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Probability
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Sample Space, Events, and Probability

A random experiment is any experiment whose outcome cannot be
predicted with certainty.

A random experiment has certain outcomes ω ∈ Ω.

The set of all possible outcomes is called the sample space Ω.

A sample space is discrete if the number of its elements are finite or
countably infinite, otherwise it is a nondiscrete sample space.

Events are subsets of the sample space, i.e., E ⊂ Ω.

Events are disjoint if their intersection is empty. i.e. Ei ∩ Ej = ∅.
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Sample Space, Events, and Probability

Definition (Probability Axioms)

A probability P is defined as a set function assigning nonnegative values to
all events E such that

1 0 ≤ P(E ) ≤ 1 for all events.

2 P(Ω) = 1.

3 For disjoint events E1,E2, · · · , P(∪∞i=1Ei ) =
∑∞

i=1 P(Ei ).

1 P(E c) = 1− P(E ), E c = Ω \ E .

2 P(∅) = 0.

3 P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2).

4 E1 ⊆ E2 ⇒ P(E1) ≤ P(E2).
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Conditional Probability

Definition (Conditional Probability)

The conditional probability of the event E1 given the event E2 is defined by

P(E1|E2) =

{
P(E1∩E2)
P(E2) , P(E2) 6= 0

0 , P(E2) = 0
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Conditional Probability

1 The events E1 and E2 are said to be independent if P(E1|E2) = P(E1).

2 For independent events, P(E1 ∩ E2) = P(E1)P(E2).

3 If the events {Ei}ni=1 are disjoint and their union is the entire sample
space, then they make a partition of the sample space Ω.

4 The total probability theorem states that for an event A, P(A) =∑n
i=1 P(Ei )P(A|Ei ).

5 Bayes’s rule gives the conditional probabilities P(Ei |A) by

P(Ei |A) =
P(Ei )P(A|Ei )

P(A)
=

P(Ei )P(A|Ei )∑n
i=1 P(Ei )P(A|Ei )
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Random Variables
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Random Variables

Definition (Random Variable)

A random variable is a mapping from the sample space Ω to the set of real
numbers.

Figure: A random variable as a mapping from Ω to R.
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Random Variables

Definition (Cumulative Distribution Function (CDF))

The cumulative distribution function or CDF of a random variable X is
defined as

FX (x) = P{ω ∈ Ω : X (ω) ≤ x} = p{X ≤ x}

1 0 ≤ FX (x) ≤ 1.

2 FX (−∞) = 0, FX (∞) = 1.

3 P(a < X ≤ b) = FX (b)− FX (a).
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Random Variables

Figure: CDF for a (a) continuous (b) discrete (c) mixed random variable.
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Random Variables

Definition (Probability Density Function (PDF))

The probability density function or PDF of a random variable X is defined
as

fX (x) =
dFX (x)

dx

1 fX (x) ≥ 0.

2
∫∞
−∞ fX (x)dx = 1.

3 P(a < X ≤ b) =
∫ b
a fX (x)dx .

4 FX (x) =
∫ x+

−∞ fX (u)du.

Mohammad Hadi Communication systems Fall 2020 12 / 102



Random Variables

Definition (Probability Mass Function (PMF))

The probability mass function or PMF of a discrete random variable X is
defined as

pi = P{X = xi}

1 pi ≥ 0.

2
∑

i pi = 1.
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Important Random Variables

Statement (Bernoulli Random Variable)

The Bernoulli random variable is a discrete random variable taking two
values 1 and 0, with probabilities p and 1− p.

Figure: The PMF for the Bernoulli random variable.
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Important Random Variables

Statement (Binomial Random Variable)

The binomial random variable is a discrete random variable giving the num-
ber of 1 ’s in n independent Bernoulli trials. The PMF is given by

P{X = k} =


(
n

k

)
pk(1− p)n−k , 0 ≤ k ≤ n

0, otherwise

Figure: The PMF for the binomial random variable.
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Important Random Variables

Statement (Uniform Random Variable)

The Uniform random variable is a continuous random variable taking values
between a and b with equal probabilities for intervals of equal length. The
density function is given by

fX (x) =

{
1

b−a , a ≤ x ≤ b

0, otherwise

Figure: The PDF for the uniform random variable.
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Important Random Variables

Statement (Gaussian Random Variable)

The Gaussian, or normal, random variable N (m, σ2) is a continuous random
variable described by the density function

fX (x) =
1√
2πσ

e−
(x−m)2

2σ2

, where m, σ, and σ2 are named mean, standard deviation, and variance.

Figure: The PDF for the Gaussian random variable.
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Important Random Variables

Statement (Q Function)

Assuming that X is a standard normal random variableN (0, 1), the function
Q(x) is defined as

Q(x) = P{X > x} =

∫ ∞
x

1√
2π

e−
t2

2 dt

Figure: The Q-function as the area under the tail of a standard normal random variable.
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Important Random Variables

The Q function has the following properties,

1 Q(−∞) = 1, Q(0) = 0.5, Q(+∞) = 0.

2 Q(−x) = 1− Q(x).

The important bounds on the Q function are

1 Q(x) ≤ 1
2e
− x2

2 , x ≥ 0.

2 Q(x) < 1√
2πx

e−
x2

2 , x ≥ 0.

3 Q(x) > 1√
2πx

(1− 1
x2 )e−

x2

2 , x > 1.

