Digital Communication

Mohammad Hadi

mohammad.hadi@sharif.edu

@MohammadHadiDastgerdi

Spring 2021

Mohammad Hadi

< ∃ ►

Digital Communication

Image: A match a ma

- ✓ Hardware stability.
- ✓ Operational flexibility.
- ✓ Reliable reproduction.
- ✓ Noise immunity.
- **X** Complex implementation.

Baseband digital transmission

- Lowpass channel.
- Carrier-less.
- Usually short distance.
- Osually wired.

Passband digital transmission

- Bandpass channel.
- ② Carrier-oriented.
- Usually long distance.
- Osually wireless.

Baseband Digital Transmission

Statement (Digital Pulse Amplitude Modulation Signal)

A digital pulse amplitude modulation signal is expressed as

$$x(t) = \sum_{k=-\infty}^{\infty} a_k p(t-kD)$$

, where the kth symbol a_k belongs to a set of $M = 2^n$ levels and p(t) is a pulse that satisfies the condition

$$p(KD) = \begin{cases} 1, & K = 0\\ 0, & K = \pm 1, \pm 2, \cdots \end{cases}$$

✓ Clearly, $x(KD) = \sum_{k=-\infty}^{\infty} a_k p(KD - kD) = a_K$.

Definition (Baud Rate)

The baud or symbol rate of a PAM signal is defined as

$$r=rac{1}{D}$$

Definition (Bit Rate)

The bit rate of a PAM signal is defined as

$$r_b = r \log_2(M) = \frac{\log_2(M)}{D} = \frac{n}{D} = rn$$

Binary PAM formats with rectangular pulses

- **1** Unipolar return to zero with $p(t) = \sqcap(\frac{t}{D/2})$ and $a_k = b_k A$.
- ② Unipolar nonreturn to zero with $p(t) = \sqcap(\frac{t}{D})$ and $a_k = b_k A$.
- Solar return to zero with $p(t) = \prod(\frac{t}{D/2})$ and $a_k = (b_k 0.5)A$.
- Polar nonreturn to zero with $p(t) = \prod(\frac{t}{D})$ and $a_k = (b_k 0.5)A$.
- So Twinned binary with $p(t) = \prod(\frac{t}{D/2}) \prod(\frac{t-D/2}{D/2})$ and $a_k = (b_k 0.5)A$.

 \checkmark The formats differ in DC value, power, power spectral density, and synchronization.

Figure: Binary PAM formats with rectangular pulses (line codes). (a) Unipolar RZ and NRZ (b) Polar RZ and NRZ (c) Twined binary.

M-ary Line Codes

Polar quaternary nonreturn to zero with $p(t) = \Box(\frac{t}{D})$ and symbols a_k as

a _k	NBC Code	Gray Code
3A/2	11	10
A/2	10	11
-A/2	01	01
-3A/2	00	00

Table: Symbols in polar quaternary NRZ.

Figure: Polar quaternary NRZ.

Mo	hammad	Hadi

Statement (Power Spectral Density of PAM)

Power spectral density of the pulse amplitude modulation signal $x(t) = \sum_{k=-\infty}^{\infty} a_k p(t - kD)$ is

$$S_{x}(f) = \frac{1}{D} |P(f)|^{2} \sum_{n=-\infty}^{\infty} R_{a}[n] e^{-j2\pi n f D}$$

, where P(f) is the Fourier transform of p(t) and $R_a[n] = E\{a_{n+k}a_k\}$ is the autocorrelation of the stationary discrete random process a_k .

✓ If a_k is a zero-mean uncorrelated discrete random process, $S_x(f) = \frac{R_a[0]}{D} |P(f)|^2$.

· · · · · · · · ·

Figure: Power spectra density of unipolar binary RZ.

Transmission Limitations

Figure: (a) Baseband transmission system (b) Signal-pluse-noise waveform.

$$y(t) = \sum_{k=-\infty}^{\infty} a_k \tilde{p}(t - t_d - kD) + n(t)$$
$$y(t_K) = y(KD + t_d + t_s) = a_K \tilde{p}(t_s) + \sum_{k \neq K}^{\infty} a_k \tilde{p}(KD + t_s - kD) + n(t_K)$$

Figure: (a) Distorted polar binary signal (b) Eye diagram.

Spring 2021 15 / 29

Figure: Binary eye pattern.

