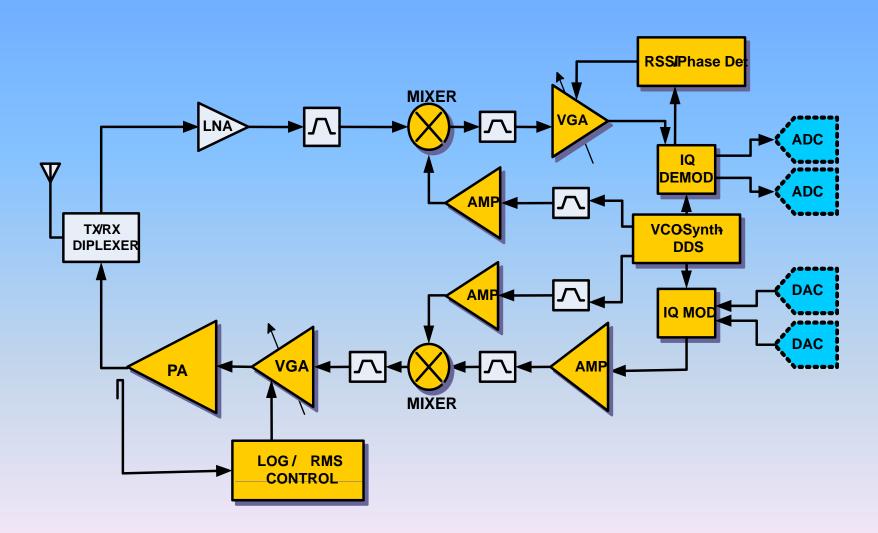
Sharif University of Technology

Power Amplifier


Instructor:

Dr. Ali Medi

Outline

- Introduction
- Some Important Definitions
- PA Classes
 - Linear
 - Non-linear
- Linearization Techniques
- Conclusion

System Schematic

PA Specifications

- Gain (Gain Flatness)
- Power consumption
- Linearity
- Signal peak to mean ratio
- Bandwidth
- Frequency band (transmit and receive)
- Power delivered
- Permissible in-band emission
- Permissible out-of-band emission
- Stability over VSWR
 - Ability to transmit into unknown/varying load
- Efficiency
 - Minimize any lose in the form of heat & noise
- Size
 - Find the minimum size as much as possible


Peak Output Power

- Determines the range for two-way communications
- Often specified at the 1-dB compression point
- Some examples:
 - Need about 1-2 W for cellular handsets (~1 km distance)
 - Need about 100mW for W-LAN (100 m)
 - Need about 10mW for W-PAN (Bluetooth) (1-10 m)
 - Need about 1mW for UWB and sensor networks
- The average power transmitted may be much lower
 - Power control (slow time scale)
 - Amplitude modulation

Efficiency

- Remember- COST is major driving factor!
- The associated power supply and heat sink can be incredibly expensive
- For lower power systems, (below 10mw), power consumption of other block is important too

Efficiency Measurement

- Drain Efficiency
 - P_{OUT} includes harmonics power
- Power Added Efficiency
 - Account drive power
 - Could be negative for low gain!
- Total efficiency
- When power gain is high

$$\eta_D = \frac{P_{out}}{P_{dc}}$$

$$\eta_{PA} = \frac{P_{OUT} - P_{IN}}{P_{DC}} = \eta_D \cdot \left(1 - \frac{1}{G}\right)$$

$$\eta_{total} = \frac{P_o}{P_{DC} + P_{in}}$$

$$\eta_{PAE} pprox \eta_{c} pprox \eta_{total}$$

High PAPR

- There are some ways ,such that...
 - Drain modulation
 - Load modulation
 - RF PWM
 - In low frequency
 - BUT, broadband
- Some linearization schemes may reduce the overall efficiency!!!

Signal Types

- There are two categories including:
 - Constant-envelope
 - Data is in phase or frequency
 - Non-linear PA can be used
 - Abrupt frequency or phase transitions
 - Sinc-function spectrum
 - » Spreads signal energy over a wide BW
 - » Data rate will be reduced
 - Non-constant envelope
 - Linear PA should be used
 - Data is in envelope, too
 - Higher data rate

Constant Envelope Modulation

- Information encoded in phase/frequency only
 - GMSK,FSK
- Power efficient amplification BUT, spectrally inefficient

Non-Constant Envelope Modulation

- Information encoded in both amplitude and phase
 - QPSK,QAM,CDMA
- Spectral efficient ,BUT power inefficient!

