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The waist parameter is a particularly important factor for functional expansion in terms of localized
orthogonal basis functions. We present a systematic approach to evaluate an asymptotic trend for
the optimum waist parameter in truncated orthogonal localized bases satisfying several general
conditions. This asymptotic behavior is fully introduced and verified for Hermite–Gauss and Laguerre–
Gauss bases. As a special case of importance, a good estimate for the optimum waist in projection of
discontinuous profiles on localized basis functions is proposed. The importance and application of the
proposed estimation is demonstrated via several optical applications. © 2010Optical Society of America
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1. Introduction

Exploitation of a truncated orthogonal series ex-
pansion as an approximation for the solution of a
physical problem is a very well-known technique
among physicists and engineers. The perpetual
question propounded in this approach is which basis
functions with what parameters should be used to
achieve the highest accuracy by the least computa-
tional effort.
Once the set of basis functions is chosen, there is

usually a set of free parameters left to be determined.
In particular, the waist parameter for localized basis
functions canplayan important role in the accuracy of
the expansion for nonsmooth functions, and its opti-
mum determination has attracted much attention in
different applications [1–7]. To determine the
optimum waist for projecting a specific function on
aspecific set of localizedbasis functions, different sug-
gestions have been proposed in the literature. For in-
stance, Borghi et al. in [1] have proposed a rule of

thumb for finding the optimum waist of two-
dimensional (2D) Laguerre–Gauss (LG) basis func-
tions in expanding the circ function. Liu et al. in [2]
have studied the applicability of this rule in find-
ing the optimum waist for one-dimensional (1D)
Hermite–Gauss (HG) basis functions employed for ex-
panding a step function. Some have also used struc-
ture-related parameters, e.g. normalized frequency
of an optical waveguide, to determine the basis func-
tion parameters [8–11]. Some others have further
contemplated on the problem for a class of signals
and have minimized an upper bound for the squared
error (e.g., see [3] and references therein).

Accurate determination of the most favorable
parameters for basis functions, however, asks for nu-
merical optimization techniques. The optimization
process is, however, nonlinear and rather complex
and, hence, calls for complicated optimization algo-
rithms, e.g., iterative methods [5,6]. The difficulty
gets even worse when the error function exhibits
many local minima, increasing the probability that
the optimization algorithm gets stuck in a certain
minimum. To avoid such difficulties, some efforts
have been made to analytically solve the nonlinear
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optimization problem, but the results are restricted
to those circumstances where only a few basis
functions are retained in the calculations [7]. Unfor-
tunately, the optimized parameters may be consider-
ably different when the number of retained basis
functions is increased. Therefore, the optimized
parameters may turn out to be nonoptimum when
more basis functions are kept. In this context, a good
estimate for the asymptotic behavior of the optimum
parameter with respect to the number of basis func-
tions is complementary to the already existing opti-
mization formulations and obviates the need to
follow a complicated optimization process.
To this end, the behavior of optimum waist para-

meter for a predetermined set of localized basis func-
tions is analytically studied in this paper, where the
following assumptions are made. The derivative of
each basis function with respect to the free param-
eter is supposed to be in the same space spanned
by the basis functions. The obtained results will,
therefore, not be valid for discontinuous basis func-
tions whose derivatives include the delta function.
Furthermore, despite the generality of the proposed
method, basis functions are assumed to form an
orthogonal set and, thus, their derivative matrix
(as defined in Appendix A) is a band matrix. This as-
sumption is found very helpful in reducing the com-
plexity of formulation. It is worth mentioning that
the validity, as well as the applicability, of the pro-
posed analytic approach in choosing the optimal free
parameter is demonstrated for the HG and the LG
bases. The rules of thumb as suggested by [1,2]
are then extended and a systematic approach to eva-
luateing the asymptotic optimum parameter is pre-
sented. Finally, different practical applications are
presented and the applicability and significance of
the proposed method are exhibited.

