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Introduction to Modulation
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Message and Carrier

Statement (Message)

The message signal m(t) is a real lowpass signal of bandwidth W and
power Pm, i.e.

M(f ) = 0, |f | >W ; Pm = lim
T→∞

1

T

∫ T/2

−T/2
|m(t)|2dt

.

Statement (Carrier)

Carrier is a sinusoidal signal of the form c(t) = Ac cos(2πfct + φc) with
fc �W .
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Definition of Modulation

Statement (Modulation)

In modulation, the message signal m(t) modulates the carrier signal c(t)
to generate the modulated signal u(t) such that a feature of the carrier
becomes a function of the message signal.

Statement (Amplitude Modulation)

In amplitude modulation, the amplitude of the carrier is a function of the
message as

u(t) = f (m(t)) cos(2πfct + φc)

Statement (Angle Modulation)

In angle modulation, the angle of the carrier is a function of the message as

u(t) = Ac cos(2πfct + f (m(t)))
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Advantages of Modulation

Modulation is performed to achieve,

1 To translate the frequency of the lowpass signal to the passband of the
channel.

2 To simplify the structure of the transceiver by employing higher fre-
quencies.

3 To accommodate for the simultaneous transmission of signals from
several message sources, by means of multiplexing mechanisms.

4 To expand the bandwidth of the transmitted signal in order to increase
its noise and interference immunity.
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Types of Modulation

Different analog modulation methods are,
1 Amplitude modulation

1 Double-sideband (DSB)
2 Conventional amplitude modulation (AM)
3 Single-sideband (SSB)
4 Vestigial-sideband (VSB)

2 Angle modulation
1 Frequency modulation (FM)
2 Phase modulation (PM)
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Performance of Modulation

The performance of the modulation is measured by,

1 Required bandwidth

2 Transmitted power

3 Transceiver complexity

4 Impairment immunity

3 The immunity to AWGN noise, as a common impairment, is measured
by Signal to Noise Ratio (SNR) at the output of the demodulator.
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Double Sideband Modulation
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DSB Modulation

Statement (DSB)

A DSB signal u(t) is obtained by

u(t) = m(t)c(t) = Acm(t) cos(2πfct)

Figure: Block diagram of the DSB modulator.
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DSB Modulation

Example (DSB signal)

Figure: Examples of message, carrier, and DSB-modulated signals.
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Bandwidth of DSB Signal

Statement (Spectrum of DSB Signal)

The spectrum of the DSB modulated signal is

U(f ) =
Ac

2

[
M(f − fc) + M(f + fc)

]
Statement (Bandwidth of DSB Signal)

For a message signal having the bandwidth W , the corresponding DSB
signal requires a bandwidth of 2W .
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Bandwidth of DSB Signal

Example (DSB spectrum)

Figure: Spectrum of a message signal and its corresponding DSB-modulated signal.
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Bandwidth of DSB Signal

1 The frequency content of the DSB signal in the frequency band |f | > fc
is called the upper sideband.

2 The frequency content of the DSB signal in the frequency band |f | < fc
is called the lower sideband.

3 Either one of the DSB signal contains all the frequencies that are in
the message.

4 Since the DSB signal contains both the upper and the lower sidebands,
it is called a double-sideband signal.
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Bandwidth of DSB Signal

Example (Sinusoidally-modulated DSB)

If m(t) = a cos(2πfmt), fm � fc , the DSB signal is expressed in the time
domain as

u(t) = m(t)c(t) = aAc cos(2πfmt) cos(2πfct)

=
aAc

2
cos(2π(fc − fm)t) +

aAc

2
cos(2π(fc + fm)t)

Example (Sinusoidally-modulated DSB)

If m(t) = a cos(2πfmt), fm � fc , the DSB signal is expressed in the
frequency domain as

U(f ) =
aAc

4

[
δ(f − fc + fm) + δ(f + fc − fm)

]
+

aAc

4

[
δ(f − fc − fm) + δ(f + fc + fm)

]
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Bandwidth of DSB Signal

Example (Sinusoidally-modulated DSB (cont.))

Figure: The (magnitude) spectrum of a DSB signal for (a) a sinusoidal message signal and (b)
its lower and (c) upper sidebands.
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Bandwidth of DSB Signal

Example (Sinusoidally-modulated DSB (cont.))

If m(t) = a cos(2πfmt), fm � fc , u(t) = ul(t) + uu(t), where the lower
and upper sideband correspond to the signals

ul(t) =
aAc

2
cos(2π(fc − fm)t)

uu(t) =
aAc

2
cos(2π(fc + fm)t)
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Power of DSB Signal

Statement (Power of DSB signal)

The power content of the DSB signal equals Pu = A2
c

2 Pm.

Pu = lim
T→∞

1

T

∫ T/2

−T/2
u2(t)dt

= lim
T→∞

1

T

∫ T/2

−T/2
A2
cm

2(t) cos2(2πfct)dt

=
A2
c

2
lim

T→∞

1

T

∫ T/2

−T/2
m2(t)(1 + cos(4πfct))dt

=
A2
c

2
Pm +

A2
c

2
lim

T→∞

1

T

∫ T/2

−T/2
m2(t) cos(4πfct)dt

=
A2
c

2
Pm
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Power of DSB Signal

Example (Power of sinusoidally-modulated DSB)

If m(t) = a cos(2πfmt), fm � fc , then

Pm =
a2

2

,

Pu =
A2
c

2
Pm =

a2A2
c

4

, and

Pul = Puu =
a2A2

c

8
.
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DSB Demodulation

Statement (DSB Demodulation)

Suppose that the DSB signal u(t) is transmitted through an ideal channel.
Then, the received signal is r(t) = u(t). The message can be demodulated
by

m̃(t) =
Ac

2
m(t) cos(φ) = LPF

{
r(t) cos(2πfct + φ)

}
, where cos(2πfct +φ) is a locally generated sinusoid and the ideal lowpass
filter has the bandwidth W .

Figure: Block diagram of the basic DSB demodulator.
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DSB Demodulation

Statement (DSB Demodulation)

Suppose that the DSB signal u(t) is transmitted through an ideal channel.
Then, the received signal is r(t) = u(t). The message can be demodulated
by

m̃(t) =
Ac

2
m(t) cos(φ) = LPF

{
r(t) cos(2πfct + φ)

}
, where cos(2πfct +φ) is a locally generated sinusoid and the ideal lowpass
filter has the bandwidth W .

r(t) cos(2πfct + φ) = Acm(t) cos(2πfct) cos(2πfct + φ)

=
Ac

2
m(t) cos(φ) +

Ac

2
m(t) cos(4πfct + φ)

m̃(t) = LPF
{
r(t) cos(2πfct + φ)

}
=

Ac

2
m(t) cos(φ)
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DSB Demodulation

Statement (DSB Demodulation)

Suppose that the DSB signal u(t) is transmitted through an ideal channel.
Then, the received signal is r(t) = u(t). The message can be demodulated
by

m̃(t) =
Ac

2
m(t) cos(φ) = LPF

{
r(t) cos(2πfct + φ)

}
, where cos(2πfct +φ) is a locally generated sinusoid and the ideal lowpass
filter has the bandwidth W .

