions.

B. Symmetric Parabolic Profile

As another example, consider a symmetric parabolic profile,
as shown in Fig. 6. index profile for this figure can be given by:

2 2 2\ (2z)2 1/2 d d

n(z) = nZ — (n —ng) (%) o T2 <T<3
no, x<—%0rm>%.
(32)

0.7 r
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0.6 |
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30 33 40

Fig. 7. Dispersion curves of waveguide with exponential index profile for TE
and TM polarizations with ng = 2.177 and n, = 2.220. Solid line: transfer
matrix; circles: the proposed method; dots: polynomial expansion approach.
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Fig. 8. Dispersion curves of waveguide with exponential index profile for TE
and TM polarizations with ng = 2.5,and n, = 3.8. Solid line: transfer matrix;
circles: the proposed method; dots: polynomial expansion approach.

As for no analytical closed form expression exists for this
index distribution, polynomial expansion method [14], [15], to-
gether with the standard transfer matrix method with stair-case
approximation of the inhomogeneous refractive index profile
[16], are employed to have reference values. Once again, the
calculations were carried out for two different sets of parame-
ters: ng = 2.177,ns = 2.220, and ng = 2.5, ns = 3.8. Disper-
sion diagrams for these tow different cases are similarly plotted
in Figs. 7 and 8, respectively. These figures clearly demonstrate
the accuracy of our proposed method.

It should be noticed that the aforementioned technique of cas-
caded multiple divisions, at virtually no computational cost, is
similarly employed to improve the overall accuracy. Here, four
subdivisions are employed to calculate the presented results.
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V. CONCLUSION

A mathematically rigorous treatment of inhomogeneous
optical structures is presented for both TE and TM polarized
waves. In particular, extraction of bounded states and cal-
culation of complex reflection/transmission coefficients are
discussed. In contrast to WKB-based solutions, whose accuracy
deteriorates for fast refractive index variations or around the
turning points, our proposed approach yields very accurate nu-
merical results and encounters no specific numerical difficulty.
Although all conducted examples belong to optical structures;
by mere change of dimensions and minor redefinitions of
parameters, quantum mechanical systems can be similarly
analyzed.
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