2. Formulation

Assume f ðrÞ as a complex function in a complete
square-integrable linear space S⊆L2ðRDÞ, which is
spanned by the set of basis functions ψmðr;wÞ. D is
the dimension of the Euclidean space. The sequence
of coefficients fαmgM−1

m¼0 is to be determined in such a
manner that

P
M−1
m¼0 αmψmðr;wÞ becomes the best ap-

proximation for f ðrÞ within S, minimizing the
squared error defined by

e2 ¼
Z ����f ðrÞ − XM−1

m¼0

αmψmðr;wÞ
����2dr: ð1Þ

Since the set of expansion coefficients fαmgM−1
m¼0 guar-

antees the best achievable approximation within S,
the following set of linear algebraic equations must
hold [12]:

Gt
MA ¼ BM;

GM ¼ ½gi;k�;

gi;kðwÞ ¼ hψ i;ψki ¼
Z

ψ iðr;wÞψ�
kðr;wÞdr;

BM ¼ ½bi�; bi ¼ hf ;ψ ii;
A ¼ ½αi�; i ¼ 0;…;M − 1: ð2Þ

Here, the index i runs from 0 to M − 1 and the
superscripts t, T, and � indicate the transpose, the
conjugate transpose, and the complex conjugate,
respectively. The minimum error e2 can then be sim-
plified as

e2 ¼ hf ; f i − Bt
MG−1

M B�
M : ð3Þ

Because w is a free parameter, it can be optimized
to render theminimum error. The value ofw can then
be found by setting ∂e2=∂w ¼ 0. It will be assumed
that the norm of each basis function hψmðr;wÞi is in-
dependent of w. Using the chain rule and after some
algebraic manipulations, ∂e2=∂w can be written as

∂e2

∂w
¼ −Bt

MðDT
MG−1

M þG−1
MDMÞB�

M − Bt
rDT

r G−1
M B�

M

− Bt
MG−1

MDrB�
r ; ð4Þ

whereDM, Dr, and Br are defined as in Appendix A. It
is, however, assumed that the derivative of each basis
function, ∂ψm=∂w, resides in S. On the other hand, it
can be shown that, when the basis is orthonormal,
the following relation holds between GM and DM
(see Appendix B):

G−1
MDM þ DT

MG−1
M ¼ 0: ð5Þ

By substituting the preceding equation into
Eq. (4),∂e2=∂w can be further simplified as

∂e2

∂w
¼ −2RefBt

MG−1
MDrB�

rg

¼ −2Re
�XM−1

i¼0

X∞
k¼M

hf ;ψ iihf ;ψki�ðg−1M Þidi;k

�
: ð6Þ

Here, ðg−1M Þi refers to ði; iÞ entry of G−1
M (the inverse of

a truncated Grammatrix). The zeros of this equation
will be employed in Section 3 to discuss the displace-
ment of the optimum waist parameter.

3. Asymptotic Behavior of Optimum Waist Parameter

The next problem is to determine the asymptotic
trend of optimum w as the number of retained basis
functions, M, tends to infinity. To study the asymp-
totic behavior of the optimum waist parameter, we
should inspect the displacement of the zeros of
∂e2=∂w, hereafter denoted by wopt

M , as a function of
M. It is, therefore, necessary to study the dependence
of Dw and also the inner products hf ;ψ ii on w, whose
characteristics govern the zeros of ∂e2=∂w in Eq. (6).
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First, it can be shown that, if the waist parameter
w just scales the basis functions linearly along the
radial direction in RD (as for HG basis) then the en-
tries of Dw, i.e., di;k in Eq. (6), are proportional to 1=w.
Furthermore, if the basis functions dependmerely on
the radial distance, j�r j (as for LG basis), then all the
entries become proportional to D=w. These two facts
are later employed in this section to simplify the dif-
ference equation governing the zeros of ∂e2=∂w.
Second, we study the zeros of the other agent in-

volved in Eq. (6), i.e., FMðwÞ≜hf ;ψMi, as the first step
toward extraction of the asymptotic trend for the
sought-after roots of Eq. (6). To this end, FMðwÞ is
approximated around one of its zeros as

