Advanced Engineering Mathematics

Session 2

Linear Space

- A linear space over the field F, is a nonempty set S of vectors with a binary operation addition $+: S x S->S$ and a scalar multiplication . : FxS->S such that:
$-(S,+)$ is an Abeliab group.
$-(\alpha+\beta) \cdot x=\alpha \cdot x+\beta . x, \alpha .(x+y)=\alpha \cdot x+\alpha \cdot y$, $\alpha .(\beta . x)=(\alpha \beta) . x, 1 . x=x$
(x and y are vectors whereas α, β are scalars)

Linear Space

- The set F^{n} of n -tuples of scalars form a linear space over F.
- The set F^{\times}of functions $f: X->F$ is a linear space, where x is a non-empty set and
$-\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$,
$-(\alpha f)(x)=\alpha f(x)$
\Rightarrow Let G be an open subset in R^{n} then the set $C(G, R)$ of continuous functions $f: X->R$ is a linear space.

Linear Independence

- Why?
- What?
- The vectors are linearly dependent if there exists a linear combination of the vectors- with at least one nonzero coefficients α_{k}, that renders the zero vector.
- Sinusoidal functions in C(0,1) are linearly independent. Why?

Dimension

- A measure of how many and what sort of vectors describe the space.
- A vector space S has dimension n, if:
- It possesses a set of n independent vectors,
- Every set of $(n+1)$ vectors is dependent.
- If for every positive integer k, one can find k independent vectors in S , then S has infinite dimension.

Basis

- A certain set inside the vector space S, forms a basis provided that:
- The vectors in the set be linearly independent.
- Every arbitrary vector in S can be written as a linear combination of basis elements.
- Representation of each vector within S is unique in terms of the given basis.

Inner Product Space

- A linear space S is a complex inner product space, if for every ordered pair (x, y) of vectors; i.e. in SxS, there exists a unique scalar $<x, y>$ such that:
$-<x, y>=<y, x\rangle^{*}$
$-<x+y, z>=<x, z>+<y, z>$
$-<\alpha x, y>=\alpha<x, y>$
$-\langle x, x\rangle>=0$, with equality iff $x=0$

Inner Product Space

- A real inner product space can be similarly defined.
- Cauchy-Schwarz-Bunjakowsky inequality reads as:
$\left.|<x, y\rangle \mid<=(<x, x\rangle)^{1 / 2}(<y, y\rangle\right)^{1 / 2}$
Why?

Orthogonality

- Two vectors are orthogonal if their inner product is zero.
- A set of vectors is orthogonal if all members are mutually orthogonal.
- Proper orthogonal set is composed of linearly independent vectors.
- Orthonormal set.

Normed Linear Space

- A linear space S is a normed linear space if for every vector x in S, there exists a unique real number $\|x\|$ such that:
$-\|x\|>=0$, with equality iff $x=0$
$-\|\alpha x\|=|\alpha|\|x\|$
$-\|x+y\|<=\|x\|+\|y\|$ (triangle inequality)

Normed Linear Space

- A norm can be induced by the inner product.
- Why?
- Norm can be used to measure 'closedness', how? Why? What is it good for?

Normed Linear Space

- Convergence
- Cauchy sequence
- Completeness
- $\mathrm{C}(\alpha, \beta)$ is incomplete, why?