Figure: Frequency-domain representation of the DSB demodulation.
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DSB Demodulation

1 The power in the demodulated signal is decreased by a factor of cos2(φ).

2 If φ = 90◦, the desired signal component vanishes.

3 A phase-coherent or synchronous demodulator is needed for recovering
the message signal.

4 A synchronous demodulator uses a pilot tone or phase-locked loop
(PLL) to lock to the phase of the carrier.

5 Since the process of modulation/demodulation involves the generation
of new frequency components, modulators/demodulators are generally
characterized as nonlinear and/or time-variant systems.
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Power-Law Amplitude Modulator

Power-law amplitude modulator exploits then voltage-current characteristic
of a nonlinear device such as PN diode, which can be approximated as

vo(t) = a1vi (t) + a2v
2
i (t)

Figure: Voltage-current characteristic of aPN diode.
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Power-Law Amplitude Modulator

Figure: Block diagram of power-law amplitude modulator.

vi (t) = m(t) + Ac cos(2πfct)

vo(t) = a1[m(t) + Ac cos(2πfct)] + a2[m(t) + Ac cos(2πfct)]2

vo(t) = a1m(t)+a2m
2(t)+a2A

2
c cos2(2πfct)+Aca1[1+

2a2

a1
m(t)] cos(2πfct)
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Power-Law Amplitude Modulator

Figure: Block diagram of power-law amplitude modulator.

vo(t) = a1m(t)+a2m
2(t)+a2A

2
c cos2(2πfct)+Aca1[1+

2a2

a1
m(t)] cos(2πfct)

Applying the bandpass filter with a bandwidth 2W centered at f = fc

u(t) = Aca1[1 +
2a2

a1
m(t)] cos(2πfct)

, where −1 < 2a2
a1

m(t) < 1 by design.
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Switching Amplitude Modulator

Figure: Schematic of switching amplitude modulator.

Assuming Ac � |m(t)|,

vo(t) =

{
Ac cos(2πfct) + m(t), Ac cos(2πfct) ≥ 0

0, Ac cos(2πfct) < 0
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Switching Amplitude Modulator

Figure: Equivalent periodic switching signal in switching amplitude modulator.

Assuming Ac � |m(t)|,

vo(t) =
[
Ac cos(2πfct) + m(t)

]
s(t)

vo(t) =
[
Ac cos(2πfct) + m(t)

][1

2
+

2

π

∞∑
n=1

(−1)n−1

2n − 1
cos(2πfc(2n − 1)t)

]
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Switching Amplitude Modulator

Figure: Equivalent periodic switching signal in switching amplitude modulator.

Assuming Ac � |m(t)|,

vo(t) =
Ac

2

[
1 +

4

πAc
m(t)

]
cos(2πfct) + other terms

Applying the bandpass filter with a bandwidth 2W centered at f = fc

u(t) =
Ac

2

[
1 +

4

πAc
m(t)

]
cos(2πfct)
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Balanced DSB Modulator (Balanced Mixer)

Figure: Block diagram of a balanced DSB modulator (balanced mixer).
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Ring DSB Modulator (Ring Mixer)

Figure: Block diagram of a ring DSB modulator (balanced mixer).

Figure: Periodic switching signal.
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Ring DSB Modulation (Ring Mixer)

Figure: Block diagram of a ring DSB modulator (balanced mixer).

if |m(t)| � 1, vo(t) =

{
m(t), s(t) ≥ 0

−m(t), s(t) < 0
= m(t)s(t)
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Ring DSB Modulation (Ring Mixer)

Figure: Block diagram of a ring DSB modulator (balanced mixer).

vo(t) = m(t)s(t) = m(t)
4

π

∞∑
n=1

(−1)n−1

2n − 1
cos(2πfc(2n − 1)t)

Passing vo(t) through a bandpass filter with the center frequency f = fc
and the bandwidth 2W ,

u(t) =
4

π
m(t) cos(2πfct)
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Coherent Demodulator

7 Pilot tone addition requires that certain portion of the transmitted signal
power must be allocated to the transmission of the pilot.

Figure: Pilot tone-based coherent demodulatoion of a DSB signal.
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Coherent Demodulator

Figure: PLL block diagram.
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Coherent Demodulator

Figure: PLL-based demodulatoion of a DSB signal.
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DSB Modem

Figure: Block diagram of DSB modem.
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Effect of Noise on DSB Signal

Statement (Effect of Noise on DSB signal)

If a DSB signal passes an AWGN channel, the SNR at the output of the
coherent DSB receiver is( S

N

)
o

=
A2
cPm

2N0W
=

PR

N0W

Figure: System model block diagram.
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Effect of Noise on DSB Signal

Statement (Effect of Noise on DSB signal)

If a DSB signal passes an AWGN channel, the SNR at the output of the
coherent DSB receiver is( S

N

)
o

=
A2
cPm

2N0W
=

PR

N0W

The noisy DSB signal at the output of the channel is

c(t) = u(t) + nw (t) = Acm(t) cos(2πfct) + nw (t)

After the input BPF of the receiver,

r(t) = BPF{c(t)} = Acm(t) cos(2πfct) + n(t)

In terms of the in-phase and quadrature noise components,

r(t) = Acm(t) cos(2πfct) + nc(t) cos(2πfct)− ns(t) sin(2πfct)
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Effect of Noise on DSB Signal

Statement (Effect of Noise on DSB signal)

If a DSB signal passes an AWGN channel, the SNR at the output of the
coherent DSB receiver is( S

N

)
o

=
A2
cPm

2N0W
=

PR

N0W

r(t) = Acm(t) cos(2πfct) + nc(t) cos(2πfct)− ns(t) sin(2πfct)

Now, we have

r(t) cos(2πfct) =
Ac

2
m(t) +

1

2
nc(t) + double-frequency terms

and consequently,

LPF{r(t) cos(2πfct)} =
Ac

2
m(t) +

1

2
nc(t)
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Effect of Noise on DSB Signal

Statement (Effect of Noise on DSB signal)

If a DSB signal passes an AWGN channel, the SNR at the output of the
coherent DSB receiver is( S