FMðwÞ ≈ aMðw −wMÞ; ð7Þ
wherewM denotes an arbitrary zero of FMðwÞ and aM
is the first-order coefficient in Taylor expansion. It
should be also noted that FMðwÞ might have several
zeros and wM should, therefore, have another index
discriminating various zeros for a fixedM. Here, this
index is considered to be fixed and is omitted for the
sake of brevity.
Next, to obtain the relation among zeros for succes-

sive truncation orders, i.e., wM, wMþ1, wMþ2, etc., we
contemplate the derivative of this function with
respect to w:

∂

∂w
FMðwÞ ¼ ∂

∂w
hf ;ψMi ¼

X
i

dM;iFiðwÞ: ð8Þ

Now, by using the fact that dM;i is proportional to
D=w and substituting Eq. (7) into Eq. (8), the follow-
ing two difference equations corresponding to the
zeroth and first-order terms are obtained as follows:

1
D
aM ¼

X
i

~dM;iai; ð9aÞ

0 ¼ P
i

~dM;iaiwi ; ð9bÞ

where ~dM;i is defined as the value of dM;i for w ¼ 1.
Once the trend of wM is extracted by solving the

above-mentioned difference equations, the trend
of wopt

M follows the same line. This point is further
discussed in Section 4.

4. Special Bases

In this section, the approach outlined in Section 3 is
applied to the HG and the LG basis functions.

A. Hermite–Gauss Basis

HG functions are defined as

hmðx;wÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
w

ffiffiffiπpp 1ffiffiffiffiffiffiffiffiffiffiffiffi
2mm!

p Hm

�
x
w

�

× exp
�
−x2

2w2

�
ðx ∈ ℝÞ; ð10Þ

where Hm is the Hermite polynomial [13]. In this
basis, Eqs. (9) result in fourth-order difference equa-
tions. Since even and odd orders become decoupled,
without loss of generality, we can assume that M is
even. By changing the variables as M → 2m and
a2m → a0

m, Eq. (9a) now turns to

a0
m ¼ −1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mð2m − 1Þ

p
a0
m−1

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mþ 1Þð2mþ 2Þ

p
a0
mþ1; ð11Þ

and Eq. (9b) yields

wMþ2

wM−2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM − 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM þ 1ÞðM þ 2Þp aM−2

aMþ2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM − 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM þ 1ÞðM þ 2Þp a0
m−1

a0
mþ1

: ð12Þ

To acquire the asymptotic behavior of wM, therefore,
a0
m−1=a

0
mþ1 is needed. To this end, the Birkhoff–

Adams theorem [14] can be employed. Regarding
the definitions in [14], Eq. (11) has two normal solu-
tions. Since we are interested in the asymptotic
behavior of a0

m, we will retain only the first two domi-
nant terms of the solution with respect to 1=m. In
this way, the solution for a0

m relies on the initial con-
ditions of Eq. (11), which, in turn, depend on the
given function f . However, by plugging the solutions
into Eq. (12), it would be observed that the initial
conditions do not play any role in the first two domi-
nant terms of a0

m−1=a
0
mþ1. The final result then reads

as

a0
m−1

a0
mþ1

∼ 1þO

�
1

m2

�
∼ 1þO

�
1

M2

�
; ð13Þ

where ∼ denotes the asymptotic behavior. Substitut-
ing Eq. (13) into Eq. (12) then leads to

wMþ2

wM−2
∼

�
1 −

1
2M

�
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 2

p : ð14Þ

In the last step of deriving Eq. (14), we have cast the
asymptotic behavior in the form of f ðM þ 2Þ=
f ðM − 2Þ, so that the contributions of wMþ2 and
wM−2 can be discriminated. Finally, for some propor-
tionality constant μ, we have

wM ≈
μffiffiffiffiffi
M

p : ð15Þ

Now, if the derivative matrix Dw is banded, which
is the case for HG and LG bases, then ∂e2=∂w can be
expressed a
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∂e2

