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We analytically relate the giant Goos–Hänchen shift, observed at the interface of a high refractive index prism and a
waveguide structure with an arbitrary refractive index profile, to the spatial resonance phenomenon. The proximity
effect of the high refractive index prism onmodal properties of the waveguide is discussed, and the observed shift is
expressed in terms of proper and improper electromagnetic modes supported by the waveguide with no prism. The
transversely increasing improper modes are shown playing an increasingly important role as the high refractive
index prism comes closer to the waveguide. © 2010 Optical Society of America
OCIS codes: 130.0130, 130.2790, 230.5480, 230.7370, 230.7400.

The lateral shift of totally reflected optical beams from a
planar interface has been referred to as the Goos–
Hänchen shift (GHS) and is observed in two different
regimes. One corresponds to the nonresonant, usually
small, GHS, which is due to the branch point singularity
in the reflection coefficient of planar structures [1,2]. The
other corresponds to the giant GHS, which is caused by
the simple pole singularity in the reflection coefficient of
planar structures [1,3]. In the latter regime, the structure
basically comprises an optical prism with high refractive
index np placed at the distance dg above a waveguide
with arbitrary refractive index profile. The waveguide
has a pure guided mode, whose longitudinal propagation
constant is βg. The high refractive index prism in this
structure transforms the waveguide into a leaky wave
structure with a complex propagation constant βp, whose
real part is usually close to βg. A number of works have
focused on relating the giant GHS to the leaky mode pro-
pagation constant of the whole structure, βp, or the un-
perturbed mode of the waveguide, βg [1,4,5]. To the best
of our knowledge, no formula is yet reported to express
the GHS in terms of the electromagnetic modes in the
general case. Here, the giant GHS is analytically linked
up to the modes of the unperturbed waveguide with
an arbitrary refractive index profile. It is found that
the giant GHS depends not only on the transversely de-
creasing proper modes of the waveguide but also on its
transversely increasing improper modes. The latter are
shown to play an increasingly important role in the
strong coupling regime as the optical prism comes nearer
to the waveguide.
To obtain an analytic expression for the GHS, the

transfer matrix of the whole structure, QT , is first written
as a multiplication of Q, the transfer matrix of the wave-
guide with no prism, and T, the transfer matrix of the gap
between prism and waveguide having a thickness of dg
and refractive index of nc:

QT ¼ Q × T; ð1Þ

where

Q ¼
�
q11 q12
q21 q22

�
ð2Þ

and qijs denote the element of the transfer matrix of the
waveguide. The transfer matrix of the gap, T, can be also
written as

T ¼
�
t11 t12
t21 t22

�

¼
2
4
�
1þ f

κp
κc

�
expð−κcdgÞ

�
1 − f

κp
κc

�
expð−κcdgÞ�

1 − f
κp
κc

�
expðκcdgÞ

�
1þ f

κp
κc

�
expðκcdgÞ

3
5;
ð3Þ

where κi with i ¼ p; c stands for the x component of the
wave vector in either the prism (i ¼ p) or cover (i ¼ c)
region, and the factor f is 1 for TE and nc

2=np
2 for TM

polarized waves, respectively.
The overall reflection coefficient of the structure,

r, can then be straightforwardly written in terms of the
elements of the QT matrix:

r ¼ −
Q21

Q22
: ð4Þ

Here, the numerator and denominator of the overall
reflection coefficient of the structure, i.e., Q21 and Q22,
are, respectively, the ð2; 1Þth and ð2; 2Þth element of
the overall transfer matrix QT . Now, insomuch as the in-
cident spatial frequency, β, is close to the resonance spa-
tial frequency, βg, i.e., jβ − βgj ≪ 1, Q21 and Q22 can be
represented by their first-order Taylor series expansion
around βg:

Q21ðβÞ ¼ Q21ðβgÞ þ
∂Q21

∂β

����
βg
ðβ − βgÞ; ð5aÞ

Q22ðβÞ ¼ Q22ðβgÞ þ
∂Q22

∂β

����
βg
ðβ − βgÞ: ð5bÞ
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By writing Q21ðβgÞ, Q22ðβgÞ in terms of qijs and tijs and
using the fact that q22ðβgÞ ¼ 0 (because βg is an eigen-
mode of the structure with no prism), we have