For an N (m, σ2) random variable,

1 FX (x) = P{X ≤ x} = 1− Q( x−mσ ).
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Important Random Variables

x Q(x) x Q(x) x Q(x)

0.0 5.000000× 10−01 2.4 8.197534× 10−03 4.8 7.933274× 10−07

0.1 4.601722× 10−01 2.5 6.209665× 10−03 4.9 4.791830× 10−07

0.2 4.207403× 10−01 2.6 4.661189× 10−03 5.0 2.866516× 10−07

0.3 3.820886× 10−01 2.7 3.466973× 10−03 5.1 1.698268× 10−07

0.4 3.445783× 10−01 2.8 2.555131× 10−03 5.2 9.964437× 10−06

0.5 3.085375× 10−01 2.9 1.865812× 10−03 5.3 5.790128× 10−08

0.6 2.742531× 10−01 3.0 1.349898× 10−03 5.4 3.332043× 10−08

0.7 2.419637× 10−01 3.1 9.676035× 10−04 5.5 1.898956× 10−08

0.8 2.118554× 10−01 3.2 6.871378× 10−04 5.6 1.071760× 10−08

0.9 1.840601× 10−01 3.3 4.834242× 10−04 5.7 5.990378× 10−09

1.0 1.586553× 10−01 3.4 3.369291× 10−04 5.8 3.315742× 10−09

1.1 1.356661× 10−01 3.5 2.326291× 10−04 5.9 1.817507× 10−09

1.2 1.150697× 10−01 3.6 1.591086× 10−04 6.0 9.865876× 10−10

1.3 9.680049× 10−02 3.7 1.077997× 10−04 6.1 5.303426× 10−10

1.4 8.075666× 10−02 3.8 7.234806× 10−05 6.2 2.823161× 10−10

1.5 6.680720× 10−02 3.9 4.809633× 10−05 6.3 1.488226× 10−10

1.6 5.479929× 10−02 4.0 3.167124× 10−05 6.4 7.768843× 10−11

1.7 4.456546× 10−02 4.1 2.065752× 10−05 6.5 4.016001× 10−11

1.8 3.593032× 10−02 4.2 1.334576× 10−05 6.6 2.055790× 10−11

1.9 2.871656× 10−02 4.3 8.539898× 10−06 6.7 1.042099× 10−11

2.0 2.275013× 10−02 4.4 5.412542× 10−06 6.8 5.230951× 10−12

2.1 1.786442× 10−02 4.5 3.397673× 10−06 6.9 2.600125× 10−12

2.2 1.390345× 10−02 4.6 2.112456× 10−06 7.0 1.279813× 10−12

2.3 1.072411× 10−02 4.7 1.300809× 10−06

Table: Table of the Q Function.
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Important Random Variables

Example (Q Function)

X is a Gaussian random variable with mean 1 and variance 4. Therefore,

P(5 < X < 7) = FX (7)− FX (5)

= 1− Q(
7− 1

2
)− [1− Q(

5− 1

2
)]

= Q(2)− Q(3) ≈ 0.0214
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Functions of a Random Variable

Statement (Functions of a Random Variable)

The CDF of the random variable Y = g(X ) is

FY (y) = P{ω ∈ Ω : g(X (ω)) ≤ y}

. In the special case that, for all y , the equation g(x) = y has a countable
number of solutions {xi}, and for all these solutions, g ′(xi ) exists and is
nonzero,

fY (y) =
∑
i

fX (xi )

|g ′(xi )|
.
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Functions of a Random Variable

Example (Linear function of a normal variable)

if X is N (m, σ2), then Y = aX + b is also a Gaussian random variable of
the form N (am + b, a2σ2).

If y = ax + b = g(x), then x = (y − b)/a and g ′(x) = a. So,

fY (y) =
fX (x)

|g ′(x)|
∣∣
x=(y−b)/a

=
1

a

1√
2πσ

e−
(x−m)2

2σ2
∣∣
x=(y−b)/a

=
1√

2πaσ
e−

(
y−b
a −m)2

2σ2

=
1√

2πaσ
e−

(y−b−am)2

2a2σ2
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Statistical Averages

Definition (Mean of Function)

The mean, expected value, or expectation of the random variable Y = g(X )
is defined as

E{g(X )} =

∫ ∞
−∞

g(x)fX (x)dx

Definition (Mean of Function)

The mean, expected value, or expectation of the discrete random variable
Y = g(X ) is defined as

E{g(X )} =
∑
i

g(xi )P{X = xi}
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Statistical Averages

Definition (Mean)

The mean, expected value, or expectation of the random variable X is
defined as

E{X} = mX =

∫ ∞
−∞

xfX (x)dx

Definition (Mean)

The mean, expected value, or expectation of the discrete random variable
X is defined as

E{X} = mX =
∑
i

xiP{X = xi}

1 E (cX ) = cE (X ).

2 E (X + c) = c + E (X ).

3 E (c) = c.
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Statistical Averages

Definition (Variance)

The variance of the random variable X is defined as

σ2
X = V (X ) = E{(X − E{X})2} = E{X 2} − (E{X})2

1 V (cX ) = c2V (X ).

2 V (X + c) = V (X ).

3 V (c) = 0.
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Important Random Variables

Example (Bernoulli random variable)

If X is a Bernoulli random variable, E (X ) = p and V (X ) = p(1− p).

Example (Binomial random variable)

If X is a Binomial random variable, E (X ) = np and V (X ) = np(1− p).

Example (Uniform random variable)

If X is a Uniform random variable, E (X ) = a+b
2 and V (X ) = (b−a)2

12 .

Example (Gaussian random variable)

If X is a Gaussian random variable, E (X ) = m and V (X ) = σ2.
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Bi-variate Random Variables

Definition (Joint CDF)

Let X and Y represent two random variables. For these two random vari-
ables, the joint CDF is defined as

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)

1 FX (x) = FX ,Y (x ,∞).

2 FY (x) = FX ,Y (∞, y).

3 If X and Y are statistically independent, FX ,Y (x , y) = FX (x)FY (y).
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Bi-variate Random Variables

Definition (Joint PDF)

Let X and Y represent two random variables. For these two random vari-
ables, the joint PDF is defined as

fX ,Y (x , y) =
∂2FX ,Y (x , y)

∂x∂y

1 fX (x) =
∫∞
−∞ fX ,Y (x , y)dy .

2 fY (y) =
∫∞
−∞ fX ,Y (x , y)dx .

3
∫∞
−∞

∫∞
−∞ fX ,Y (x , y)dxdy = 1.

4 P{(x , y) ∈ A} =
∫ ∫

(x ,y)∈A fX ,Y (x , y)dxdy .

5 FX ,Y (x , y) =
∫ x
−∞

∫ y
−∞ fX ,Y (u, v)dudv .