PAPR

- Peak to average Power Ratio
 - Peak power over average power

• PAPR is a strong function of the type of modulation

Average Efficiency

- Important for non-constant envelope
 - There is time-varying instantaneous efficiency

$$\eta_{AVG} = \frac{P_{outAVG}}{P_{inAVG}}$$

- Modern systems uses power control
 - Uses as low as possible power

Basics of non-Linearity

- Large signal behavior of the semiconductor devices is nonlinear
 - Power amplifiers are nonlinear systems
- Nonlinearity leads to
 - Generation of Harmonics
 - Intermodulation Distortion / Spectral Regrowth
 - SNR (NPR) Degradation
 - Constellation Deformation

Linearity Measurment

- Some ways to measure non-linearity:
 - ACPR (Adjacent Channel Power Ratio)
 - EVM (Error Vector Magnitude)
 - Spectral Mask
 - $-P_{1dB}$
 - -C/I
 - NPR (Noise-Power Ratio)

AM-AM distortion

System transfer function:

$$y(t) = \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t) + \dots$$

Input signal:

$$x(t) = A(t)\cos(\omega t + \phi(t))$$

Output signal:

$$y(t) = g[A(t)]\cos(\omega t + \phi(t) + \psi[A(t)])$$

• AM/AM conversion is dominated by g_m non-linearity

AM-PM Distortion

- Phase shift associated with the signal amplitude
- Introduction of unwanted phase modulation into the output signal
- Phase modulation observed
 - Depending of the input amplitude
- AM-PM is often the result of voltage dependent capacitors

AM-PM Conversion

$$V_{out} = B(t)Cos(\omega t + \varphi(t))$$

$$C = C[V_{out}(t)] \Rightarrow \overline{C} \approx \overline{C[B(t)]}$$

$$\varphi(t) = \tan^{-1}(RC[B(t)]\omega)$$

$$\overline{\varphi} \approx \tan^{-1}(R\overline{C}\omega)$$

C = Average capacitor value at the fist harmonic

 φ =Average phase at the fist harmonic

TX Spectrum Mask

ACPR

- Adjacent (Alternate) Channel Power Ratio
 - Is the ratio of the power in a specified band outside the signal bandwidth to the rms power in the signal
 - Widely used with modern shaped pulse digital signals such as NADC and CDMA

EVM

- Error Vector Magnitude
 - A convenient measure of how nonlinearity interferes with the detection process
 - the distance between the desired and actual signal vectors, normalized to a fraction of the signal amplitude
 - both peak and rms errors are specified

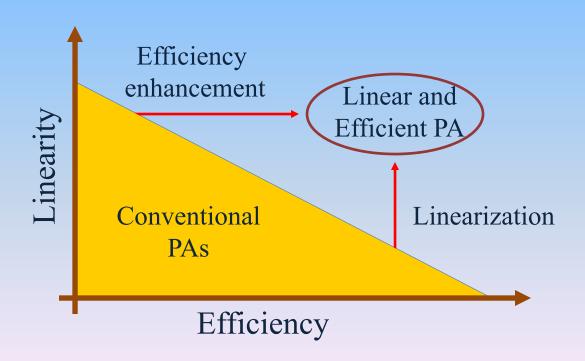
$$EVM = \sqrt{\frac{\sum_{k=1}^{M} ||V(K) - R(K)||^{2}}{\sum_{k=1}^{M} ||R(K)||^{2}}}$$

$$EVM = \sqrt{\frac{\sum_{k=1}^{M} ||V(K) - R(K)||^2}{\sum_{k=1}^{M} ||R(K)||^2}}$$

Constellation Deformation

Input Signal

Output Signal of Nonlinear Amplifier (with Gain- and Phase-Distortion)


PA Design Challenges

Power Amplifier design challenges:

- Long talk time
- High data rate

High efficiency

High linearity

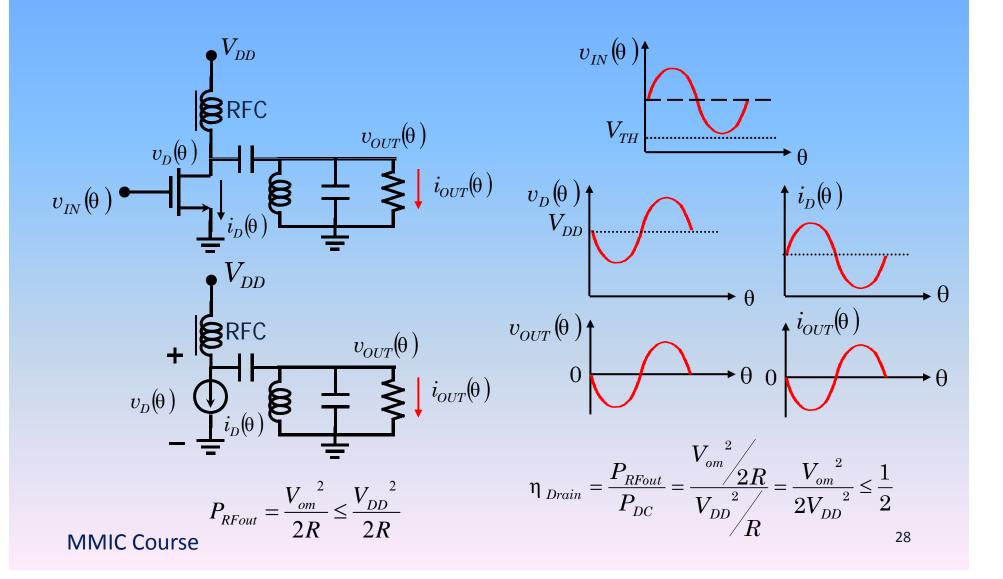
C/I Measure

- Carrier-to-Intermodulation ratio
 - The PA is driven with two or more carriers (tones) of equal amplitude
 - IMD will be produced
 - Corresponding to sums and differences of multiples of the carrier frequencies
 - A typical linear PA has a C/I of 30 dB or better

PA Classes

- Linear operation
 - Classes A,B,AB and C
 - Amplitude modulation
 - Multi-carrier signals
 - Transistor works as a transducer
 - The RF output power is proportional to the RF input power
 - Narrow band and broadband applications
- Switching mode (Non-linear)
 - Classes D,E,F
 - Constant-envelope operation
 - Transistor operates as a switch
 - Narrow band applications

How preserve Linearity?


- Backed-Off Operation of PA
 - Simplest Way to achieve Linearity
- Linearity improving Concepts
 - Predistortion
 - Feedforward
 - EER

— ...

Basic Linear PA Circuit

ISSCC 2007 GiRaFe Forum

Class A RF Power Amplifier

Class A Characteristics

- There is no harmonic
 - Can be used at frequencies near f_{max} of the transistor
- Applications:
 - High linearity
 - High frequency operation
 - High gain
 - Broadband operation

Some Practical Considerations

- Used as low-level driver for efficient PAs
- Used for laboratory equipments
 - Very low-distortion amplifiers
- LC circuit is not necessarily
 - Can operate over a wide frequency range
- No difference between small signal and class A PA
- BJTs have $V_{sat} \rightarrow$ limits voltage swing

Class A Specifications

- High linearity
- Low drain efficiency of 20-30%
- Power added efficiency of 20%
- Capable of working at higher frequencies relative to f_T , up to $\frac{1}{2}$ - $\frac{1}{3}$ of f_T
- Can amplify non-constant envelope signals
- Capable of broadband amplification

Class A Considerations

- Typical efficiency is lower than 40% for "linear" operation
 - Efficiency actually drops down when the signal level is lower.
- Output power capability (transistor utilization factor)

$$P_{N} = \frac{P_{o}}{V_{\text{max}}I_{\text{max}}} = \frac{\frac{1}{2}\frac{V_{\text{max}}}{2}\frac{I_{\text{max}}}{2}}{V_{\text{max}}I_{\text{max}}} = \frac{1}{8}$$