∂w
¼ −2Re

� X
1≤εi≤W=2

X
0≤εk≤W=2

hf ;ψM−εiihf ;ψMþεki�ðg−1M ÞM−εidM−εiMþεk

�
; ð16Þ

where εi and εk do not exceed the half-bandwidth of
Dw, W=2. By replacing the linear approximation of
hf ;ψ ii around its zero, Eq. (7), into Eq. (16), an ap-
proximate quadratic equation for the zeros of the er-
ror derivative is achieved. Whatever this equation is,
its zeros will obey the same behavior as wM. The rea-
son is as follows: for each of the terms in the form of
aMþεðw −wMþεÞ, the zero position is scaled by
wMþ1þε=wMþε (ε is either εi or εk). Since ε ≪ M,
wMþ1þε=wMþε is independent of ε, up to the second
order of approximation regarding 1=M. Similarly,
aMþ1þε=aMþε, dMþ1−εi;Mþ1þεk=dM−εi;Mþεk , and ðg−1M ÞM−εi=ðg−1Mþ1ÞMþ1−εi are identical for all ε ≪ M and follow
the same vein. This means that, with increasing M
by one unit, all the zeros and the coefficients are
identically scaled and, as a result, the zeros of the
mentioned approximate quadratic equation will be
scaled in the same manner as wM.

B. Laguerre–Gauss Basis

LG functions are defined as

φmðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n!
ðnþ kÞ!

s
ð2xÞk=2Lk

mð2xÞ

× expð−xÞ ðx ∈ ℝþÞ;

φðDÞ
m ðr;wÞ ¼ cD

1

wD=2
φm

��jrj
w

�
D
; 1

�
: ð17Þ

Lk
m is the associated Laguerre polynomial [15] and D

is the space dimension. To have an orthonormal
basis, c1 ¼ 1, c2 ¼ 1=

ffiffiffiπp
, and c3 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=ð4πÞp
. It must

be noted that this definition of basis only encom-
passes the radial functionality in higher dimensions.
In other words, it is a complete basis for rotationally
symmetric functions in L2ðRDÞ.
For the LG basis, the steps to be taken are very

similar to those for the HG basis. In this case, Eqs. (9)
result in two second-order equations:

aM ¼ −D
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM þ kÞp

aM−1 þ D
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM þ 1ÞðM þ kþ 1Þp
aMþ1 ; ð18aÞ

0 ¼ −D
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM þ kÞp

aM−1wM−1 þ D
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM þ 1ÞðM þ kþ 1Þp
aMþ1wMþ1 : ð18bÞ

By employing the Birkhoff–Adams theorem and re-
taining the first two dominant terms in 1=M, we will
observe the following trend:

wM ≈
μ

M1=D
; ð19Þ

which, by similar discussions, is expected for the
optimum waist parameter, as well. As proposed by
Eq. (19), the k defined in Eq. (17) does not appear
in asymptotic trend of the optimum waist.

5. Practical Applications

In this section, general aspects of the asymptotic op-
timum waist are numerically investigated in several
optical applications. These numerical observations
are instructive for making judicious estimations of
the optimum waist in practical applications.

A. Application in Permittivity Profile Expansion

As the first example, we have chosen a three-
dimensional (3D) spherical defect to be expanded
in the 3D LG basis with k ¼ 0. Employing the expan-
sion of the structure is a common practice in some
versions of the Galerkin method, such as the loca-
lized function method (LFM) [16]. To express the
defect structure, we considered a function with a unit
value inside the unit sphere and vanishing
elsewhere.

In Fig. 1, the approximation in Eq. (19) with μ ¼ 1,
i.e., w ¼ 1=

ffiffiffiffiffi
M3

p
, is compared to the optimum waist

obtained by direct search. As it can be seen, choosing
the distance of discontinuity from origin (r ¼ 1) as μ
in Eq. (19), is a good approximation. Similarly, it was
observed that, for expanding functions with a single
discontinuity at r0 (step, circ, and spherical defect),
μ ¼ r0 gives a good approximation for 1D HG and
LG bases, as defined in Eqs. (10) and (17).