6 If X and Y are statistically independent, fX ,Y (x , y) = fX (x)fY (y).
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Bi-variate Random Variables

Definition (Conditional PDF)

The conditional PDF of the random variable Y , given that the value of the
random variable X is equal to x , is defined as

fY |X (y |x) =

{
fX ,Y (x ,y)
fX (x) , fX (x) 6= 0

0, fX (x) = 0
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Bi-variate Random Variables

Definition (Mean)

The expected value of g(X ,Y ) is defined as E{g(X ,Y )} =∫∞
−∞

∫∞
−∞ g(x , y)fX ,Y (x , y)dxdy

Definition (Correlation)

R(X ,Y ) = E (XY ) is called the correlation f X and Y .

Definition (Covariance)

The covariance of X and Y is defined as C (X ,Y ) = E (XY )− E (X )E (Y ).

Definition (Correlation Coefficient)

The correlation coefficient of X and Y is defined as ρX ,Y =
C (X ,Y )/(σXσY ).
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Bi-variate Random Variables

1 If ρX ,Y = C (X ,Y ) = 0. i.e., E (XY ) = E (X )E (Y ), then X and Y are
called uncorrelated.

2 If X and Y are independent, E (XY ) = E (X )E (Y ), i.e., X and Y are
uncorrelated.

3 |ρX ,Y | ≤ 1.

4 If ρX ,Y = 1, then Y = aX + b, where a is a positive.

5 If ρX ,Y = −1, then Y = aX + b, where a is a negative.
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Bi-variate Random Variables

Example (Moment calculation)

Assume that X ∼ N (3, 4) and Y ∼ N (−1, 2) are independent. If Z =
X − Y and W = 2X + 3Y , then

E (Z ) = E (X )− E (Y ) = 3 + 1 = 4

E (W ) = 2E (X ) + 3E (Y ) = 6− 3 = 3

E (X 2) = V (X ) + (E (X ))2 = 4 + 9 = 13

E (Y 2) = V (Y ) + (E (Y ))2 = 2 + 1 = 3

E (XY ) = E (X )E (Y ) = −3

C (W ,Z ) = E (WZ )− E (W )E (Z ) = E (2X 2 − 3Y 2 + XY )− 12 = 2
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Bi-variate Random Variables

Statement (Multiple Functions of Multiple Random Variables)

If Z = g(X ,Y ) and W = h(X ,Y ) and the set of equations{
g(x , y) = z

h(x , y) = w

has a countable number of solutions {(xi , yi )}, and if at these points the
determinant of the Jacobian matrix

J(x , y) =

[
∂z/∂x ∂z/∂y
∂w/∂x ∂w/∂y

]
is nonzero, then

fZ ,W (z ,w) =
∑
i

fX ,Y (xi , yi )

|detJ(xi , yi )|
.
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Bi-variate Random Variables

Example (Magnitude and phase of two i.i.d Gaussian variables)

If X and Y are independent and identically distributed zero-mean Gaus-
sian random variables with the variance σ2, i.e., X ∼ N (0, σ2) ⊥⊥ Y ∼
N (0, σ2), then the random variables V =

√
X 2 + Y 2 and Θ = arctan Y

X
are independent and have Rayleigh and uniform distribution, respectively,
i.e., V =

√
X 2 + Y 2 ∼ R(σ) ⊥⊥ Θ = arctan Y

X ∼ U [0, 2π].

V =
√
X 2 + Y 2 and Θ = arctan Y

X and

fX ,Y (x , y) = fX (x)fY (y) =
1

2πσ2
e−

x2+y2

2σ2
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Bi-variate Random Variables

Example (Magnitude and phase of two i.i.d Gaussian variables)

If X ∼ N (0, σ2) ⊥⊥ Y ∼ N (0, σ2), then V =
√
X 2 + Y 2 ∼ R(σ) ⊥⊥ Θ =

arctan Y
X ∼ U [0, 2π].

J(x , y) =

[
x√

x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

]
⇒ |detJ(x , y)| =

1√
x2 + y2

=
1

v{√
x2 + y2 = v

arctan y
x = θ

⇒

{
x = v cos θ

y = v sin θ

fV ,Θ(v , θ) = vfX ,Y (v cos θ, v sin θ) =
v

2πσ2
e−

v2

2σ2
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Bi-variate Random Variables

Example (Magnitude and phase of two i.i.d Gaussian variables)

If X ∼ N (0, σ2) ⊥⊥ Y ∼ N (0, σ2), then V =
√
X 2 + Y 2 ∼ R(σ) ⊥⊥ Θ =

arctan Y
X ∼ U [0, 2π].

fΘ(θ) =

∫ ∞
−∞

fV ,Θ(v , θ)dv =
1

2π
, 0 ≤ θ ≤ 2π

fV (v) =

∫ ∞
−∞

fV ,Θ(v , θ)dθ =
v

σ2
e−

v2

2σ2 , v ≥ 0

The magnitude and the phase are independent random variables since

fV ,Θ(v , θ) = fΘ(θ)fV (v)
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Bi-variate Random Variables

Statement (Jointly Gaussian Random Variables)

Jointly Gaussian random variables X and Y are distributed according to a
joint PDF of the form

fX ,Y (x , y) =
1

2πσ1σ2

√
1− ρ2

× exp
{
− 1

2(1− ρ2)

[(x −m1)2

σ2
1

+
(y −m2)2

σ2
2

− 2ρ(x −m1)(y −m2)

σ1σ2

]}
3 Two uncorrelated jointly Gaussian random variables are independent.
Therefore, for jointly Gaussian random variables, independence and uncor-
relatedness are equivalent.
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Multi-variate Random Variables

Definition (Multi-variate CDF)

Let XXX = (X1, · · · ,Xn)T represent n random variables. For these random
vector , the CDF is defined as

FXXX (xxx) = FX1,··· ,Xn(x1, · · · , xn) = P(X1 ≤ x1, · · · ,Xn ≤ xn)

Definition (Multi-variate PDF)