Dynamic class A is attractive

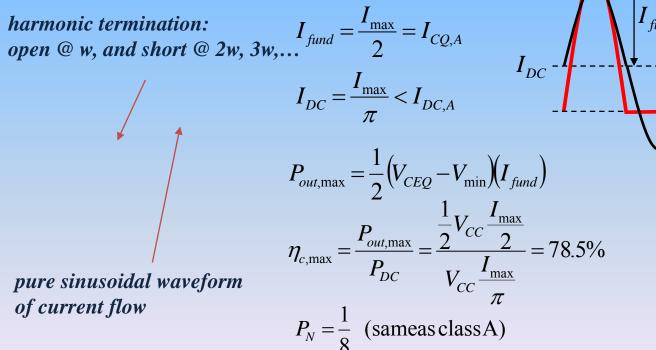
CLASS A RFPA Performance

33

Class B

- Lower dc current
 - Lower power dissipation
 - **Lower f**_t

Push-Pull Class B


- Two devices are driven 180 degrees out-of-phase
- They are alternately active or cut-off

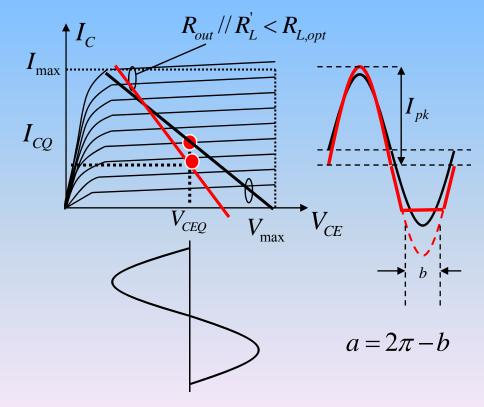
Class B

• All harmonics exist

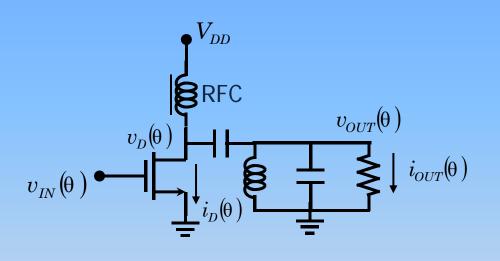
pure sinusoidal waveform of current flow

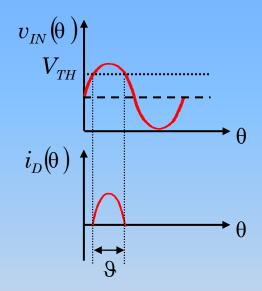
Class AB Characteristics

Conduction angle is between 0 degree and 180 degree

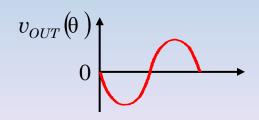

Let
$$\theta \equiv \omega_0 t$$

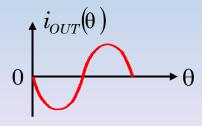
$$I(\theta) = \begin{cases} I_{CQ} + I_{pk} \cos\theta & -\frac{a}{2} \le \theta \le \frac{a}{2} \\ 0 & \text{theother} \end{cases}$$


From
$$I_{CQ} + I_{pk} \cos \frac{a}{2} = 0 \Rightarrow \cos \frac{a}{2} = -\frac{I_{CQ}}{I_{pk}}$$


$$\Rightarrow I_{pk} = I_{\text{max}} \frac{1}{1 - \cos\frac{a}{2}}, I_{CQ} = I_{\text{max}} \frac{-\cos\frac{a}{2}}{1 - \cos\frac{a}{2}}$$

$$\Rightarrow I(\theta) = I_{\text{max}} \frac{\cos\theta - \cos\frac{a}{2}}{1 - \cos\frac{a}{2}}$$
MMIC Course


Class C Amplifier Waveforms



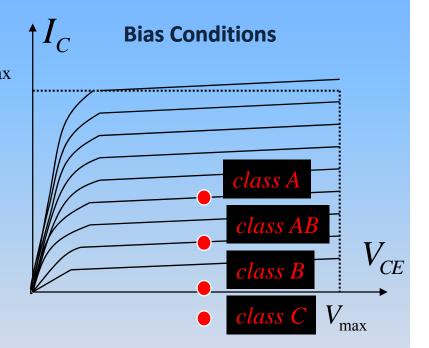
$$P_{RFout} \propto rac{9 - \sin 9}{1 - \cos \left(rac{9}{2}
ight)}$$

$$\eta_{Drain} = \frac{P_{RFout}}{P_{DC}} = \frac{1}{4} \frac{9 - \sin 9}{\sin(\frac{9}{2}) - \frac{9}{2}\cos(\frac{9}{2})}$$

