Question 1

Consider the block diagram of Fig. 1, where

- **1.** m(t) is a lowpass message with the bandwidth W_m .
- 2. The zero-order hold ADC has the sampling rate f_s and quantization level 2^{ν} .
- 3. In the PAM modulator, the bits are mapped to the bipolar NRZ signal

$$u(t) = \sum_{k=-\infty}^{\infty} a_k p(t - kT)$$

, where the pulse $p(t) = \operatorname{sinc}(\frac{t}{T})$ and the binary polar symbols $a_k = 2(b_k - 0.5)A$. For simplicity, the symbols are assumed to be independent and identically distributed with $P\{a_k = A\} = P\{a_k = -A\} = 0.5$, the mean 0, and the autocorrelation function

$$R_a[n] = E\{a_{n+k}a_k\} = \begin{cases} A^2, & n = 0\\ 0, & n \neq 0 \end{cases}$$

- 4. The FM modulator has the index β_f and its output is $v(t) = A_c \cos(2\pi f_c t + 2\pi k_f \int_{-\infty}^t u(\tau) d\tau)$.
- 5. The channel adds an AWGN noise $n_W(t)$ with the power spectral density $\frac{N_0}{2}$ to its input signal.
- 6. The FM demodulator is an ideal FM receiver.
- 7. The PAM demodulator works perfectly without any ISI or synchronization mismatch. The comparator threshold is set to its optimal value in the PAM demodulator.
- 8. The conditions of the perfect reconstruction are held in the DAC.
- 9. The required filters in the modulators and demodulators are ideal.

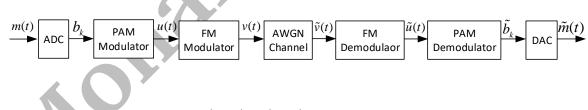


Figure 1: A mixed analog-digital communication system.

(a) Write an expression for the power spectral density $S_u(f)$ of u(t) and determine the power content P_u of u(t).

(b) Determine 100% power bandwidth of u(t), i.e., the bandwidth $[0, W_u]$ containing half of the power content of u(t).

(c) Determine the power P_v and bandwidth W_v of v(t).

(d) Determine the output bit rate B_b of the ADC.

(e) Determine the bit rate B_u and symbol rate S_u of the PAM modulator.

(f) Specify the required conditions for perfect reconstruction of $\widetilde{m}(t)$ at the DAC.

(g) Assuming high SNR conditions for the FM demodulator, find the SNR of $\tilde{u}(t)$.

(h) Assuming high SNR conditions for the FM demodulator, find the BER of \tilde{b}_k .

(i) Assuming that the channel bandwidth is W_c , find the maximum bandwidth of m(t) for which the system works properly.

(j) Find the maximum bandwidth of m(t) for which the BER of \tilde{b}_k is less than a given value of $P_{e_{th}}$.