Let XXX = (X1, · · · ,Xn)T represent n random variables. For these random
vector , the PDF is defined as

fXXX (xxx) = fX1,··· ,Xn(x1, · · · , xn) =
∂nFX1,··· ,Xn(x1, · · · , xn)

∂x1 · · · ∂xn
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Multi-variate Random Variables

Definition (Joint Multi-variate CDF)

Let XXX = (X1, · · · ,Xn)T and YYY = (Y1, · · · ,Ym)T represent two random
vectors. For these random vector , the joint CDF is defined as

FXXX ,YYY (xxx ,yyy) = P(X1 ≤ x1, · · · ,Xn ≤ xn,Y1 ≤ y1, · · · ,Ym ≤ ym)

Definition (Joint Multi-variate PDF)

Let XXX = (X1, · · · ,Xn)T and YYY = (Y1, · · · ,Ym)T represent two random
vectors. For these random vector , the joint PDF is defined as

fXXX ,YYY (xxx ,yyy) =
∂n+mFXXX ,YYY (xxx ,yyy)

∂x1 · · · ∂xn∂y1 · · · ∂ym
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Multi-variate Random Variables

Definition (Mean)

The expected value of XXX is defined as E (XXX ) = (E{X1}, · · · ,E{Xn})

Definition (Correlation)

R(XXX ,YYY ) = E (XXXYYY T ) is called the correlation matrix of X and Y .

Definition (Covariance)

The covariance of X and Y is defined as C (XXX ,YYY ) = E
(
(XXX − E (XXX ))(YYY −

E (YYY ))T
)

= E (XXXYYY T )− E (XXX )E (YYY )T .
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Multi-variate Random Variables

1 If fXXX (xxx) = fX1(x1) · · · fXn(xn), then XXX is called mutually independent.

2 If C (XXX ,XXX ) is a diagonal matrix, then XXX is called mutually uncorrelated.

3 If XXX is independent, then, XXX is uncorrelated.

4 If fXXX ,YYY (xxx ,yyy) = fXXX (xxx)fYYY (yyy), then XXX and YYY are called independent.

5 If C (XXX ,YYY ) = 000, then XXX and YYY are called uncorrelated.

6 If XXX and YYY are independent, XXX and YYY are uncorrelated.
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Multi-variate Random Variables

Statement (Jointly Gaussian Random Variables)

Jointly Gaussian random variables XXX =
(
X1, · · · ,Xn

)T
are distributed ac-

cording to a joint PDF of the form

fXXX (xxx) = (2π|ΣΣΣ|)−
n
2 exp

[−1

2
(xxx −mmm)TΣΣΣ−1(xxx −mmm)

]
, where mmm = E (XXX ) and ΣΣΣ = C (XXX ,XXX ) are the mean vector and covariance
matrix and |ΣΣΣ| is the determinant of ΣΣΣ.

3 Uncorrelated jointly Gaussian random variables are independent. There-
fore, for jointly Gaussian random variables, independence and uncorrelated-
ness are equivalent.
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Multi-variate Random Variables

Theorem (Central Limit Theorem)

If {Xi}ni=1 are n i.i.d. (independent and identically distributed) random vari-
ables, which each have the mean m and variance σ2, then Y = 1

n

∑n
i=1 Xi

converges to N (m, σ
2

n ).

3 The central limit theorem states that the sum of many i.i.d. random
variables converges to a Gaussian random variable.
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Random Processes
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Random Processes

3 A random process is a set of possible realizations of signal waveforms.
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Random Processes

Example (Sample random process)

X (t) = A cos(2πf0t + Θ), Θ ∼ U[0, 2π].

Figure: Sample functions of the example random process.
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Random Processes

Example (Sample random process)

X (t) = X , X ∼ U[−1, 1].

Figure: Sample functions of the example random process.
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Random Processes

3 A random process is denoted by x(t;ω), where ω ∈ Ω is a random
variable.
3 For each ωi , there exists a deterministic time function x(t;ωi ), which is
called a sample function or a realization.
3 For the different outcomes at a fixed time t0, the numbers x(t0;ω)
constitute a random variable denoted by X (t0).
3 At each time instant t0 and for each ωi ∈ Ω, we have the number
x(t0;ωi ).
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Random Processes

Example (Sample random process)

Let Ω = {1, 2, 3, 4, 5, 6} denote the sample space corresponding to the
random experiment of throwing a die. For all ω ∈ Ω, let x(t;ω) = ωe−tu(t)
denote a random process. Then X (1) is a random variable taking values
{e−1, 2e−1, 3e−1, 4e−1, 5e−1, 6e−1} and each has probability 1/6.

Figure: Sample functions of a random process.
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Statistical Averages

Definition (Mean Function)

The mean, or expectation, of the random process X (t) is a deterministic
function of time denoted by mX (t) that at each time instant to equals
the mean of the random variable X (t0). That is, mX (t) = E [X (t)] =∫∞
−∞ xfX (t)(x)dx ,∀t.

Figure: The mean of a random process.
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Statistical Averages

Definition (Autocorrelation Function)

The autocorrelation function of the random process X (t) is defined as

RX (t1, t2) = E [X (t1)X (t2)] =

∫ ∞
−∞

∫ ∞
−∞

x1x2fX (t1),X (t2)(x1, x2)dx1dx2

.
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Statistical Averages

Example (Statistical averages)

If X (t) = A cos(2πf0t + Θ), Θ ∼ U[0, 2π], then mX (t) = 0 and

RX (t1, t2) = A2

2 cos(2πf0(t1 − t2)).

mx(t) = E [X (t)] = E [A cos(2πf0t + Θ)] =

∫ 2π

0
A cos(2πf0t + θ)

1

2π
dθ = 0

RX (t1, t2) = E [X (t1)X (t2)]

= E [A cos(2πf0t1 + Θ)A cos(2πf0t2 + Θ)]

= E [
A2

2
cos(2πf0(t1 − t2)) +

A2

2
cos(2πf0(t1 + t2) + 2Θ)]

=
A2

2
cos(2πf0(t1 − t2))
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Statistical Averages

Example (Statistical averages)

If X (t) = X , X ∼ U[−1, 1], then mX (t) = 0 and RX (t1, t2) = 1
3 .

mx(t) = E [X (t)] = E [X ] =
−1 + 1

2
= 0

RX (t1, t2) = E [X 2] =
(1− (−1))2

12
=

1

3
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Wide-Sense Stationary Processes

Definition (Wide-Sense Stationary (WSS))

A process X (t) is WSS if the following conditions are satisfied

1 mx(t) = E [X (t)] is independent of t.