Class C Amplifier

- Biased such that conduct less than 50% of time
- Specifications
 - Efficiency achieved
 - Large device is needed
 - Impractical for solid-state circuit

Class C Considerations


- Higher efficiency, BUT lower output power
- Lower output power capability
 - Maximum @ 245.2 degrees \rightarrow C_p=0.1341
- The choice of conduction angle is trade off between
 - Output power
 - Efficiency
 - Power gain

Types of Class C

- There are 3 types
 - Current-Source Class C Amplifiers
 - Transistor never saturates
 - Acts as controlled-current source
 - Saturated Class-C Amplifiers
 - Transistor acts in saturation region in a portion of conduction
 - Class C Mixed Mode Amplifiers

Comparison

- From class A to C bias I current will be decrease
 - Lower f_t from class A to C
 - BUT, efficiency increases

Comparison

Comparison

COMPARISON

• Numerical value of PA under different operation

		Class A	Mid-Class AB	Class B	Mid-class C	Class C
	b	0	90	180	270	360
	Icq	Imax/2	0.41*Imax	0	0	0
	IDC	Imax/2	0.44*Imax	Imax/π	0.16*Ima x	0
	I fund	Imax/2	0.53*Imax	Imax/2	0.31*Ima x	0
	ηc,max	50 %	60 %	78.5 %	~100%	(~100%)
MM	IC Course					

SMPA

- Major part of power dissipation is due to transistors
- Single pole-single through switch is used

SMPA

Voltage and current waveforms in a switching-mode amplifier

SMPA

SMPA IDEA

- Filter is used
 - Parallel LC shunt
 - Series LC tuned
- Filter increases the efficiency

SMPA Idea

• Parallel LC filter

SMPA Idea

• Series LC tuned filter

General SMPA switching conditions

• Two models:

В

Model A is better

$$P_{C,Loss} = \frac{1}{2} \cdot C \cdot V_c^2 \cdot f \qquad P_{L,Loss} = \frac{1}{2} \cdot L \cdot I_L^2 \cdot f$$

- Minimzation of losses at RF requires:
 - $-\mathbf{V}_{c} = \mathbf{0}$ when switch closes at $\mathbf{t} = \mathbf{0}$
 - Zero voltage switching condition (ZVS)
 - Even better: $dV_c/dt = 0$

Class D Power Amplifier

- Transistors act as to pole switch
- Suffers from losses
 - Saturation
 - Switching speed
 - Drain capacitor
 - Dissipation occurs
 - Proportional with F
 - Limited to VHF

Other Categories

- Complementary Voltage Switching (CVS)
 Circuit
- Transformer-Coupled Voltage Switching (TCVS) Circuit
- Transformer-Coupled Current Switching (TCCS) Circuit

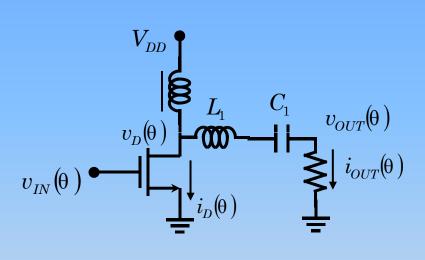
CVS Class D

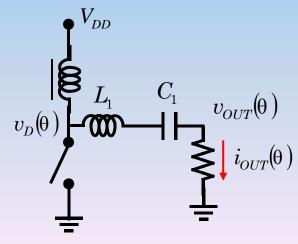
- Parallel LC can not be used
- In ideal condition
 - Zero saturation voltage
 - Zero saturation resistance
 - Infinite OFF resistance
 - Instantaneous and lossless switching

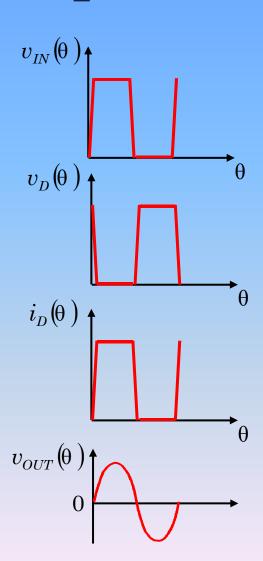
CVS Waveforms

➤ Switch capacitance limits efficiency in high frequency applications

Class-D and Class-D-1 Amplifiers


TCVS


TCCS


Class D Specifications

- Very low linearity
 - Can not amplify non-constant envelope signals
- High drain efficiency (60%)
- Moderate power added efficiency(40%)
- Can only be used for narrow-band amplification
- Proper for low frequency operation