N

)
o

=
A2
cPm

2N0W
=

PR

N0W

LPF{r(t) cos(2πfct)} =
Ac

2
m(t) +

1

2
nc(t)

Po =
A2
cPm

4
, Pno =

Pnc

4
=

1

4

N0

2
2W × 2 =

N0W

2( S
N

)
o

=
Po

Pno

=
A2
cPm

2N0W
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Effect of Noise on DSB Signal

Statement (Effect of Noise on DSB signal)

If a DSB signal passes an AWGN channel, the SNR at the output of the
coherent DSB receiver is( S

N

)
o

=
A2
cPm

2N0W
=

PR

N0W

( S
N

)
o

=
Po

Pno

=
A2
cPm

2N0W

PR = lim
T→∞

1

T

∫ T/2

−T/2
|Acm(t) cos(2πfct)|2dt =

A2
c

2
Pm

( S
N

)
o

=
Po

Pno

=
A2
cPm

2N0W
=

PR

N0W
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Single Sideband Modulation
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SSB Modulation

3 Only one sideband is enough to sent the message signal.
3 The upper or lower sideband can be obtained by a bandpass filtering
from the DSB signal.

Figure: Upper sideband signal.
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Upper Sideband Signal

Statement (Upper Sideband Signal)

The upper sideband part of the DSB modulated signal u(t) =
2Acm(t) cos(2πfct) is uu(t) = Acm(t) cos(2πfct)− Acm̂(t) sin(2πfct).

Figure: Upper sideband signal.

UDSB(f ) = AcM(f − fc) + AcM(f + fc)

H(f ) = u(f − fc) + u(−f − fc)

Uu(f ) = UDSB(f )H(f )
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Upper Sideband Signal

Statement (Upper Sideband Signal (cont.))

The upper sideband part of the DSB modulated signal u(t) =
2Acm(t) cos(2πfct) is uu(t) = Acm(t) cos(2πfct)− Acm̂(t) sin(2πfct).

Figure: Upper sideband signal.

Uu(f ) = UDSB(f )H(f )

Uu(f ) = (AcM(f − fc) + AcM(f + fc))(u(f − fc) + u(−f − fc))

Uu(f ) = AcM(f − fc)u(f − fc) + AcM(f + fc)u(−f − fc)
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Upper Sideband Signal

Statement (Upper Sideband Signal (cont.))

The upper sideband part of the DSB modulated signal u(t) =
2Acm(t) cos(2πfct) is uu(t) = Acm(t) cos(2πfct)− Acm̂(t) sin(2πfct).

Uu(f ) = AcM(f − fc)u(f − fc) + AcM(f + fc)u(−f − fc)

Uu(f ) = AcM(f − fc)
1− jjsgn(f − fc)

2
+ AcM(f + fc)

1− jjsgn(−f − fc)

2

Uu(f ) = AcM(f − fc)
1− jjsgn(f − fc)

2
+ AcM(f + fc)

1 + jjsgn(f + fc)

2

uu(t) =
Ac

2
e j2πfc t(m(t) + jm̂(t)) +

Ac

2
e−j2πfc t(m(t)− jm̂(t))
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Upper Sideband Signal

Statement (Upper Sideband Signal (cont.))

The upper sideband part of the DSB modulated signal u(t) =
2Acm(t) cos(2πfct) is uu(t) = Acm(t) cos(2πfct)− Acm̂(t) sin(2πfct).

uu(t) =
Ac

2
e j2πfc t(m(t) + jm̂(t)) +

Ac

2
e−j2πfc t(m(t)− jm̂(t))

uu(t) = Acm(t)
e j2πfc t + e−j2πfc t

2
− Acm̂(t)

e j2πfc t − e−j2πfc t

2j

uu(t) = Acm(t) cos(2πfct)− Acm̂(t) sin(2πfct)
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Lower Sideband Signal

Statement (Lower Sideband Signal)

The lower sideband part of the DSB modulated signal u(t) =
2Acm(t) cos(2πfct) is ul(t) = Acm(t) cos(2πfct) + Acm̂(t) sin(2πfct).

uDSB(t) = ul(t) + uu(t)

ul(t) = 2Acm(t) cos(2πfct)− Acm(t) cos(2πfct) + Acm̂(t) sin(2πfct)

ul(t) = Acm(t) cos(2πfct) + Acm̂(t) sin(2πfct)
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SSB Modulation

Statement (SSB)

An SSB signal u(t) is obtained by

u(t) = Acm(t) cos(2πfct)∓ Acm̂(t) sin(2πfct)

, where m̂(t) is the Hilbert transform of m(t) and the plus and minus signs
correspond to the lower and upper sideband, respectively. The spectrum of
the modulated signal U(f ) equals Ul(f ) or Uu(f ) depending on the used
sideband.

The SSB signal can be generated

1 using Hilbert transform.

2 by filtering the DSB signal.
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SSB Modulation

Figure: Generation of an SSB signal by filtering one of the sidebands of a DSB-SC signal.

3 The sideband filter, which must have an extremely sharp cutoff in the
vicinity of the carrier, is very hard to be implemented.
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SSB Modulation

Figure: Generation of a lower SSB signal using Hilbert transform.

3 The Hilbert filter may be hard to be implemented.
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SSB Modulation

Example (Sinusoidally-modulated SSB)

If m(t) = cos(2πfmt), fm � fc , the SSB is expressed in the time domain
as

u(t) = Acm(t) cos(2πfct)∓ Acm̂(t) sin(2πfct)

= Ac cos(2πfmt) cos(2πfct)∓ Ac sin(2πfmt) sin(2πfct)

, which equals to u(t) = uu(t) = Ac cos(2π(fc + fm)t) or u(t) = ul(t) =
Ac cos(2π(fc − fm)t) when the upper or lower sideband is used, respectively.
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Bandwidth of SSB Signal

Statement (Bandwidth of SSB Signal)

For a message signal having the bandwidth W , the corresponding SSB signal
requires a bandwidth of W .

Figure: Bandwidth of USSB and LSSB signal.
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Power of SSB Signal

Statement (Power of SSB signal)

The power content of the SSB signal equals Pu = A2
cPm.