Q21ðβÞ ¼
∂Q21

∂β

����
βg
ðβ − βzÞ; ð6aÞ

Q22ðβÞ ¼
∂Q22

∂β

����
βg
ðβ − βpÞ; ð6bÞ

where βz and βp denote the zero and the pole of the over-
all reflection of the structure and read as

βz ¼ βg −
Q21ðβgÞ
∂Q21
∂β

����
βg

¼ βg −
q21ðβgÞ
q22

0ðβgÞ
×

t11=t21

1þ
�

t11q21
0

t21q22
0 þ t11

0q21
t21q22

0

�
����
βg
;

ð7aÞ

βp ¼ βg −
Q22ðβgÞ
∂Q22
∂β

����
βg

¼ βg −
q21ðβgÞ
q22

0ðβgÞ
×

t12=t22

1þ
�

t12q21
0

t22q22
0 þ t12

0q21
t22q22

0

�
����
βg
;

ð7bÞ

and the prime denotes derivation with respect to β.
The overall reflection coefficient of the structure, r, is

thus approximately represented by a zero and a simple
pole in the complex plane of spatial frequency:

r ¼
−

∂Q21
∂β

����
βg

∂Q22
∂β

����
βg

×
β − βz
β − βp

: ð8Þ

The obtained pole-zero representation of the overall
reflection coefficient in Eq. (8) can now be applied to
the well-known Artmann formula [6], and the GHS can
be written as

GHS ¼ ∂ϕ
∂β ¼ Im

�
dðlnðrÞÞ

dβ

�
¼ Im

� βz − βp
ðβ − βpÞðβ − βzÞ

�
; ð9Þ

where Im represents the imaginary part of its argument
and ϕ stands for the phase factor of the reflection
coefficient.
It should be noticed that the modulus of the reflection

coefficient, r, is 1 for lossless waveguides when the inci-
dent beam is totally reflected. The pole and zero of the
overall reflection coefficient form a complex conjugate
pair, and the maximum GHS is observed at β ¼ Re½βp�
and amounts to 2=Im½βp�]. For a lossy structure, on the
other hand, Re½βp� ¼ Re½βz�, and the maximum GHS is
observed at β ¼ Re½βp� and amounts to ðIm½βz� − Im½βp�Þ=
ðIm½βz�Im½βp�Þ.
The analytical expression given in Eq. (9) then relates

the GHS to βp and βz, the propagation constants of the
proper and improper modes in the whole structure,
i.e., waveguide and prism. These propagation constants,

βp and βz, are also related to the propagation constants of
the proper and improper modes in the waveguide struc-
ture with no prism. The reflection coefficient at x ¼ dg,
i.e., reflection from the cover-waveguide interface,
denoted rw, is written in terms of the elements of the
Q matrix:

rw ¼ −
q21ðβÞ
q22ðβÞ

: ð10Þ

Given that βg is the propagation constant of a proper
waveguide mode, q22ðβgÞ ¼ 0 and βg is a simple pole
whose residue is

ResðβgÞ ¼ −
q21ðβgÞ
q22

0ðβgÞ
: ð11Þ

Now by assuming that β0 is the nearest zero of rw to βg,
we have q21ðβ0Þ ¼ 0, and thus the first-order Taylor series
approximation of q21ðβÞ calculated around βg and evalu-
ated at βo yields the following equation:

βg − β0 ¼
q21ðβgÞ
q21

0ðβgÞ
: ð12Þ

Interestingly, the right-hand side of Eq. (12) is the
difference between propagation constants of proper
and improper modes. Furthermore, the elements of the
T matrix can be written as

t11

t21
¼ −r−1pc expð−2κcdgÞ; ð13aÞ

t12

t22
¼ −rpc expð−2κcdgÞ; ð13bÞ

where rpc denotes the Fresnel reflection coefficient at
the interface of the prism and cover, when there is no
waveguide in the structure.