Class E Power Amplifiers

Class E

- Transistor acts as a switch
- Conditions
 - Turn on
 - The drain voltage drops to zero
 - Zero voltage slope
 - Transistor current is zero @ off → on
 - Helps to minimize transition time
 - Turn off
 - Zero current
 - Zero current slope

Class E

 Trade-off between efficiency and output harmonic content

$$L = \frac{QR_L}{\omega} \quad C_1 = \frac{1}{5.447 \cdot \omega R_L}$$

$$C_2 = \frac{1}{\omega^2 L} \left(1 + \frac{1.42}{Q_L - 2.08} \right)$$

$$P_N \approx 0.098$$

Important Considerations

- Shunt capacitance is important
 - It does not allow a fast rise of the collector voltage
- Shunt capacitance is voltage dependent
 - One of non-idealities
- No current jump at turn-on transition
 - Reduce the power loss

Practical Considerations

- Real transistor has
 - Non-zero switching time
 - Parasitic reactance
 - Non-zero ON resistance
 - Saturation voltage for BJTs
- No pure sine wave current @ the output
- Finite Q-factor of reactive components
- Maximum Drain voltage is "3.6*VDD"

Class E Amplifier Design and Efficiency

- Non-idealities of class E
 - ON resistance
 - Off-transients
 - Efficiency will be reduced
- Normalized Output Power Capability

$$v_{DS,\text{max}} \approx 3.6 V_{DD}, i_{D,\text{max}} \approx 1.7 \frac{V_{DD}}{R}$$

$$P_{L,\text{max}} = \frac{2}{1 + \frac{\pi^2}{4}} \approx 0.577. \frac{V_{DD}^2}{R} \Rightarrow P_N = \frac{P_{L,\text{max}}}{v_{DS,\text{max}}.i_{D,\text{max}}} \approx 0.098$$

Class F Amplifiers

➤ Harmonic manipulation is used to shape voltage and current signals

Class F Schematic

Class F Operation

Class F Operation

■ A Parallel LC resonator is used instead of Quarter-wave length transmission line.

Class F Power Amplifier Analysis

$$v_{fund} = \frac{4}{\pi} . V_{DD}$$

Power delivered to the load:

$$P_{L} = \frac{v_{fund}^{2}}{2R} = \frac{8V_{DD}^{2}}{\pi^{2}R}$$

$$i_{D,\text{max}} = \frac{4}{\pi} \cdot \frac{2V_{DD}}{\pi R}, v_{DS,\text{max}} = 2V_{DD}$$

$$P_{N} = \frac{v_{fund}^{2}}{2R} = \frac{8V_{DD}^{2}}{\pi^{2}R} / \left(2V_{DD} \cdot \frac{8V_{DD}}{\pi R}\right) = \frac{1}{2\pi} \approx 0.16$$

Other Type of Class F

Waveforms in a second-harmonic peaking Class F1 amplifier

Class F Efficiency

• In theory, if you can control an infinite number of harmonics, efficiency approaches 100%

Class F Disadvantages

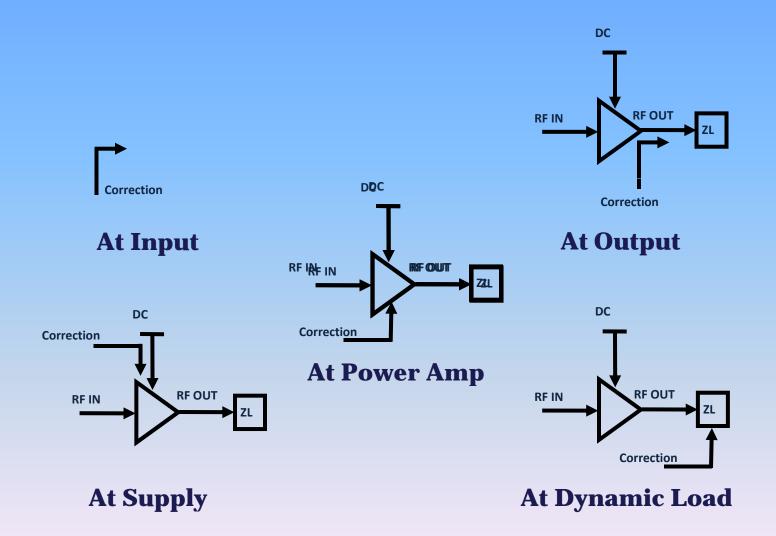
- Output capacitance of device not naturally absorbed into network → need inductor to tune it out
- Difficult to control more than 5th harmonic ... resonators are lossy and additional losses present diminishing returns on efficiency.