Pu = lim
T→∞

1

T

∫ T/2

−T/2
u2(t)dt

= lim
T→∞

1

T

∫ T/2

−T/2
[Acm(t) cos(2πfct)∓ Acm̂(t) sin(2πfct)]2dt

=
A2
c

2
Pm +

A2
c

2
Pm = A2

cPm
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SSB Demodulation

Statement (SSB demodulation)

Suppose that the SSB signal u(t) is transmitted through an ideal channel.
Then, the received signal is r(t) = u(t). The message can be demodulated
by

m̃(t) =
Ac

2
m(t) = LPF

{
r(t) cos(2πfct)

}
, where cos(2πfct) is a locally generated synchronous sinusoid and the ideal
lowpass filter has the bandwidth W .

r(t) cos(2πfct + φ) =
Ac

2
m(t) cos(φ) +

Ac

2
m̂(t) sin(φ)

+ double-frequency terms

yl(t) = LPF
{
r(t) cos(2πfct + φ)

}
=

Ac

2
m(t) cos(φ) +

Ac

2
m̂(t) sin(φ)

φ = 0⇒ yl(t) =
Ac

2
m(t)
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SSB Demodulation

Statement (SSB Demodulation)

Suppose that the SSB signal u(t) is transmitted through an ideal channel.
Then, the received signal is r(t) = u(t). The message can be demodulated
by

m̃(t) =
Ac

2
m(t) = LPF

{
r(t) cos(2πfct)

}
, where cos(2πfct) is a locally generated synchronous sinusoid and the ideal
lowpass filter has the bandwidth W .

Figure: Block diagram of the basic SSB demodulator.
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SSB Demodulation

1 The phase offset not only attenuates the desired signal m(t), but it
also results in an undesirable distortion due to the presence of m̂(t).

2 A phase-coherent or synchronous demodulator is needed for recovering
the message signal.

3 A synchronous demodulator uses a pilot tone or phase-locked loop
(PLL) to lock to the phase of the carrier.
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Effect of Noise on SSB Signal

Statement (Effect of Noise on SSB Signal)

If a SSB signal passes an AWGN channel, the SNR at the output of the
coherent SSB receiver is ( S

N

)
o

=
A2
cPM

N0W
=

PR

N0W

Figure: System model block diagram.
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Conventional Amplitude Modulation
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AM Modulation

Statement (AM)

A conventional AM signal u(t) is obtained by

u(t) = Ac [1 + amn(t)] cos(2πfct)

, where 0 < a < 1 is called the modulation index and mn(t) =
m(t)/max |m(t)| is the normalized message between [−1, 1].

Figure: Block diagram of the conventional AM modulator.
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AM Modulation

Example (AM signal)

Figure: Examples of AM-modulated signals.
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Bandwidth of AM Signal

Statement (Spectrum of AM Signal)

The spectrum of the AM modulated signal is

U(f ) =
Aca

2

[
Mn(f − fc) + Mn(f + fc)

]
+

Ac

2

[
δ(f − fc) + δ(f + fc)

]
Statement (Bandwidth of AM Signal)

For a message signal having the bandwidth W , the corresponding AM signal
requires a bandwidth of 2W .
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Bandwidth of AM Signal

Example (AM spectrum)

Figure: Spectrum of a message signal and its corresponding AM-modulated signal.
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Bandwidth of AM Signal

Example (Sinusoidally-modulated AM)

If mn(t) = cos(2πfmt), fm � fc , the AM signal is

u(t) = Ac [1 + a cos(2πfmt)] cos(2πfct)

= Ac cos(2πfct) +
aAc

2
cos(2π(fc − fm)t) +

aAc

2
cos(2π(fc + fm)t)

Example (Sinusoidally-modulated AM (cont.))

If mn(t) = cos(2πfmt), fm � fc , the spectrum of the AM signal is

U(f ) =
Ac

2

[
δ(f − fc) + δ(f + fc)

]
+

aAc

4

[
δ(f − fc + fm) + δ(f + fc − fm)

]
+

aAc

4

[
δ(f − fc − fm) + δ(f + fc + fm)

]
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Bandwidth of AM Signal

Example (Sinusoidally-modulated AM (cont.))

Figure: Spectrum of a sinusoidally-modulated AM signal.
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Bandwidth of AM Signal

Example (Sinusoidally-modulated AM (cont.))

If mn(t) = cos(2πfmt), fm � fc , the lower and upper sideband correspond
to the signals

ul(t) =
aAc

2
cos(2π(fc − fm)t)

uu(t) =
aAc

2
cos(2π(fc + fm)t)
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Power of AM Signal

Statement (Power of AM signal)

The power content of the AM signal equals

Pu =
A2
c

2
(1 + a2Pmn) =

A2
c

2
(1 +

a2Pm

max2 |m(t)|
)

.

A conventional AM signal is similar to a DSB with the message 1 + amn(t).
So, Pu = 0.5A2

cP1+amn . For a zero-DC message signal,

P1+amn = lim
T→∞

1

T

∫ T/2

−T/2
[1 + amn(t)]2dt = lim

T→∞

1

T

∫ T/2

−T/2
[1 + a2m2

n(t)]dt

= 1 + a2Pmn = 1 +
a2Pm

max2 |m(t)|
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Power of AM signal

Example (Power of sinusoidally-modulated AM)

If mn(t) = cos(2πfmt), fm � fc , then

Pmn =
1

2

,

Pu =
A2
c

2
(1 + a2Pmn) =

A2
c

2
+

a2A2
c

4

, and

Pul = Puu =
a2A2

c

8
.
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AM Demodulation

Statement (Coherent AM Demodulation)

Suppose that the AM signal u(t) is transmitted through an ideal channel.
Then, the received signal is r(t) = u(t). The message can be demodulated
by

m̃(t) =
Ac

2
amn(t) = LPF+DCR

{
r(t) cos(2πfct)

}
, where cos(2πfct) is a locally generated synchronous sinusoid and the ideal
lowpass filter has the bandwidth W .

Figure: Block diagram of the basic coherent AM demodulator.
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AM Demodulation

Statement (AM Envelope Demodulator)

Suppose that the AM signal u(t) is transmitted through an ideal channel.
Then, the received signal is r(t) = u(t). The received signal is demod-
ulated by extracting the envelope Vr (t) of the rectified version of r(t) as
DCR{Vr (t)}.

Figure: Block diagram of the AM envelope Demodulator.

u(t) = Ac [1 + amn(t)] cos(2πfct)

1 + amn(t) ≥ 0⇒ Vr (t) = |Ac [1 + amn(t)]| = Ac [1 + amn(t)]

DCR{Vr (t)} = Acamn(t)
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AM Demodulation

Statement (Envelope AM demodulation)

Suppose that the AM signal u(t) is transmitted through an ideal channel.
Then, the received signal is r(t) = u(t). The received signal is demodulated
by extracting the envelope of the rectified version of r(t).

Figure: Envelope detection of an AM signal.
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Envelope Detector

3 A simple envelope detector consists of a diode and an RC lowpass filter.

Figure: An envelope detector.
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Envelope Detector

3 For good performance of the envelope detector, 1
fc
� RC � 1

W .