It is worth highlighting that the error increases
sharply when the waist becomes smaller than the op-
timum value (Fig. 2). This fact has been repeatedly
observed for LG and 1D HG bases with different
truncation orders, and for different functions with
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finite support. The reason is that, at the optimum
waist, the width of the function and the width of
the highest-order basis function are comparatively
the same. Hence, by increasing the waist from its

optimum value, some parts of the higher-order basis
functions will gradually fall outside the support
of the function. Thus, the weight of these basis
functions must be small to obtain the optimum

Fig. 1. Expansion of a sphere defect using the 3D LG basis. (a) Solid curve, error by w ¼ 1=
ffiffiffiffiffi
M3

p
; dashed curve, error by optimum waist.

(b) Enlarged view of (a). (c) Solid curve, w ¼ 1=
ffiffiffiffiffi
M3

p
; dots, optimum waist. (d) Enlarged view of (c).

Fig. 2. Error versus waist: (a) order ¼ 4, (b) order ¼ 100.
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expansion. In other words, the effective number of
basis functions in the expansion will be lowered.
On the other hand, when w < wopt, the effective
widths of all basis functions become smaller than
the support of the function. In this way, the end part
of the support cannot be approximated by any basis
function, leading to a sharp increase in the error.
This fact is found to be useful in determining the
optimum waist when expanding discontinuous
functions.
In Fig. 3, the error of the optimum waist is com-

pared to that of two fixed nonoptimum waists. When
the fixed waist is smaller thanwopt in a specific order,
as for w ¼ 0:25 and orders of 10 to 40, the error shar-
ply detaches from the minimum error. On the other

hand, when the fixed waist is larger than the opti-
mum one, as for w ¼ 0:5 and orders of 10 to 100,
the error slightly degrades. This is in accordance
with what is already demonstrated and described
in Fig. 2.

B. Application in Bragg Fiber Structure

In this section, the expansion of a Bragg fiber struc-
ture [17] in the 2D LG basis with k ¼ 0 is studied.
The considered structure [Fig. 4(a)] contains six dis-
continuities and its functionality can be expressed as
the sum of six simple step functions. Although the
total expansion is not simply a superposition of sin-
gle expansions for single steps, we know that the
error for reconstruction of a single step drastically
blows up when the waist becomes smaller than its
optimum value. Like the previous example, for a sin-
gle discontinuity at r ¼ 3, the suggestion ~w ¼ 3=

ffiffiffiffiffi
M

p
gives a satisfactory approximation of the optimum
waist. If we take the waist smaller than ~w, the error
in reconstruction of the farthest discontinuity shar-
ply increases and dominates other errors. On the
other hand, if the waist is more than ~w, the recon-
struction error increases for all the discontinuities.
Hence, it appears that this ~w must work well as
an estimation for the optimum waist. The error of
this estimation is compared to the error floor in
Fig. 4.

C. Application in the Beam Propagation Method

Optimal free parameter selection in orthonormal
bases can be accomplished by minimizing the upper
bound of the quadratic truncation error for a class of

Fig. 3. Error versus order: solid curve, optimum waist; dashed
curve, w ¼ 0:5, dashed-dotted curve, w ¼ 0:25.

Fig. 4. Expansion of Bragg fiber structure in the 2D LG basis. (a) Bragg structure. (b) Dashed curve, error by optimumwaist; solid curve,
error by w ¼ 3=

ffiffiffiffiffi
M

p
. (c) Enlarged view of (b) for small orders.
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functions. Den Brinker et al. in [3] used this approach
to find the optimal waist parameter for several bases,
including HG and LG. This suggestion, although
interesting for signal processing applications, has
several major shortcomings. First, the relation pro-
posed in [3] calls for computing the norm of the de-
rivative of the function. This norm does not exist for a
discontinuous function. Even for slightly smoothened
jumps, this norm is large and results in an obviously
nonoptimum suggestion for the waist parameter.
Second, the upper bound minimized in this approach
is not tight enough for many instances of practical
interest. Although [18] has used this optimal waist
successfully, it should be noted that the function this
reference expands is the real mode of a slab wave-
guide. For such bell-shaped functions as guided
modes in waveguides, the HG expansion essentially
converges fast and is less vulnerable to the choice of
optimum waist.
As an example, we deal with the analysis of the re-

flection from a slab waveguide using BPM [19]. This
paper has embedded 1D HG expansion in the beam
propagation method (BPM) formulation. Since the

incident field is assumed to be a HG beam, it is sui-
tably reconstructed by few HG functions. But the
structure has the shape of a smoothened step and
its expansion entails many more basis functions.
Here we examine the optimum waist for expanding
the structure.