Comparison

• Achievable Efficiencies of PAs

PA CLASSIFICATION

Traditional PA Classification

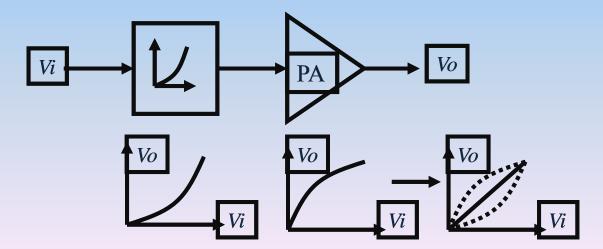

Summary of a few basic PA measures for classes A-F

Linearization Techniques

Linearization Techniques

- Linearization techniques:
 - "... utilized in complex, expensive RF and microwave systems, but they have not yet found their way into low-cost portable terminals." B. Razavi, RF Microelectronics.
- Most linear PAs in portable phones
 - → class A stages with "backed off"

Linearization Schemes



Correct Nonlinearity at Input

- Predistortion
 - Close loop(Adaptive PreDistortion)
 - Open loop
- Feedback
 - Direct Feedback
 - Cartesian
 - Polar

PreDistortion

- RF/ IF/ base band
- Insertion a nonlinear element before PA
- Amplitude and/or phase correction.
- Improvement in ACPR by 10 dB is typical.

AM/AM & AM/PM Distortion

MMIC Course

Open Loop PreDistortion

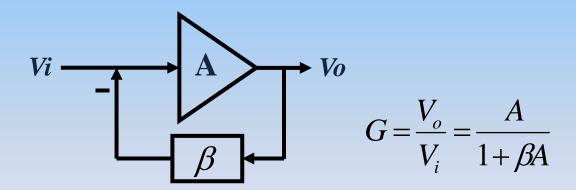
- Require Characteristics of PA
- Lookup table for base-band or RF
- Difficulties in
 - Resolution
 - Tolerances
 - Long term drift in characteristics

Table Based Predistortion

Polar Predistortion by Amplitude

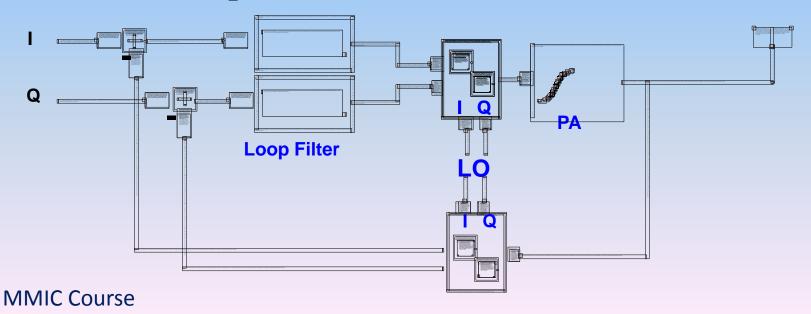
Table Based Predistortion

• Full Cartesian Predistortion


Closed Loop PreDistortion

- Difficulties in Resolution
- Corrects for long term drift and slowly changing amplifier behaviors /temperature /etc.

PreDistortion Example


Direct Feedback

- Basic negative feedback technique to improve linearity
- High loop gain yields to better linearity
- Signal gain drop and excess phase shift
- Stability Check

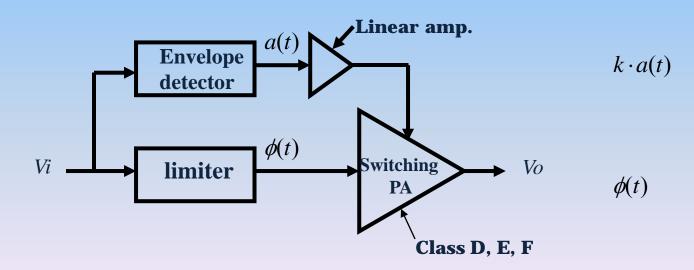
Cartesian Feedback

- W: Bandwidth Limitation
- W: Stability concerns
- S: Low-Complexity & power efficient
- S: Highly resistant to drift and aging
- Ss: Robust to poor characterization of PA