Figure: Effect of a large RC value on the performance of the envelope detector.
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Envelope Detector

3 For good performance of the envelope detector, 1
fc
� RC � 1

W .

Figure: Effect of a small RC value on the performance of the envelope detector.
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Effect of Noise on AM signal

Statement (Effect of Noise on Coherent AM)

The SNR at the output of a coherent AM receiver is

( S
N

)
o

=
A2
ca

2Pmn

2N0W
=

a2Pmn

1 + a2Pmn

PR

N0W

Figure: System model block diagram.

Mohammad Hadi Communication systems Spring 2021 76 / 145



Effect of Noise on AM signal

Statement (Effect of Noise on Coherent AM)

The SNR at the output of a coherent AM receiver is

( S
N

)
o

=
A2
ca

2Pmn

2N0W
=

a2Pmn

1 + a2Pmn

PR

N0W

The noisy AM signal is expressed as

r(t) = Ac [1 + amn(t)] cos(2πfct) + n(t)

r(t) =
[
Ac [1 + amn(t)] + nc(t)

]
cos(2πfct)− ns(t) sin(2πfct)

r(t) cos(2πfct) =
1

2
Ac [1 + amn(t)] +

1

2
nc(t) + double-frequency terms

DCR&LPF{r(t) cos(2πfct)} =
1

2
aAcmn(t) +

1

2
nc(t)
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Effect of Noise on AM signal

Statement (Effect of Noise on Coherent AM)

The SNR at the output of a coherent AM receiver is

( S
N

)
o

=
A2
ca

2Pmn

2N0W
=

a2Pmn

1 + a2Pmn

PR

N0W

DCR&LPF{r(t) cos(2πfct)} =
1

2
aAcmn(t) +

1

2
nc(t)

Po =
A2
ca

2Pmn

4
, Pno =

Pnc

4
=

1

4

N0

2
2W × 2 =

N0W

2( S
N

)
o

=
Po

Pno

=
A2
ca

2Pmn

2N0W
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Effect of Noise on AM signal

Statement (Effect of Noise on Coherent AM)

The SNR at the output of a coherent AM receiver is

( S
N

)
o

=
A2
ca

2Pmn

2N0W
=

a2Pmn

1 + a2Pmn

PR

N0W

( S
N

)
o

=
Po

Pno

=
A2
ca

2Pmn

2N0W

PR = lim
T→∞

1

T

∫ T/2

−T/2
|r(t)|2dt =

A2
c

2
[1 + a2Pmn ]

( S
N

)
o

=
Po

Pno

=
A2
ca

2Pmn

2N0W
=

a2Pmn

1 + a2Pmn

A2
c

2 [1 + a2Pmn ]

N0W
=

a2Pmn

1 + a2Pmn

PR

N0W
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Effect of Noise on AM signal

Statement (Effect of Noise on Envelope Detector)

At high SNR conditions, the SNR at the output of an envelope detector is
approximately the same as that of the coherent AM receiver.

Figure: System model block diagram.

Mohammad Hadi Communication systems Spring 2021 80 / 145



Effect of Noise on AM signal

Statement (Effect of Noise on Envelope Detector)

At high SNR conditions, the SNR at the output of an envelope detector is
approximately the same as that of the coherent AM receiver.

r(t) =
[
Ac [1 + amn(t)] + nc(t)

]
cos(2πfct)− ns(t) sin(2πfct)

Vr (t) =

√[
Ac [1 + amn(t)] + nc(t)

]2
+ n2

s (t)

Assuming that the signal component is much stronger than the noise,

Vr (t) ≈ Ac [1 + amn(t)] + nc(t)
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Effect of Noise on AM signal

Statement (Effect of Noise on Envelope Detector)

At low SNR conditions, no meaningful SNR can be defined at the output
of an envelope detector.

Vr (t) =

√[
Ac [1 + amn(t)] + nc(t)

]2
+ n2

s (t)

Assuming that the noise component is much stronger than the signal,

Vr (t) ≈

√
[n2

c(t) + n2
s (t)]

[
1 +

2Acnc(t)

n2
c(t) + n2

s (t)
(1 + amn(t))

]
Vr (t) ≈ Vn(t)

[
1 +

Acnc(t)

V 2
n (t)

(1 + amn(t))
]
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Vestigial Sideband Modulation
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VSB Modulation

3 The stringent filtering requirements in an SSB system can be relaxed by
allowing vestige.
3 The vestige simplifies the design of the sideband filter.
3 VSB modulation is appropriate for signals that have a strong low-
frequency component, such as video signals.
7 The vestige needs a modest increase in the channel bandwidth.

Figure: VSB filtering.
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VSB Modulation

Statement (VSB)

A VSB modulated signal is obtained by passing the DSB signal through a
sideband filter H(f ) as u(t) =

[
Acm(t) cos(2πfct)

]
∗ h(t) or equivalently,

U(f ) = Ac
2

[
M(f − fc) + M(f + fc)

]
H(f ).

Figure: Generation of a VSB signal.
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Demodulation of VSB Signal

Statement (Demodulation of VSB)

To demodulate a VSB signal, we multiply it by the carrier component
cos(2πfct) and pass the result through an ideal lowpass filter.

Figure: Block diagram of the basic VSB demodulator.
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Demodulation of VSB Signal

Statement (Demodulation of VSB Signal)

To demodulate a VSB signal, we multiply it by the carrier component
cos(2πfct) and pass the result through an ideal lowpass filter.

v(t) = u(t) cos(2πfct)

V (f ) =
1

2

[
U(f − fc) + U(f + fc)

]
V (f ) =

Ac

4

[
M(f −2fc)+M(f )

]
H(f −fc)+

Ac

4

[
M(f +2fc)+M(f )

]
H(f +fc)

M̃(f ) =
Ac

4
M(f )

[
H(f − fc) + H(f + fc)

]
H(f − fc) + H(f + fc) = C , |f | ≤W
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Demodulation of VSB Signal

Statement (VSB Filter Condition)

The VSB sideband filter should satisfy

H(f − fc) + H(f + fc) = C , |f | ≤W

Figure: Frequency response of the VSB filter for selecting the upper sideband.
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VSB

1 The VSB sideband filter has odd symmetry about the carrier frequency
fc in the frequency range fc − fa < f < fc + fa.

2 fa is a conveniently selected frequency that is some small fraction of
W , i.e., fa �W .

3 To avoid distortion of the message signal, the VSB filter should have
a linear phase over its passband fc − fa < |f | < fc + W .

