Analog to Digital Conversion

Mohammad Hadi

mohammad.hadi@sharif.edu

@MohammadHadiDastgerdi

Spring 2021

Mohammad Hadi

Communication systems

Spring 2021 1 / 32

Overview

Analog to Digital Conversion

2 Sampling

4 Encoding

5 Pulse Code Modulation

6 Delta Modulation

Analog to Digital Conversion

 \checkmark In sampling, a discrete-time continuous-valued signal from an analog signal is obtained.

✓ In quantization, a discrete-time discrete-amplitude signal from a discrete-time continuous-valued signal is obtained.

✓ In encoding, a sequence of bits is assigned to different quantized values of a discrete-time discrete-amplitude signal.

Figure: Block diagram of analog to digital converter.

Sampling

Mohammad Hadi

Communication systems

▲ ■
■

<

・ロト ・日 ・ ・ ヨ ・ ・

Figure: Nyquist sampling of a signal.

Theorem (Sampling Theorem)

Let the signal x(t) have a bandwidth W, i.e., let X(f) = 0 for $|f| \ge W$. Let x(t) be sampled at multiples of some basic sampling interval T_s , where $T_s \le \frac{1}{2W}$, to yield the sequence $x_{\delta}(t) = \sum_{n=-\infty}^{\infty} x(nT_s)\delta(t - nT_s)$. Then it is possible to reconstruct the original signal x(t) from the samples values by the reconstruction formula

$$\begin{aligned} x(t) &= h(t) * x_{\delta}(t) = 2W'T_{s}sinc(2W't) * x_{\delta}(t) \\ &= \sum_{n=-\infty}^{\infty} 2W'T_{s}x(nT_{s})sinc[2W'(t-nT_{s})] \end{aligned}$$

, where W' is any arbitrary number satisfying the condition $W \leq W' \leq \frac{1}{T_s} - W$.

Nyquist Sampling

Figure: Frequency-domain representation of the nyquist sampled signal.

$$X_{\delta}(f) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} X(f - \frac{n}{T_s})$$
$$H(f) = T_s \sqcap (\frac{f}{2W'})$$

Mohammad Hadi

Spring 2021 8 / 32

∃ >

Zero-Order Hold Sampling

Figure: Flat-top sampling (zero-order hold sampling, sample and hold) of a signal.

$$\begin{aligned} x_p(t) &= x_\delta(t) * p(t) \Rightarrow X_p(f) = X_\delta(f) P(f) \\ P_{eq}(f) &= \frac{K e^{-j2\pi f t_d}}{P(f)} \\ x(t) &= x_p(t) * h(t) * p_{eq}(t) \end{aligned}$$

Mohammad Hadi

Aliasing

Figure: Aliasing in sampling.

X The unlimited bandwidth of messages creates aliasing.

Mo	hammac	l Hadi

Anti-aliasing

Figure: Anti-aliasing techniques in sampling.

 \checkmark Increase sampling frequency and/or use anti-aliasing filter to mitigate aliasing effect.

Quantization

Image: A math a math

Theorem (Quantization)

Quantization is a function defined as

$$Q(x) = \hat{x}_i : x \in \mathbb{R}_i$$

where the sets \mathbb{R}_i partition the set of real numbers \mathbb{R} .

Definition (Signal to Quantization Noise Ratio)

If the random variable X is quantized to Q(X), the signal to quantization noise is defined as

$$STQN = \frac{E\{X^2\}}{E\{(X - Q(X))^2\}}$$

Uniform Quantization

Figure: Two types of uniform quantization. (a) midtread and (b) midrise.

Nonuniform Quantization

Figure: Two instances of nonuniform quantization.

Example (SQNR)

The source X(t) is a stationary Gaussian source with mean zero and power spectral density $S_x(f) = 2 \sqcap (f/200)$. The source is sampled at the Nyquist rate and each sample is quantized using an eight-level quantizer with $a_1 =$ $-60, a_2 = -40, a_3 = -20, a_4 = 0, a_5 = 20, a_6 = 40, a_7 = 60, and$ $\hat{x}_1 = -70, \hat{x}_2 = -50, \hat{x}_3 = -30, \hat{x}_4 = -10, \hat{x}_5 = 10, \hat{x}_6 = 30, \hat{x}_7 = 50,$ $\hat{x}_7 = 70$. The SQNR for this quantization is $11.98 \equiv 10.78$ dB.