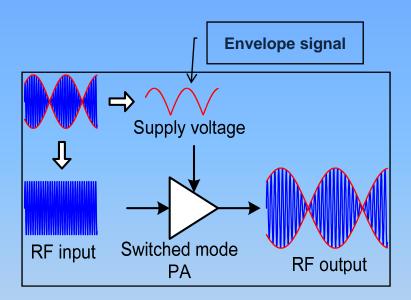
Polar Feedback

- W: Bandwidth Limitation & Stability concerns
- S: Low-Complexity
- S: Highly resistant to drift and aging
- Ss: Robust to poor characterization of PA

Correct Nonlinearity at Supply


- Envelope Elemination And Restoration(EER)
- Dynamic Supply/ Envelope Tracking

Envelope Elimination and Restoration(EER)


• Decompose a bandpass signal into an envelope signal and a phase signal a(t)

 $v(t) = a(t)\cos[\omega_c t + \phi(t)]$ $\phi(t)$

• Require no linearity in PA stage.

Envelope Signal

Closed-Loop EER Implementation

MMIC Course

Envelope Detector

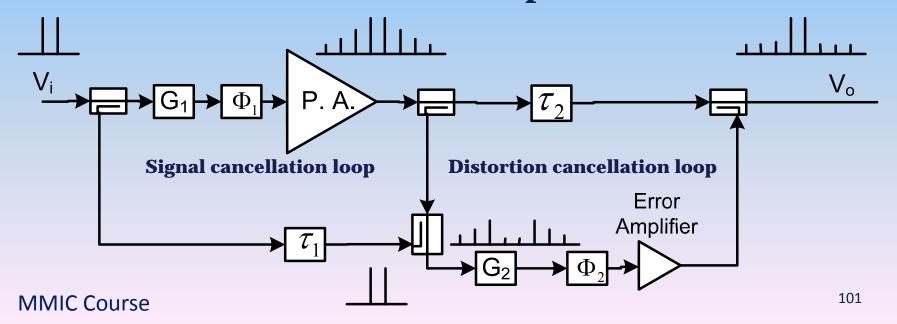
Envelope Amplifier

- High efficiency envelope amplifier is required
 - Bandwidth: > 20 MHz for 5 MHz signal
 - High Current
 - **− Efficiency: >>50%**
- Problems
 - Complicated circuit
 - Limited bandwidth

Influence of time alignment

- Misalignment between amplitude and phase paths
 - Leads to severe signal distorton
 - Alignment requirements in the order of a few psec.

Influence of time alignment


- Misalignment between amplitude and phase paths
 - Leads to severe signal distorton
 - Alignment requirements in the order of a few psec.

EER Issues

- Require Envelope amplifier (drain DC supply)
- Mismatch of gain and phase between two paths
- Limiter exhibits AM/PM Distortion
- Efficiency of Switching Power Supply
- Band Width of Switching Power Supply
- Time alignment between the supply and RF paths

Feed Forward

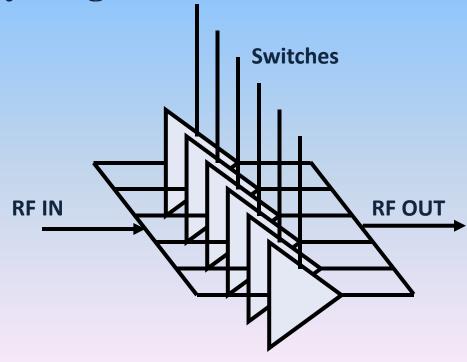
- Correct non-linearity at output
- Two loops
 - Signal Cancellation loop
 - Distortion Cancellation loop

Feed Forward

• Advantages:

- Wide bandwidth
- Good Cancellation performance

• Issues:


- Difficult to build analog delay elements.
- Requires low loss output "adder/coupler".
- Sensitive to amplitude and phase imbalance due to process and temperature variation..
- High complexity

Adaptive Feed Forward

- Open loop → Close loop FF
- Robust to poor characterization of PA

Array of Power Amps

- Array of Power Amps are used
 - Similar
 - Binary weighted

Thanks for your time!