The function to be expanded is a raised cosine.
Comparing to [19], we have considered a wider
cos2 section, so that the suggestion of [3] can produce
a reasonable estimation. The function is defined as

f ðxÞ ¼
(

1 jxj < 1

cos2
�
π
2

�
jxj − 1

��
1 < jxj < 2 : ð20Þ

There are two discontinuities at jxj ¼ 1 and jxj ¼ 2 in
the second derivative of this function. The second de-
rivative of the expansion includes the HG function of
orders 0 to M þ 1 with only M degrees of freedom in
their coefficients. However, if we were willing to
expand the second derivative efficiently with M þ 2
basis functions, the optimum waist was ~w ¼ 2=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 2

p
≈ 2=

ffiffiffiffiffi
M

p
. The optimum waist as suggested

by [3] is ~w ¼ 0:5. In Fig. 5, the relative error is plotted
against the highest retained order. For orders up to
15, these two approximations generate almost the
same error. But in higher accuracies ðerror <
−50dBÞ, the difference is conspicuous. For order ¼
100, they differ by almost 13dB. Also included in this
figure is the upper boundminimized by [3]. Using the
notations of [3], the plotted curve represents

ffiffiffiffiffiffiffiffiffiffiffi
FðwÞ
M

r
≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
M−1
n¼0 na2

nðwÞ
M‖f‖2

s
; ð21Þ

with w ¼ 0:5. As can be seen, this upper bound is not
tight enough. The optimum waist is demonstrated in
Fig. 6. The relation α=

ffiffiffiffiffi
M

p
is fitted (by least squares)

to the optimumwaist for orders from 20 to 100, which
has led to αopt ¼ 1:93.

D. Application in Studying Cutoff of Planar Waveguides

As the last example, we make use of the results
reported in [20] to demonstrate the benefits of the
introduced optimum waist. This paper computes
the cutoff frequency of 1D waveguides by expanding
the solution of the TE wave equation in a 1D HG ba-
sis. Under such a condition, the Galerkin method and
the variational formulation yield the same system of
equations [21]. Hence the free parameters must be
optimized in such a way that the cutoff frequency
is minimized.

Fig. 5. Expansion of raised-cosine slab in 1D-HG basis. Error is
plotted versus order. Solid curve, optimum waist; dashed curve,
w ¼ 2=

ffiffiffiffiffi
M

p
; dashed-dotted curve, w ¼ 0:5; circles, minimized

upper bound [3].

Fig. 6. Expansion of raised-cosine slab in the 1D HG basis: dots,
optimum waist; solid curve, 1:93=

ffiffiffiffiffi
M

p
.

Table 1. Optimum Waist in Fig. 3 of [20] (Middle Row) and
Estimated Optimum Waist (Lower Row)

M 25 50 75 100

W ¼ 1
α at minimum 0.143 0.100 0.080 0.067

1ffiffiffiffiffiffi
2M

p 0.141 0.100 0.081 0.071
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We do not know the explicit form of the field and
thus we cannot apply the proposed method and be
sure that the optimal choice of the free parameters
is made. It is, however, possible to make use of the
proposed method and find reasonable results. Fortu-
nately, we know that it is infinitely differentiable
everywhere, except at the boundaries. At the bound-
aries, which are positioned at x ¼ 0 and x ¼ 1, the
second derivative is discontinuous. This knowledge
helps us to propose the optimum waist. Sharma
and Meunier, in [20], have expanded the field versus
merely even orders of HG. So by retaining M basis
functions, even orders ranging from 0 to 2ðM − 1Þ
are employed. Hence, it can be expected that ~w ¼
1=