- Inter-symbol interference
- Optimum sampling time
- Zero-crossing jitter
- Olise margin
- Timing sensitivity
- Onlinear distortion

Statement (Suitable Synchronization)

A suitable synchronization can mitigate or eliminate synchronization mismatch. Zero-crossing in PAM signal has a key role in synchronization.

Statement (ISI Cancellation)

Given an ideal lowpass channel of bandwidth B, it is possible to transmit independent symbols at a rate $r \leq 2B$ baud without ISI. It is not possible to transmit independent symbols at r > 2B.

✓ Signaling at the maximum rate r = 2B requires since pulse shaping $p(t) = \operatorname{sinc}(rt)$.

Statement (Bit Error Probability of Unipolar NRZ)

Assuming perfect ISI cancellation and synchronization, the bit error probability for unipolar NRZ binary signaling in zero-mean Gaussian noise with variance σ^2 is $Pe = Q(A/(2\sigma))$, where Q(x) is the tail distribution function of the standard normal distribution, and 0 and A are the symbols corresponding to the equally-probable binary digits 0 and 1.

Figure: Baseband binary receiver.

Bit Error Probability

Statement (Bit Error Probability of Unipolar NRZ)

Assuming perfect ISI cancellation and synchronization, the bit error probability for unipolar NRZ binary signaling is $Pe = Q(A/(2\sigma))$.

Figure: A unipolar NRZ signal (a) signal plus noise (b) S/H output (c) Comparator output.

Mohammad Hadi

Statement (Bit Error Probability of Unipolar NRZ)

Assuming perfect ISI cancellation and synchronization, the bit error probability for unipolar NRZ binary signaling is $Pe = Q(A/(2\sigma))$.

$$P_{e} = P_{0}P_{e|0} + P_{1}P_{e|1} = \frac{1}{2}(P_{e|0} + P_{e|1})$$

$$= \frac{1}{2}(P[y(t_{K}) > V|a_{K} = 0] + P[y(t_{K}) \le V|a_{K} = A])$$

$$= \frac{1}{2}(P[n(t_{K}) > V|a_{K} = 0] + P[n(t_{K}) + A \le V|a_{K} = A])$$

$$= \frac{1}{2}(Q(\frac{V}{\sigma}) + Q(\frac{A - V}{\sigma}))$$

$$\frac{dP_{e}}{dV} = 0 \Rightarrow V = \frac{A}{2} \Rightarrow P_{e_{min}} = Q(\frac{A}{2\sigma})$$

Passband Digital Transmission

Common passband digital transmission techniques

- Amplitude Shift Keying (ASK)
- Phase Shift Keying (PSK)
- Frequency Shift Keying (FSK)

Passband Transmission Techniques

Statement (Passband Digital Signal)

Any modulated passband signal may be expressed in the quadrature-carrier form

$$x(t) = A_c[x_i(t)\cos(2\pi f_c t + \theta) - x_q(t)\sin(2\pi f_c t + \theta)]$$

. The carrier frequency f_c , amplitude A_c , and phase θ are constant, while the time-varying in-phase $x_i(t)$ and quadrature $x_q(t)$ components contain the message.

Statement (PSD of Passband Digital Signal)

Power spectral density of the passband digital signal $x(t) = A_c[x_i(t)\cos(2\pi f_c t + \theta) - x_q(t)\sin(2\pi f_c t + \theta)]$ is

$$S_x(f) = rac{A_c^2}{4} [S_{x_i}(f-f_c) + S_{x_i}(f+f_c) + S_{x_q}(f-f_c) + S_{x_q}(f+f_c)]$$

, where $S_{x_i}(f)$ and $S_{x_q}(f)$ are the power spectral density of the in-phase and quadrature components, respectively.

PSD of Passband Digital Signal

Figure: Power spectra density of ASK.

Statement (ASK)

In ASK,

$$x_i(t) = \sum_k a_k p(t - kD), \quad x_q(t) = 0$$

 $a_k = 0, 1, \cdots, M - 1$

Figure: ASK constellation.

N/10	h n m m n n	Ladi
IVIC	паннас	I LIAUL

• • = • •

PSK

Statement (PSK)

In PSK,

$$egin{aligned} x_i(t) &= \sum_k \cos(\phi_k) p(t-kD), \quad x_q(t) &= \sum_k \sin(\phi_k) p(t-kD) \ \phi_k &= \pi (2a_k+1)/M, \quad a_k &= 0, 1, \cdots, M-1 \end{aligned}$$

Mohammad Hadi

(4) (5) (4) (5)

The End

Mohammad Hadi

Communication systems

メロト メポト メヨト メヨト