2 RX (t1, t2) depends only on the time difference τ = t1 − t2 and not on
t1 and t2 individually.

1 RX (t1, t2) = RX (t2, t1).

2 If X (t) is WSS, RX (τ) = RX (−τ).
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Wide-Sense Stationary Processes

Example (WSS)

If X (t) = A cos(2πf0t + Θ), Θ ∼ U[0, 2π], then mX (t) = 0 and

RX (t1, t2) = A2

2 cos(2πf0(t1 − t2)) and therefore, X (t) is WSS.

mx(t) = E [A cos(2πf0t + Θ)] =

∫ 2π

0
A cos(2πf0t + θ)

1

2π
dθ = 0

RX (t1, t2) = E [A cos(2πf0t1 + Θ)A cos(2πf0t2 + Θ)]

= E [
A2

2
cos(2πf0(t1 − t2)) +

A2

2
cos(2πf0(t1 + t2) + 2Θ)]

=
A2

2
cos(2πf0(t1 − t2))
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Wide-Sense Stationary Processes

Example (WSS)

If X (t) = A cos(2πf0t + Θ), Θ ∼ U[0, π], then mX (t) = −2A
π sin(2πf0t)

and RX (t1, t2) = A2

2 cos(2πf0(t1 − t2)) and therefore, X (t) is not WSS.

mx(t) = E [A cos(2πf0t+Θ)] =

∫ π

0
A cos(2πf0t+θ)

1

π
dθ = −2

A

π
sin(2πf0t)

RX (t1, t2) = E [A cos(2πf0t1 + Θ)A cos(2πf0t2 + Θ)]

= E [
A2

2
cos(2πf0(t1 − t2)) +

A2

2
cos(2πf0(t1 + t2) + 2Θ)]

=
A2

2
cos(2πf0(t1 − t2))
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Multiple Random Processes

Definition (Independent Processes)

Two random processes X (t) and Y (t) are independent if for all positive
integers m, n, and for all t1, t2, · · · , tn and τ1, τ2, · · · , τm the random vec-
tors

(
X (t1),X (t2), · · · ,X (tn)

)
and

(
Y (τ1),Y (τ2), · · · ,Y (τm)

)
are inde-

pendent.

Definition (Uncorrelated Processes)

Two random processes X (t) and Y (t) are uncorrelated if for all positive
integers m, n, and for all t1, t2, · · · , tn and τ1, τ2, · · · , τm the random vec-
tors

(
X (t1),X (t2), · · · ,X (tn)

)
and

(
Y (τ1),Y (τ2), · · · ,Y (τm)

)
are uncor-

related.
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Multiple Random Processes

1 The independence of random processes implies that they are uncorre-
lated.

2 The uncorrelatedness generally does not imply independence.

3 For the important class of Gaussian processes, the independence and
uncorrelatedness are equivalent.
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Multiple Random Processes

Definition (Cross Correlation)

The cross correlation between two random processes X (t) and Y (t) is de-
fined as RXY (t1, t2) = E [X (t1)Y (t2)].

Definition (Jointly WSS)

Two random processes X (t) and Y (t) are jointly wide-sense stationary, or
simply jointly stationary, if both X (t) and Y (t) are individually stationary
and the cross-correlation RXY (t1, t2) depends only on τ = t1 − t2.

1 RXY (t1, t2) = RYX (t2, t1).

2 For jointly WSS random processes X (t) and Y (t), RXY (τ) = RYX (−τ).

Mohammad Hadi Communication systems Fall 2020 60 / 102



Multiple Random Processes

Example (Jointly WSS)

Assuming that the two random processes X (t) and Y (t) are jointly station-
ary, determine the autocorrelation of the process Z (t) = X (t) + Y (t).

RZ (t + τ, t) = E [Z (t + τ)Z (t)]

= E [(X (t + τ) + Y (t + τ))(X (t) + Y (t))]

= RX (τ) + RY (τ) + RXY (τ) + RXY (−τ)
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Random Processes and Linear Systems

Statement (LTI System with Random Input)

If a stationary process X (t) with mean mx and autocorrelation function
RX (τ) is passed through an LTI system with impulse response h(t), the
input and output processes X (t) and Y (t) will be jointly stationary with

mY = mx

∫ ∞
−∞

h(t)dt

RXY (τ) = RX (τ) ∗ h(−τ)

RY (τ) = RXY (τ) ∗ h(τ) = RX (τ) ∗ h(τ) ∗ h(−τ)

Figure: A random process passing through an LTI system.
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Random Processes and Linear Systems

Statement (LTI System with Random Input)

If a stationary process X (t) with mean mx and autocorrelation function
RX (τ) is passed through an LTI system with impulse response h(t), the
input and output processes X (t) and Y (t) will be jointly stationary.

E [Y (t)] = E [

∫ ∞
−∞

X (τ)h(t − τ)dτ ]

=

∫ ∞
−∞

E [X (τ)]h(t − τ)dτ ]

=

∫ ∞
−∞

mXh(t − τ)dτ

= mX

∫ ∞
−∞

h(u)du = mY
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Random Processes and Linear Systems

Statement (LTI System with Random Input)

If a stationary process X (t) with mean mx and autocorrelation function
RX (τ) is passed through an LTI system with impulse response h(t), the
input and output processes X (t) and Y (t) will be jointly stationary.