4 Power, bandwidth, and SNR analysis of VSB is very similar to SSB
provided that fa �W .
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Frequency Modulation
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FM

Statement (FM)

An frequency-modulated signal is written as

u(t) = Ac cos(2πfct + φ(t)) = Ac cos(2πfct + 2πkf

∫ t

−∞
m(τ)dτ)

, where kf is called frequency deviation constant. The instantaneous fre-
quency of the modulated signal is defined as

fi (t) =
1

2π

d
[
2πfct + φ(t)

]
dt

= fc + kfm(t)
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FM

Example (FM signal)

Figure: Frequency modulation of square and sawtooth waves.
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FM

Statement (FM Modulation Index)

The modulation index of the FM is defined as

βf =
kf max{|m(t)|}

W
=

∆fmax

W

, where ∆fmax is the maximum frequency deviation.
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FM

Example (Sinusoidally-modulated FM signal)

For the message signal m(t) = a cos(2πfmt), the FM signal is

u(t) = Ac cos(2πfct +
kf a

fm
sin(2πfmt)) = Ac cos(2πfct + βf sin(2πfmt))

.
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FM

Statement (Narrowband FM Modulation)

Consider an FM system with φ(t)� 1. Then,

u(t) = Ac cos(2πfct + φ(t))

= Ac cos(2πfct) cos(φ(t))− Ac sin(2πfct) sin(φ(t))

≈ Ac cos(2πfct)− Acφ(t) sin(2πfct)

= Ac cos(2πfct) + Acφ(t) cos(2πfct +
π

2
)

= Ac cos(2πfct) + Ac

[
2πkf

∫ t

−∞
m(τ)dτ

]
cos(2πfct +

π

2
)
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FM

Statement (Narrowband FM Modulation)

Although narrowband FM and conventional AM modulations share some
similarities, they have some differences.

Figure: Phasor diagrams for the conventional AM and narrowband FM modulation.

Mohammad Hadi Communication systems Spring 2021 96 / 145



Bandwidth and Power of FM Signal

Statement (FM by a Sinusoidal Signal)

For the sinusoidal message m(t) = a cos(2πfmt), the FM signal is

u(t) = Ac cos(2πfct + βf sin(2πfmt)) =
∞∑

n=−∞
AcJn(βf ) cos(2π(fc + nfm)t)

, where Jn(βf ) is the Bessel function of the first kind of order n.

u(t) = Ac cos(2πfct + βf sin(2πfmt)) = <
{
Ace

j2πfc te jβf sin(2πfmt)
}

= <
{
Ace

j2πfc t
∞∑

n=−∞
Jn(βf )e j2πnfmt

}
=

∞∑
n=−∞

AcJn(βf ) cos(2π(fc + nfm)t)

, where Jn(βf ) = 1
2π

∫ 2π
0 e j(βf sin(u)−nu)du.
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Bandwidth and Power of FM Signal

1 J−n(β) = Jn(β) for an even n and J−n(β) = −Jn(β) for an odd n.

2 Jn(β) ≈ βn

2nn! for a small β.

3
∑∞

n=−∞ J2
n(β) = 1.

Figure: Bessel functions for various values of n.
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Bandwidth and Power of FM Signal

Statement (Bandwidth of Sinusoidal FM)

For the sinusoidal message m(t) = a cos(2πfmt), the actual bandwidth of
the FM signal is infinite.

Statement (Power of Sinusoidal FM)

For the sinusoidal message m(t) = a cos(2πfmt), the power of the FM signal
is A2

c/2.
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Bandwidth and Power of FM Signal

For the sinusoidal message m(t),

1 The modulated signal contains all the harmonics fc + nfm for n =
0,±1,±2, · · · .

2 The amplitude of the harmonic fc + nfm for large n is very small.

3 A finite effective bandwidth for the modulated signal can be defined.

4 For a small β, only the first harmonic is important.

5 For larger β, more harmonics should be considered to include 80%,
90%, and 98% of the total power.

Power β = 0.5 β = 1 β = 2 β = 5 β = 8 β = 10

80% − 1 2 4 7 9
90% 1 1 2 5 8 10
98% 1 2 3 6 9 11

Table: Required number of harmonics.
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Bandwidth and Power of FM Signal

1 The 98%-power effective bandwidth of sinusoidal FM is approximately
Bc = 2(βf + 1)fm = 2(kf a + fm).

2 Increasing a, the amplitude of the modulating signal, increases the
bandwidth Bc .

3 Increasing fm, the frequency of the message signal, also increases the
bandwidth Bc .

4 The number of harmonics, including the carrier, is Mc = 2([β]+1)+1 =
2[β] + 3 = 2[kf afm

] + 3.

5 Increasing the amplitude a increases the number of harmonics.

6 Increasing fm almost linearly decreases the number of harmonics.
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Bandwidth and Power of FM Signal

Example (FM by a Sinusoidal Signal)

For the message m(t) = cos(20πt), the carrier c(t) = 10 cos(2πfct), and
the deviation constant kf = 50, the bandwidth including 99% of the power
is 120 Hz.

β = kf max{|m(t)|}/W = kf max{|m(t)|}/fm = 5

u(t) = 10 cos(2πfct + 5 sin(20πt)) =
∞∑

n=−∞
10Jn(5) cos(2π(fc + 10n)t)

k∑
n=−k

102

2
J2
n(5) ≥ 0.99× 102

2
⇒ k = 6

So, the the edge harmonics that should be considered are fc ± 10k = fc ±
10× 6 and the bandwidth is 120 Hz.
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Bandwidth and Power of FM Signal

Example (FM by a Sinusoidal Signal (cont.))

For the message m(t) = cos(20πt), the carrier c(t) = 10 cos(2πfct), and
the deviation constant kf = 50, the bandwidth including 99% of the power
is 120 Hz.

Figure: The harmonics present inside the effective bandwidth of the example.
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Bandwidth and Power of FM Signal

Statement (Effective Bandwidth of FM (Carson’s Rule))

The effective bandwidth of an FM signal is approximately

Bc = 2(βf + 1)W

, where W is the frequency of the message signal m(t).

Statement (Power of FM)

The power content of an FM signal is A2
c

2 .
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Bandwidth and Power of FM Signal

Example (Carson’s Rule)

Assuming that m(t) = 10sinc(104t), the transmission bandwidth of an FM-
modulated signal with kf = 4000 is Bc = 90 kHz.

M(f ) = 10−3 u (10−4f )⇒W = 5000 Hz

β =
kf max{|m(t)|}

W
=

4000× 10

5000
= 8

Bc = 2(β + 1)W = 90000 Hz
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FM Modulation/Demodulation

Two common approaches for FM modulation are
1 Modulation techniques

1 VCO (Varactor-diode, Reactance tube)
2 Indirect

2 Demodulation techniques
1 FM to AM
2 PLL (Feedback)
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VCO Modulator

Figure: Varactor-diode implementation of an FM modulator.

