MATHEMATICAL QUESTIONS

Question 1

In transmission of telephone signals over line-of-sight microwave links, a combination of FDM-SSB and FM is often employed. A block diagram of such a system is shown in Fig. 1. Each of the signals $m_i(t)$ is bandlimited to W Hz, and these signals are USSB modulated on carriers $c_i(t) = A_i \cos(2\pi f_i t)$, where $f_i = (i-1)W$, $1 \le i \le K$, and m(t) is the sum of all USSB-modulated signals. This signal FM modulates a carrier with frequency f_c with a modulation index of β and an amplitude of A_c .

(a) Plot a typical spectrum of the USSB-modulated signal m(t).

(b) Determine the bandwidth of m(t).

(c) At the receiver side, the received signal $r(t) = u(t) + n_W(t)$ is first FM demodulated and then passed through a bank of USSB demodulators, where $n_W(t)$ is an AWGN with a power spectral density of $\frac{N_0}{2}$. Show that the noise power entering these demodulators depend on *i*.

(d) Determine an expression for the ratio of the noise power entering the demodulator, whose carrier frequency is f_i to the noise power entering the demodulator with the carrier frequency f_j , $1 \le i, j \le K$.

(e) How should the carrier amplitudes A_i be chosen to guarantee that, after USSB demodulation, the SNR for all channels is the same?

Question 2

A superheterodyne FM receiver operates in the frequency range of 88-108 MHz. The IF and local oscillator frequencies are chosen such that $f_{IF} < f_{LO}$. We require that the image frequency f'_c fall outside of the 88-108 MHz region. Determine the minimum required f_{IF} and the range of variation in f_{LO} .

Question 3

Show that the overall noise figure of a cascade of n amplifiers with gains G_i and noise figures F_i , as shown in Fig. 2, is

Figure 2: Cascade of several amplifiers.

Question 4

The lowpass signal x(t) with a bandwidth of W is sampled with a sampling interval of T_s , and the signal

$$x_p(t) = \sum_{n=-\infty}^{\infty} x(nT_s)p(t - nT_s)$$

is reconstructed from the samples, where p(t) is an arbitrary-shaped pulse (not necessarily time limited to the interval $[0, T_s]$).

(a) Find the Fourier transform of $x_p(t)$.

(b) Find the conditions for perfect reconstruction of x(t) from $x_p(t)$.

(c) Determine the required reconstruction filter.

Question 5

Show that power spectral density of the pulse amplitude modulation signal $x(t) = \sum_{k=-\infty}^{\infty} a_k p(t-kD)$ is

$$S_x(f) = \frac{1}{D} |P(f)|^2 \sum_{n=-\infty}^{\infty} R_a[n] e^{-j2\pi n f D}$$

, where P(f) is the Fourier transform of p(t) and $R_a[n] = E\{a_{n+k}a_k\}$ is the autocorrelation of the stationary discrete random process a_k .

Hint: Use the definition of the power spectral density of a random process on page 68 of the slides on "Probability and Random Processes".

SOFTWARE QUESTIONS

Question 6

A quantizer with 2^{ν} quantized levels working over the input range [-1,1] is fed with a zero-mean Gaussian random process having the power σ^2 . Develop a MATLAB function to calculate the signal to quntization noise ratio when the quantization intervals are uniformly distributed and when the quantization intervals are nonuniformly distributed according to μ -law companding method with the parameter μ . Discuss the results for different values of ν , σ^2 , and μ . Feel free to plot any suitable curve to better describe the observations.

BONUS QUESTIONS

Question 7

Mean-ergodicity is a useful feature, which allows to replace statistical means with time averages in communication analysis.

(a) Consider the real stationary process X(t) with the statistical average $E\{X(t)\} = \eta$. Define the random variable η_T as

$$\eta_T = \frac{1}{2T} \int_{-T}^{T} X(t) dt$$

, which is called time average random variable. Show that $E\{\eta_T\} = \eta$.

(b) The process X(t) is called mean-ergodic if and only if

$$\lim_{T\to\infty} \operatorname{Var}\{\eta_T\} = 0$$

. show that this condition is equivalent to

$$\lim_{T \to \infty} \frac{1}{T} \int_0^{2T} C(\alpha) (1 - \frac{\alpha}{2T}) d\alpha = 0$$

, where the autocovariance $C(\tau) = R(\tau) - \eta^2$ and $R(\tau)$ is the autocorrelation function of X(t).

(c) Show that a zero-mean white process with a power spectral density of $\frac{N_0}{2}$ is mean-ergodic.

(d) How can we find the statistical mean of a zero-mean white process from the time average of its any given sample function?

Question 8

Return your answers by filling the LATEXtemplate of the assignment.

EXTRA QUESTIONS

Question 9

Feel free to solve the following questions from the book *Fundamentals of Communication Systems* by J. Proakis and M. Salehi.

- 1. Chapter 4, question 19.
- 2. Chapter 6, question 14.
- 3. Chapter 6, question 15.
- 4. Chapter 7, question 6.