E [X (t1)Y (t2)] = E [X (t1)

∫ ∞
−∞

X (s)h(t2 − s)ds]

=

∫ ∞
−∞

E [X (t1)X (s)]h(t2 − s)ds

=

∫ ∞
−∞

RX (t1 − s)h(t2 − s)ds

=

∫ ∞
−∞

RX (t1 − t2 − u)h(−u)du = RX (τ) ∗ h(−τ) = RXY (τ)
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Random Processes and Linear Systems

Statement (LTI System with Random Input)

If a stationary process X (t) with mean mx and autocorrelation function
RX (τ) is passed through an LTI system with impulse response h(t), the
input and output processes X (t) and Y (t) will be jointly stationary.

E [Y (t1)Y (t2)] = E [Y (t2)

∫ ∞
−∞

X (s)h(t1 − s)ds]

=

∫ ∞
−∞

E [X (s)Y (t2)]h(t1 − s)ds

=

∫ ∞
−∞

RXY (s − t2)h(t1 − s)ds

=

∫ ∞
−∞

RXY (u)h(t1 − t2 − u)du = RXY (τ) ∗ h(τ) = RY (τ)
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Random Processes and Linear Systems

Example (Differentiateor)

Assume a stationary process passes through a differentiator. What are the
mean and autocorrelation functions of the output? What is the cross cor-
relation between the input and output?

Since h(t) = δ′(t),

mY = mx

∫ ∞
−∞

h(t)dt = mx

∫ ∞
−∞

δ′(t)dt = 0

RXY (τ) = RX (τ)∗h(−τ) = RX (τ)∗ δ′(−τ) = −RX (τ)∗ δ′(τ) = −dRX (τ)

dτ

RY (τ) = RXY (τ) ∗ h(τ) = −dRX (τ)

dτ
∗ δ′(τ) = −d2RX (τ)

dτ2
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Random Processes and Linear Systems

Example (Hilbert Transform)

Assume a stationary process passes through a Hilbert filter. What are the
mean and autocorrelation functions of the output? What is the cross cor-
relation between the input and output?

Assume that RX (τ) has no DC component. Since h(t) = 1/(πt),

mY = mx

∫ ∞
−∞

h(t)dt = mx

∫ ∞
−∞

1

πt
dt = 0

RXY (τ) = RX (τ) ∗ h(−τ) = RX (τ) ∗ −1

πτ
= −R̂X (τ)

RY (τ) = RXY (τ) ∗ h(τ) = −R̂X (τ) ∗ 1

πτ
= − ̂̂RX (τ) = RX (τ)
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Power Spectral Density of Stationary Processes

Definition (Truncated Fourier Transform)

The truncated Fourier transform of a realization of the random process
X (t;ωi ) over an interval [−T/2,T/2] is defined by

XT (f ;ωi ) =

∫ T/2

−T/2
x(t;ωi )e

−j2πftdt

Definition (Power Spectral Density)

The power spectral density of the random process X (t) is defined by

SX (f ) = lim
T→∞

1

T
E [|XT (f ;ω)|2]
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Power Spectral Density of Stationary Processes

Theorem (Wiener-Khinchin)

For a stationary random process X (t), the power spectral density is the
Fourier transform of the autocorrelation function, i.e.,

SX (f ) = F [RX (τ)] =

∫ ∞
−∞

RX (τ)e−j2πf τdτ

.

Mohammad Hadi Communication systems Fall 2020 69 / 102



Power Spectral Density of Stationary Processes

Definition (Power)

The power in the random process X (t) is obtained by

PX =

∫ ∞
−∞

SX (f )df = F−1[SX (f )]|τ=0 = RX (0)

.

Definition (Cross Power Spectral Density)

For the jointly stationary random processes X (t) and Y (t), the cross power
spectral density is the Fourier transform of the cross correlation function,
i.e.,

SXY (f ) = F [RXY (τ)] =

∫ ∞
−∞

RXY (τ)e−j2πf τdτ

.
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Power Spectral Density of Stationary Processes

Example (Wiener-Khinchin)

If X (t) = A cos(2πf0t + Θ), Θ ∼ U[0, 2π], then RX (τ) = A2

2 cos(2πf0τ)

and therefore, SX (f ) = A2

4 [δ(f − f0) + δ(f + f0)] and PX = A2

2 .

Figure: Power spectral density of the example random process.

Mohammad Hadi Communication systems Fall 2020 71 / 102



Power Spectral Density of Stationary Processes

Example (Wiener-Khinchin)

If X (t) = X , X ∼ U[−1, 1], then RX (τ) = 1
3 and therefore, SX (f ) =

1
3δ(f ) and PX = 1

3 .
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Power Spectral Density of Stationary Processes

Statement (LTI System with Random Input)

If a stationary process X (t) with mean mx and autocorrelation function
RX (τ) is passed through an LTI system with impulse response h(t) and
frequency response H(f ), the input and output processes X (t) and Y (t)
will be jointly stationary with

mY = mx

∫ ∞
−∞

h(t)dt ↔ my = mxH(0)

RXY (τ) = RX (τ) ∗ h(−τ)↔ SXY (f ) = H∗(f )SX (f )

RYX (τ) = RXY (−τ)↔ SYX (f ) = S∗XY (f ) = H(f )SX (f )

RY (τ) = RXY (τ) ∗ h(τ) = RX (τ) ∗ h(τ) ∗ h(−τ)↔ SY (f ) = |H(f )|2SX (f )
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Power Spectral Density of Stationary Processes

Statement (LTI System with Random Input)

If a stationary process X (t) with mean mx and autocorrelation function
RX (τ) is passed through an LTI system with impulse response h(t) and
frequency response H(f ), the input and output processes X (t) and Y (t)
will be jointly stationary.

Figure: Input-output relations for the power spectral density and the cross-spectral density.
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Power Spectral Density of Stationary Processes

Example (Power spectral densities for a differentiator)

If X (t) = A cos(2πf0t + Θ), Θ ∼ U[0, 2π] passes through a differentiator,

we have SY (f ) = π2f 2
0 A

2[δ(f − f0) + δ(f + f0)] and SXY (f ) = jπA2f0
2 [δ(f +

f0)− δ(f − f0)].