It is now possible to apply Eqs. (11)–(13) in Eqs. (7)
and approximate the zero and pole of the overall reflec-
tion coefficients in terms of dg, of the x component of the
wave vector in the cover region calculated at βg, i.e.,
κcðβgÞ, of proper and improper mode propagation con-
stants in the waveguide with no prism, i.e., βg and β0,
and of the residue of the reflection coefficient at the
cover-waveguide interface:

~βz ¼ βg −
ResðβgÞ expð−2κcðβgÞdgÞ

rpcðβgÞ þ ResðβgÞ=ðβg − β0Þ expð−2κcðβgÞdgÞ
;

ð14aÞ

~βp ¼ βg −
ResðβgÞrpcðβgÞexpð−2κcðβgÞdgÞ

1þ rpcðβgÞResðβgÞ=ðβg − β0Þexpð−2κcðβgÞdgÞ
:

ð14bÞ
In obtaining these expressions, rpcðβÞ and κcðβÞ have

been, respectively, replaced by rpcðβgÞ and κcðβgÞ, and
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also the derivatives of t11ðβÞ and t12ðβÞ with respect to
spatial frequency β have been neglected. These simplifi-
cations, valid at the vicinity of singularity point βg, do not
cause a significant error because rpcðβÞ, κcðβÞ, t11ðβÞ, and
t12ðβÞ are all slowly varying functions of the spatial fre-
quency β. It is possible to derive these expressions by
using the zero-pole approximation of the waveguide re-
flection coefficient, rw. The approximate expressions in
Eqs. (14), and consequently the GHS obtained by apply-
ing them to Eq. (9), are therefore as valid as the zero-pole
approximation of the reflection coefficient at the cover-
waveguide region.
It is also easy to show that the approximate

expressions for βz and βp in Eqs. (14) can be further
simplified to

~βz ¼ βg − ResðβgÞ × r−1pcðβgÞ expð−2κcðβgÞdgÞ; ð15aÞ

~βp ¼ βg − ResðβgÞ × rpcðβgÞ expð−2κcðβgÞdgÞ; ð15bÞ

for the weak coupling regime, when j expð−2κcðβgÞdgÞ
=ðβg − βoÞj ¼ δ ≪ 1. The approximate expressions in
Eqs. (15) are equivalent to the single pole approximation
of the waveguide reflection coefficient. The presence of
the improper mode, coinciding with the zero of the reflec-
tion coefficient, is therefore neglected in the weak cou-
pling regime. These expressions show that the proximity
of pole, βg, and zero, β0, in determining the coupling
strength of the waveguide structure and prism is as es-
sential as the gap width dg.
As an example, a monochromatic S polarized wave is

incident upon a graded refractive index profile:

nðxÞ ¼
�
n2
f − ðn2

f − n2
sÞ
x

d

�
1=2

; ð16Þ

where nf ¼ 2:210, and ns ¼ 2:177, the normalized fre-
quency is V ¼ 3:78, and the asymmetry parameter is a ¼
2:27. A high refractive index prism with np ¼ 3 is placed
over the waveguide structure, leaving a gap of dg be-
tween prism–cover and cover–waveguide interfaces.
Two different gap widths dg ¼ 0:4λ0 and dg ¼ 0:55λ0
are considered, and the GHS for wide enough incident
beams is plotted versus angle of incidence in Fig. 1.
The proposed approximation coincides with Artmann’s
formula. A slight amount of loss is then added to the
waveguide, and nf ¼ 2:210 is changed to nf ¼ 2:210−
0:0002j. The GHS is plotted versus angle of incidence
in Fig. 2. Once again, the applicability of the proposed
expressions is shown. Figure 2 shows that the presented
approximations are still valid when the waveguide is
lossy and βg is not a real number.

These examples show that the proposed approxima-
tions are as accurate as Artmann’s formula for the near
resonant GHS. They, however, provide a good physical
insight by relating the GHS to the leaky mode character-
istics and to the coupling parameters. They also enable
us to perceive two different coupling regimes: weak and
strong.
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Fig. 1. GHS in nanometers versus angle of incidence for the
lossless structure with (curve 1) dg ¼ 0:4λ0 and (2) dg ¼
0:55λ0. Artmann’s formula (solid curve) and the proposed ap-
proximation using βp and βz given in Eqs. (14) (dashed curve).

Fig. 2. GHS in nanometers versus angle of incidence for the
lossy structure with (curve 1) dg ¼ 0:4λ0 and (2) dg ¼ 0:55λ0.
Artmann’s formula (solid curve) and the proposed approxima-
tion using βp and βz given in Eq. (14) (dashed curve).
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