C (t) = C0 + K0m(t), =
1

2π
√
L0C0

fi (t) =
1

2π
√

L0(C0 + K0m(t))
=

fc√
1 + K0

C0
m(t)

|K0

C0
m(t)| � 1⇒ fi (t) = fc

1√
1 + K0

C0
m(t)

≈ fc(1− K0

2C0
m(t))
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Indirect Modulator

Figure: Generation of a narrowband FM signal.

un(t) = Ac cos(2πfct + φ(t)) ≈ Ac cos(2πfct)− Acφ(t) sin(2πfct)
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Indirect Modulator

Figure: Indirect FM generation.

y(t) = Ac cos(2πnfct + nφ(t))

u(t) = Ac cos(2π(nfc − fLO)t + nφ(t))
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FM to AM Demodulator

Figure: FM to AM demodulator with differentiator.

|H(f )| = V0 + k(f − fc), |f − fc | <
Bc

2

u(t) = Ac cos(2πfct + 2πkf

∫ t

−∞
m(τ)dτ)

vo(t) = Ac(V0 + kkfm(t)) cos(2πfct + 2πkf

∫ t

−∞
m(τ)dτ)
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FM to AM Demodulator

Figure: A balanced FM demodulator.

7 The noise contained within Bc is passed by the demodulator.
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FM to AM Demodulator

3 In a balanced FM demodulator, two circuits tuned at two approperate
frequencies f1 and f2 are used.

Figure: Differentiator in a balanced FM demodulator.
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PLL Demodulator

Figure: Block diagram of a PLL demodulator.

u(t) = Ac cos(2πfct + φ(t)) = Ac cos(2πfct + 2πkf

∫ t

−∞
m(τ)dτ)

fv (t) = fc + kvv(t)

yv (t) = Ac sin(2πfct + φv (t)), φv (t) = 2πkf

∫ t

0
v(τ)dτ
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PLL Demodulator

Figure: Block diagram of a PLL demodulator.

The phase comparator is basically a multiplier and a filter that rejects the
signal component centered at 2fc · Hence, its output may be expressed as

e(t) =
1

2
AvAc sin[φ(t)− φv (t)]

When the PLL is in lock position, the phase error is small. So,

sin[φ(t)− φv (t)] ≈ φ(t)− φv (t) = φe(t)
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PLL Demodulator

Figure: Linearized locked PLL demodulator.

φe(t) = φ(t)− 2πkv

∫ t

0
v(τ)dτ

dφe(t)

dt
+ 2πkvv(t) =

dφ(t)

dt

dφe(t)

dt
+ 2πkv

∫ ∞
0

φe(τ)g(t − τ)dτ =
dφ(t)

dt
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PLL Demodulator

Figure: Linearized locked PLL demodulator.

j2πf Φe(f ) + 2πkvΦe(f )G (f ) = j2πf Φ(f )⇒ Φe(f ) =
1

1 + kv
jf G (f )

Φ(f )

|kv
jf
G (f )| � 1⇒ V (f ) = G (f )Φe(f ) =

G (f )

1 + kv
jf G (f )

Φ(f ) ≈ j2πf

2πkv
Φ(f )
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PLL Demodulator

Figure: Linearized locked PLL demodulator.

v(t) =
1

2πkv

dφ(t)

dt
=

kf
kv

m(t)

3 The noise contained within W is passed by the demodulator.
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Effect of Noise on FM signal

Statement (Effect of Noise on FM Demodulator)

At high SNR conditions, the SNR at the output of an FM demodulator is( S
N

)
o

= 3PR(
βf

max |m(t)|
)2 Pm

N0W

Figure: The block diagram of an FM demodulator.
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Effect of Noise on FM signal

Statement (Effect of Noise on FM Demodulator)

At high SNR conditions, the SNR at the output of an FM demodulator is( S
N

)
o

= 3PR(
βf

max |m(t)|
)2 Pm

N0W

u(t) = Ac cos(2πfct + φ(t)) = Ac cos(2πfct + 2πkf

∫ t

−∞
m(τ)dτ)

r(t) = u(t) + n(t) = u(t) + nc(t) cos(2πfct)− ns(t) sin(2πfct)

r(t) = u(t) +
√

n2
c(t) + n2

s (t) cos(2πfct + arctan(
ns(t)

nc(t)
))

r(t) = u(t) + Vn(t) cos(2πfct + Φn(t))
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Effect of Noise on FM signal

Figure: Phasor diagram of an FM signal when the signal is much stronger than the noise.

r(t) = u(t) + Vn(t) cos(2πfct + Θn(t))

If Vn(t)� Ac ,

r(t) ≈[Ac + Vn(t) cos(Φn(t)− φ(t))]

× cos
(

2πfct + φ(t) + arctan(
Vn(t) sin(Φn(t)− φ(t))

Ac + Vn(t) cos(Φn(t)− φ(t))
)
)

Mohammad Hadi Communication systems Spring 2021 120 / 145



Effect of Noise on FM signal

Statement (Effect of Noise on FM Demodulator)

At high SNR conditions, the SNR at the output of an FM demodulator is( S
N

)
o

= 3PR(
βf

max |m(t)|
)2 Pm

N0W

r(t) =[Ac + Vn(t) cos(Φn(t)− φ(t))]

× cos
(

2πfct + φ(t) +
Vn(t)

Ac
sin(Φn(t)− φ(t))

)
y(t) = kfm(t) +

1

2π

d

dt
Yn(t)

Yn(t) =
Vn(t)

Ac
sin(Φn(t)− φ(t))
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Effect of Noise on FM signal

Statement (Effect of Noise on FM Demodulator)

At high SNR conditions, the SNR at the output of an FM demodulator is( S
N

)
o

= 3PR(
βf

max |m(t)|
)2 Pm

N0W

Yn(t) =
1

Ac

[
Vn(t) sin(Φn(t)) cos(φ(t))− Vn(t) cos(Φn(t)) sin(φ(t))

]
Yn(t) =

1

Ac

[
ns(t) cos(φ(t))− nc(t) sin(φ(t))

]
When we compare variations in ns(t) and nc(t), we can assume that φ(t)
is almost constant. So,

Yn(t) ≈ 1

Ac

[
ns(t) cos(φ)− nc(t) sin(φ)

]
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Effect of Noise on FM signal

Statement (Effect of Noise on FM Demodulator)