ffiffiffiffiffiffiffiffi
2M

p
renders a good estimation of the optimum

waist. In Fig. 3 of [20], the cutoff frequency is plotted
against the parameter α, which is equivalent to 1=w
in our nomenclature. Table 1 contains approximate
values of w ¼ 1=α for which the cutoff frequency
has assumed its minimum. This data is extracted
from Fig. 3 in [20]. By taking advantage of the a
priori estimation ~w ¼ 1=

ffiffiffiffiffiffiffiffi
2M

p
, the need to numeri-

cally search for the minimum point is obviated.
Putting away the nonlinear minimization procedure
thanks to this a priori approximation, only a simple
linear eigenvalue problem remains to be solved.

6. Summary and Conclusion

We have introduced a systematic approach to extract
the asymptotic behavior of the optimum parameter
for the basis functions complying with several gener-
al constraints. The result has been worked out for the
waist of HG and LG bases. For functions including
discontinuity in their profiles or their derivatives,
an explicit estimation of the optimum waist has been
proposed. This estimation extends the knowledge
and observations on individual discontinuities to
multiple discontinuity functions.
Although our discussion has been focused on ex-

pansion of known functions, partial information from
the essence of the function to be expanded can be ade-
quate to conjecture the optimum waist. Especially
when the dominant error of the whole problem ema-
nates from expansion error (e.g., as for variational
formulations), the knowledge about discontinuity po-
sitions in the solution or its higher-order derivatives
can be of assistance.
As demonstrated by miscellaneous examples, the

estimation is beneficiary in many practical cases.
However, it fails for spectrally sparse or band-limited
functions. Another difficulty is expected to arise if in-
dex-hopping occurs. We have not observed a major
change in the index of the optimum zero in waist op-
timization for the HG (or LG) basis. However, this is
not the case if some other parameters, such as the
basis chirp factor (as defined in [22]) are to be opti-
mized. The chirp factor can be considered as a basis
parameter, like waist, and can be treated in the same
way. Our primitive experiments on the chirped HG
basis have shown remarkable alterations in opti-
mum index.

Appendix A

We assumed that the set of basis functions fψmg∞m¼0
is complete in S. Hence if we assume that the deriva-
tive of each basis function, ∂ψm=∂w, lies in S, the
following differentiation operator can be defined in
a matrix form:

∂

∂w
Ψ ¼ DwΨ; Ψ ¼ ½ψ i�; ðA1Þ

whereΨ is a column vector containing all basis func-
tions. Dw is an infinite matrix and is partitioned as
follows:

Dw ¼
	
DM Dr

Ds Dp



: ðA2Þ

Here, DM is an M-by-M block of the infinite matrix
Dw. On the other hand, B is an infinite column vector
whose entries represent hf ;ψMi and can be similarly
partitioned as

B ¼
	
BM

Br



; ðA3Þ

Here, BM is the M-by-1 subvector of the infinite
column vector B.

Appendix B

The partial derivative of the Gram matrix, ∂G=∂w,
can be expressed as

G ¼ hΨ;Ψti; ðB1Þ

⇒
∂G
∂w

¼ DwGþGDT
w: ðB2Þ

The basis is orthonormal so that the norm of basis
functions ψmð�r;wÞ is independent of w. Hence, the
partial derivative of the Gram matrix, which is inde-
pendent of w, is null. Consequently, multiplying
Eq. (B2) from both sides by G−1 results in

G−1Dw þ DT
wG−1 ¼ 0: ðB3Þ

It is worth noting that, for an orthonormal basis, the
Gram matrix is unitary, and the above-mentioned
equation reveals the antisymmetric essence of a par-
tial derivative matrix, i.e., the fact that dmn ¼ −d�

nm.
Furthermore, G−1 is unitary and we can truncate the
matrices:

G−1
MDM þ DT

MG−1
M ¼ 0: ðB4Þ
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