Example (SQNR (cont.))

The source X(t) is a stationary Gaussian source with mean zero and power spectral density $S_x(f) = 2 \sqcap (f/200)$. The source is sampled at the Nyquist rate and each sample is quantized using an eight-level quantizer. The SQNR for this quantization is 11.98 \equiv 10.78 dB.

Figure: Eight-level quantizer. < _ >

Communication systems

Example (SQNR (cont.))

The source X(t) is a stationary Gaussian source with mean zero and power spectral density $S_x(f) = 2 \sqcap (f/200)$. The source is sampled at the Nyquist rate and each sample is quantized using an eight-level quantizer. The SQNR for this quantization is 11.98 \equiv 10.78 dB.

$$E\{X^2\} = \sigma^2 = R_X(0) = \int_{-\infty}^{\infty} S_X(f) df = 400$$

$$E\{(X-Q(X))^2\} = \int_{-\infty}^{a_1} (x-\hat{x}_1)^2 f_X(x) dx + \sum_{i=2}^7 \int_{a_{i-1}}^{a_i} (x-\hat{x}_i)^2 f_X(x) dx$$

$$+\int_{a_7}^{\infty} (x-\hat{x}_8)^2 f_X(x) dx = 33.38, f_X(x) = \frac{1}{\sqrt{800\pi}} \exp(-x^2/800)$$

$$SQNR = \frac{400}{33.38} = 11.98$$

Mohammad Hadi

Encoding

Mohammad Hadi

Communication systems

▶ ৰ ≣ ▶ ≣ পি ৫ Spring 2021 19 / 32

イロト イヨト イヨト イ

Statement (Encoding)

In encoding, a unique sequence of ν bits is assigned to each $N = 2^{\nu}$ quantization level.

< 3 ×

Natural Binary Coding and Gray Coding

Quantization Level	Level Order	NBC Code	Gray Code
\hat{x}_1	0	0000	0000
\hat{x}_2	1	0001	0010
<i>x</i> ₃	2	0010	0011
\hat{x}_4	3	0011	0001
\hat{x}_5	4	0100	0101
\hat{x}_6	5	0101	0100
\hat{x}_7	6	0110	0110
\hat{x}_8	7	0111	0111
<i>x</i> 9	8	1000	1111
<i>x</i> ₁₀	9	1001	1110
<i>x</i> ₁₁	10	1010	1100
<i>x</i> ₁₂	11	1011	1101
<i>x</i> ₁₃	12	1100	1001
<i>x</i> ₁₄	13	1101	1000
<i>x</i> ₁₅	14	1110	1010
<i>x</i> ₁₆	15	1111	1011

Table: NBC and gray codes for 16-level quantization.

Pulse Code Modulation

Figure: PCM transmitter.

✓ Output data rate is $r = \nu f_s$ bit/s.

Figure: PCM receiver.

A B b A B b

Figure: PCM waveform.

▶ ▲ ≣ ▶ ■ ∽ Q ⊂ Spring 2021 25 / 32

Companding

Figure: A-law and μ -law companding.

$$z(x) = \frac{1 + \ln(A|x|)}{1 + \ln(A)} \operatorname{sgn}(x), \quad z(x) = \frac{\ln(1 + \mu|x|)}{\ln(1 + \mu)} \operatorname{sgn}(x)$$

< □ > < 同 > < 回 > < 回 > < 回 >

E1 Digital Voice Multiplexing

Figure: E1 frame.

✓ Each E1 frame carries 32 PCM channels with $f_c = 8000$ Hz and $\nu = 8$, which results in a net rate of $32 \times 8 \times 8000 \times 10^{-6} = 2.048$ Mb/s.

Delta Modulation

Delta Transmitter

Figure: Delta transmitter.

✓ Output data rate is $r = f_s$ bit/s.

Figure: Delta receiver.

Figure: Delta waveform.

The End

Mohammad Hadi

メロト メポト メヨト メヨト