At high SNR conditions, the SNR at the output of an FM demodulator is( S
N

)
o

= 3PR(
βf

max |m(t)|
)2 Pm

N0W

The power spectral density of Yn(t) is obtained as

Yn(t) ≈ 1

Ac

[
ns(t) cos(φ)− nc(t) sin(φ)

]
SYn(f ) ≈ [(

cos(φ)

Ac
)2 + (

sin(φ)

Ac
)2]Snc (f ) =

Snc (f )

A2
c

SYn(f ) ≈ Snc (f )

A2
c

=

{
N0
A2
c
, |f | ≤ Bc

2

0, otherwise
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Effect of Noise on FM signal

Statement (Effect of Noise on FM Demodulator)

At high SNR conditions, the SNR at the output of an FM demodulator is( S
N

)
o

= 3PR(
βf

max |m(t)|
)2 Pm

N0W

The power spectral density of 1
2π

d
dtYn(t) is obtained as

4π2f 2

4π2
SYn(f ) ≈

{
N0
A2
c
f 2, |f | ≤ Bc

2

0, otherwise

The power spectral density of the output noise is

Sno (f ) ≈ N0

A2
c

f 2, |f | ≤W
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Effect of Noise on FM signal

Statement (Effect of Noise on FM Demodulator)

At high SNR conditions, the SNR at the output of an FM demodulator is( S
N

)
o

= 3PR(
βf

max |m(t)|
)2 Pm

N0W

Figure: Noise power spectrum at demodulator output in FM.
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Effect of Noise on FM signal

Statement (Effect of Noise on FM Demodulator)

At high SNR conditions, the SNR at the output of an FM demodulator is( S
N

)
o

= 3PR(
βf

max |m(t)|
)2 Pm

N0W

Pno =
2N0W

3

3A2
c

Pso = k2
f Pm( S

N

)
o

=
3k2

f A
2
c

2W 2

Pm

N0W
= 3PR(

βf
max |m(t)|

)2 Pm

N0W
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Effect of Noise on FM signal

1 In FM, the output SNR is proportional to the square of the modulation
index βf .

2 The increase in the received SNR is obtained by increasing the band-
width.

3 Increasing βf increases the noise power and therefore, the approxima-
tion Vn(t) � Ac will no longer be valid. When this event, which is
called threshold effect, occurs the signal will be lost in noise.

4 Increasing the transmitter power reduces the noise power and results
in a better SNR.

5 In FM, the effect of noise is higher at higher frequencies.
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Effect of Noise on FM signal

Figure: Output SNR of an FM system as a function of the baseband SNR
(
S
N

)
b

= PR
N0W

.

( S
N

)
o

= 3
Pmβ

2
f

(max |m(t)|)2

( S
N

)
b

=
3

2
β2
f

( S
N

)
b
,

Pm

(max |m(t)|)2
=

1

2
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Phase Modulation
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PM

Statement (PM)

A phase-modulated signal is written as

u(t) = Ac cos(2πfct + φ(t)) = Ac cos(2πfct + kpm(t))

, where kp is called phase deviation constant.
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PM

Example (PM signal)

Figure: Phase modulation of square and sawtooth waves.
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PM

Statement (PM Modulation Index)

The modulation index of the PM is defined as

βp = kp max{|m(t)|} = ∆φmax

, where ∆φmax is the maximum phase deviation.
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PM Modulation

Example (Sinusoidally-modulated PM signal)

For the message signal m(t) = a sin(2πfmt), the PM signal is

u(t) = Ac cos(2πfct + kpa sin(2πfmt)) = Ac cos(2πfct + βp sin(2πfmt))

.
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Relationship between PM and FM

Figure: A comparison of frequency and phase modulators.
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Relationship between PM and FM

Figure: A comparison of frequency and phase demodulators.
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Relationship between PM and FM

Figure: Frequency and phase modulations of square and sawtooth waves.
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Bandwidth and Power of PM Signal

Statement (PM by a Sinusoidal Signal)

For the sinusoidal message m(t) = a sin(2πfmt), the PM signal is

u(t) = Ac cos(2πfct +βp sin(2πfmt)) =
∞∑

n=−∞
AcJn(βp) cos(2π(fc + nfm)t)

, where Jn(βp) is the Bessel function of the first kind of order n.
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Bandwidth and Power of PM Signal

Statement (Bandwidth of Sinusoidal PM)

For the sinusoidal message m(t) = a sin(2πfmt), the actual bandwidth of
the PM signal is infinite.

Statement (Power of Sinusoidal PM)

For the sinusoidal message m(t) = a sin(2πfmt), the power of the PM signal
is A2

c/2.
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Bandwidth and Power of PM Signal

1 The 98%-power effective bandwidth of sinusoidal PM is approximately
Bc = 2(βp + 1)fm = 2(kpa + 1)fm.

2 Increasing a, the amplitude of the modulating signal, increases the
bandwidth Bc .

3 Increasing fm, the frequency of the message signal, also increases the
bandwidth Bc .

4 The number of harmonics, including the carrier, is Mc = 2([β]+1)+1 =
2[β] + 3 = 2[kpa] + 3.

5 Increasing the amplitude a increases the number of harmonics.

6 Increasing fm does not change the number of harmonics.
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Bandwidth and Power of PM Signal

Statement (Effective Bandwidth of PM (Carson’s Rule))

The effective bandwidth of a PM signal is approximately

Bc = 2(βp + 1)W

, where W is the frequency of the message signal m(t).

Statement (Power of PM)

The power content of a PM signal is A2
c

2 .
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Effect of Noise on PM signal

Statement (Effect of Noise on PM Demodulator)

At high SNR conditions, the SNR at the output of a PM demodulator is( S
N

)
o

= PR(
βp

max |m(t)|
)2 Pm

N0W

Figure: The block diagram of an PM demodulator.
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Effect of Noise on PM signal

1 In PM, the output SNR is proportional to the square of the modulation
index βp.

2 The increase in the received SNR is obtained by increasing the band-
width.

3 Increasing βp increases the noise power and therefore, the approxima-
tion Vn(t) � Ac will no longer be valid. When this event, which is
called threshold effect, occurs the signal will be lost in noise.

4 Increasing the transmitter power reduces the noise power and results
in a better SNR.
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Comparison of Analog Modulations
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Performance Comparison

1 Required bandwidth: SSB & VSB > DSB = AM � FM ≈ PM.

2 Transmitted power: FM ≈ PM > DSB & SSB ≈ VSB > AM.

3 Transceiver complexity: AM & FM ≈ PM > DSB > VSB > SSB.

4 Noise immunity: FM & PM � SSB = DSB ≈ VSB > AM.
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The End
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