SY (f ) = 4π2f 2A
2

4
[δ(f − f0) + δ(f + f0)] = π2f 2

0 A
2[δ(f − f0) + δ(f + f0)]

SXY (f ) = −j2πf A
2

4
[δ(f − f0) + δ(f + f0)] =

jπA2f0
2

[δ(f + f0)− δ(f − f0)]
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Power Spectral Density of Stationary Processes

Example (Power spectral densities for a differentiator)

If X (t) = X , X ∼ U[−1, 1] passes through a differentiator, we have
SY (f ) = SXY (f ) = 0.

SY (f ) = 4π2f 2 1

3
δ(f ) = 0

SXY (f ) = −j2πf 1

3
δ(f ) = 0
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Power Spectral Density of Stationary Processes

Example (Power Spectral Density of a Sum Process)

Let Z (t) = X (t)+Y (t), where X (t) and Y (t) are jointly stationary random
processes. Also assume that X (t) and Y (t) are uncorrelated and at least
one of them has zero mean. Then, SZ (f ) = SX (f ) + SY (f ).

Since RXY (τ) = mXmY = 0,
RZ (τ) = RX (τ) + RY (τ) + RXY (τ) + RXY (−τ) = RX (τ) + RY (τ). So,

SZ (f ) = F{RZ (τ)} = SX (f ) + SY (f )
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Gaussian, White, and
Bandpass Processes
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Gaussian Processes

Definition (Gaussian Random Process)

A random process X (t) is a Gaussian process if for all n and all
(t1, t2, · · · , tn), the random variables {X (ti )}ni=1 have a jointly Gaussian
density function.

For a Gassian random process,

1 At any time instant t0, the random variable X (t0) is Gaussian.

2 At any two points t1, t2, random variables (X (t1),X (t2)) are distributed
according to a two-dimensional jointly Gaussian distribution.
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Gaussian Processes

Example (Gaussian Random Process)

Let X (t) be a zero-mean stationary Gaussian random process with the power
spectral density SX (f ) = 5 u (f /1000). Then, X (3) ∼ N (0, 5000).

m = mX (3) = mX = 0

σ2 = V [X (3)] = E [X 2(3)]− (E [X (3)])2 = E [X (3)X (3)] = RX (0) = PX

σ2 = PX =

∫ ∞
−∞

SX (f )df = 5000
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Gaussian Processes

Definition (Jointly Gaussian Random Processes)

The random processes X (t) and Y (t) are jointly Gaussian if for all
n, m and all (t1, t2, · · · , tn) and (τ1, τ2, · · · , τm), the random vector
(X (t1),X (t2), · · · ,X (tn),Y (τ1),Y (τ2), · · · ,Y (τm)) is distributed accord-
ing to an n + m dimensional jointly Gaussian distribution.

For jointly Gassian random processes,

1 If the Gaussian process X (t) is passed through an LTI system, then the
output process Y (t) will also be a Gaussian process. Moreover, X (t)
and Y (t) will be jointly Gaussian processes.

2 For jointly Gaussian processes, uncorrelatednesss and independence are
equivalent.
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Gaussian and White Processes

Example (Jointly Gaussian Random Processes)

Let X (t) be a zero-mean stationary Gaussian random process with the power
spectral density SX (f ) = 5 u (f /1000). If X (t) passes a differentiator, the
output random process Y (3) ∼ N (0, 1.6× 1010).

Since H(f ) = 2πf ,
m = mY (3) = mXH(0) = 0

σ2 = V [Y (3)] = E [Y 2(3)]− (E [Y (3)])2 = E [Y (3)Y (3)] = RY (0) = PY

σ2 = PY =

∫ ∞
−∞
|H(f )|2SX (f )df = 1.6× 1010
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White Processes

Definition (White Random Process)

A random process X (t) is called a white process if it has a flat power spectral
density, i.e., if SX (f ) = N0

2 equals the constant N0
2 for all f .

Figure: Power spectrum of a white process.
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White Processes

1 The power content of a white process

PX =

∫ ∞
−∞

SX (f )df =

∫ ∞
−∞

N0

2
df =∞

.

2 A white process is not a meaningful physical process.

3 The autocorrelation function of a white process is

RX (τ) = F−1{SX (f )} =
N0

2
δ(τ)

.
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White Processes

1 If we sample a zero-mean white process at two points t1 and t2 (t1 6=
t2), the resulting random variables will be uncorrelated.

2 If the zero-mean random process is white and also Gaussian, any pair of
random variables X (t1), X (t2), where t1 6= t2, will also be independent.
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Bandpass Processes

Definition (Lowpass Random Process)

A WSS random process X (t) is called lowpass if its autocorrelation RX (τ)
is a lowpass signal.

Definition (Bandpass Random Process)

A zero-mean real WSS random process X (t) is called bandpass if its auto-
correlation RX (τ) is a bandpass signal.

3 For a bandpass process, the power spectral density is located around
frequencies ±fc , and for lowpass processes, the power spectral density is
located around zero frequency.
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Bandpass Processes

Definition (In-phase/Quadrature Random Process)

The in-phase and quadrature components of a bandpass random process
X (t) are defined as

Xc(t) = X (t) cos(2πfct) + X̂ (t) sin(2πfct)

Xs(t) = X̂ (t) cos(2πfct)− X (t) sin(2πfct)

Definition (Lowpass Equivalent Random Process)

The lowpass equivalent random process of a bandpass random process X (t)
is defined as

Xl(t) = Xc(t) + jXs(t)
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Bandpass Processes

Theorem (In-phase/Quadrature Random Process)

For the in-phase and quadrature components of a bandpass random process
X (t),

1 Xc(t) and Xs(t) are jointly WSS zero-mean random processes.

2 Xc(t) and Xs(t) are both lowpass processes.

3 Xc(t) and Xs(t) have the same power spectral density as

SXc (f ) = SXs (f ) = [SX (f + fc) + SX (f − fc)] u (
f

2fc
)

4 The cross-spectral density of the components are

SXcXs (f ) = −SXsXc (f ) = j [SX (f + fc)− SX (f − fc)] u (
f

2fc
)

Mohammad Hadi Communication systems Fall 2020 88 / 102



Bandpass Processes

Theorem (Lowpass Equivalent Random Process)

For the lowpass equivalent of a bandpass random process X (t),

1

SXl
(f ) = 4SX (f + fc)u(f + fc)

2

SX (f ) =
1

4

[
SXl

(f − fc) + SXl
(−f − fc)

]
3

RXl
(τ) = 2(RX (τ) + j R̂X (τ))e−j2πfcτ
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Bandpass Processes

Example (In-phase autocorrelation)

The autocorrelation of the in-phase component of a bandpass random pro-
cess X (t) is RXc (τ) = RX (τ) cos(2πfcτ) + R̂X (τ) sin(2πfcτ).

RXc (t + τ, t) = E
{
Xc(t + τ)Xc(t)

}
= E

{
[X (t + τ) cos(2πfc(t + τ)) + X̂ (t + τ) sin(2πfc(t + τ))]

× [X (t) cos(2πfct) + X̂ (t) sin(2πfct)]
}

= RX (τ) cos(2πfc(t + τ)) cos(2πfct)

+ RXX̂ (t + τ, t) cos(2πfc(t + τ)) sin(2πfct)

+ RX̂X (t + τ, t) sin(2πfc(t + τ)) cos(2πfct)

+ RX̂ X̂ (t + τ, t) sin(2πfc(t + τ)) sin(2πfct)

= RX (τ) cos(2πfcτ) + R̂X (τ) sin(2πfcτ)
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Thermal and Filtered Noise
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Thermal Noise

3 The thermal noise, which is produced by the random movement of
electrons due to thermal agitation, is usually modeled by a white Gaussian
process.
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Thermal Noise

Statement (Thermal Noise)

Quantum mechanical analysis of the thermal noise shows that it has a power

spectral density given by Sn(f ) = 0.5hf /(e
hf
KT − 1), which can be approx-

imated by KT/2 = N0/2 for f < 2 THz, where h = 6.6 × 10−34 J×sec
denotes Planck’s constan, K = 1.38× 10−23 J/K is Boltzmann’s constant,
and T denotes the temperature in degrees Kelvin. Further, the noise origi-
nates from many independent random particle movements.

Figure: Power spectrum of thermal noise.
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Thermal and Filtered Noise Model

Statement (Thermal Noise Model)

The thermal noise is assumed to have the following properties,

1 Thermal noise is a stationary process.

2 Thermal noise is a zero-mean process.

3 Thermal noise is a Gaussian process.

4 Thermal noise is a white process with a PSD Sn(f ) = KT
2 = N0

2 .

Statement (Filtered Noise Process)

The PSD of an ideally bandpass filtered noise is

SX (f ) =
N0

2
|H(f )|2
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Filtered Noise Model

Example (Filtered Noise Process)

If the Gaussian white noise passes through the shown filter, the PSD of the
filtered noise is

SX (f ) =
N0

2
|H(f )|2 =

{
N0
2 , |f − fc | ≤W

0, otherwise

Figure: Filter transfer function H(f ).
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Filtered Noise Model

For a filtered white Gaussian noise, the following properties for Xc(t) and
Xs(t) can be proved.

1 Xc(t) and Xs(t) are zero-mean, lowpass, jointly WSS, and jointly Gaus-
sian random processes.

2 If the power in process X (t) is PX , then the power in each of the
processes Xc(t) and Xs(t) is also Px .

3 Processes Xc(t) and Xs(t) have a common power spectral density, i.e.,
SXc (f ) = SXs (f ) = [SX (f + fc) + SX (f − fc)] u ( f

2fc
).

4 If fc and −fc are the axis of symmetry of the positive and negative
frequencies, respectively, then Xc(t) and Xs(t) will be independent
processes.
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Filtered Noise Model

Example (Filtered Noise Process)

For the bandpass white noise at the output of filter given below, power
spectral density of the process Z (t) = aXc(t) + bXs(t) is SZ (f ) = N0(a2 +
b2) u ( f

2W )).

Figure: Filter transfer function H(f ).
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Filtered Noise Model

Example (Filtered Noise Process (cont.))

For the bandpass white noise at the output of filter given below, power
spectral density of the process Z (t) = aXc(t) + bXs(t) is SZ (f ) = N0(a2 +
b2) u ( f

2W ).

Figure: Power spectral densities of the in-phase and quadrature components of the example
filtered noise.
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Filtered Noise Model

Example (Filtered Noise Process (cont.))

For the bandpass white noise at the output of filter given below, power
spectral density of the process Z (t) = aXc(t) + bXs(t) is SZ (f ) = N0(a2 +
b2) u ( f

2W ).

Since fc is the axis of symmetry of the noise power spectral density, the
in-phase and quadrature components of the noise will be independent with
zero mean. So,

RZ (τ) = E
{

[aXc(t+τ)+bXs(t+τ)][aXc(t)+bXs(t)]
}

= a2RXc (τ)+b2RXs (τ)

Since SXc (f ) = SXs (f ) = N0 u ( f
2W ),

SZ (f ) = a2SXc (f ) + b2SXs (f ) = N0(a2 + b2) u (
f

2W
)
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Noise Equivalent Bandwidth

Definition (Noise Equivalent Bandwidth)

The noise equivalent bandwidth of a filter with the frequency response H(f )

is defined as Bneq =
∫∞
−∞ |H(f )|2df

2H2
max

, where Hmax denotes the maximum of

|H(f )| in the passband of the filter.

3 The power content of the filtered noise is PX =
∫∞
−∞ |H(f )|2Sn(f )df

= N0
2

∫∞
−∞ |H(f )|2df = N0BneqH

2
max

Figure: Noise equivalent bandwidth of a typical filter.
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Noise Equivalent Bandwidth

Example (Noise Equivalent Bandwidth)

The noise equivalent bandwidth of a lowpass RC filter is 1
4RC .

Figure: Frequency response of a lowpass f RC filter.

H(f ) =
1

1 + j2πfRC
⇒ |H(f )| =

1√
1 + 4π2f 2R2C 2

⇒ Hmax = 1

Bneq =

∫∞
−∞ |H(f )|2df

2H2
max

=
1

2RC

2
=

1

4RC
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The End
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