Signals and Linear Systems

Mohammad Hadi

mohammad.hadi@sharif.edu
@MohammadHadiDastgerdi

Spring 2021

Overview

(1) Signals
(2) Systems
(3) Fourier Series
(4) Fourier Transform
(5) Power and Energy
(6) Hilbert Transform
(7) Lowpass and Bandpass Signals
(8) Filters

Signals

Basic Operations on Signals

Figure: Time shifting, time scaling, time reversal.

$$
x(t) \rightarrow x\left(t-t_{0}\right) ; \quad x(t) \rightarrow x(a t) ; \quad x(t) \rightarrow x(-t)
$$

Classification of Signals

Figure: Continuous-time and discrete-time signals.

$$
x(t), t \in \mathbb{R} ; \quad x[n], n \in \mathbb{Z}
$$

Classification of Signals

Figure: Random and deterministic signals.

$$
\begin{gathered}
x(t, \omega) \in \mathbb{R}, t \in \mathbb{R}, \omega \sim P[\Omega=\omega] ; \quad x(t) \in \mathbb{R}, t \in \mathbb{R} \\
s(t)=\text { Audio Signal; } \quad c(t)=A_{c} \cos \left(2 \pi f_{c} t\right)
\end{gathered}
$$

Classification of Signals

Figure: Nonperiodic and periodic signals.

$$
\nexists T_{0}: x\left(t+T_{0}\right)=x(t) ; \quad \exists T_{0}: x\left(t+T_{0}\right)=x(t)
$$

Classification of Signals

Figure: Causal and noncausal signals.

$$
\forall t<0: x(t)=0 ; \quad \exists t<0: x(t) \neq 0
$$

Classification of Signals

Figure: Energy and power signals.

$$
0<\mathcal{E}_{x}=\lim _{T \rightarrow \infty} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t<\infty ; \quad 0<\mathcal{P}_{x}=\lim _{T \rightarrow \infty} \frac{\int_{-T / 2}^{T / 2}|x(t)|^{2} d t}{T}<\infty
$$

Classification of Signals

Figure: Even and odd signals.

$$
x(t)=x(-t) ; \quad x(t)=-x(-t)
$$

Classification of Signals

Statement (Even-Odd Decomposition)

Any signal $x(t)$ can be written as the sum of its even and odd parts as $x(t)=x_{e}(t)+x_{o}(t)$, where

$$
\begin{aligned}
& x_{e}(t)=\frac{x(t)+x(-t)}{2} \\
& x_{o}(t)=\frac{x(t)-x(-t)}{2}
\end{aligned}
$$

Classification of Signals

Figure: Real and complex signals.

$$
x(t) \in \mathbb{R} ; \quad x(t) \in \mathbb{C}
$$

$$
x_{r}(t)=A \cos \left(2 \pi f_{0} t+\theta\right) ; \quad x_{i}(t)=A \sin \left(2 \pi f_{0} t+\theta\right)
$$

$$
x(t)=\Re\{x(t)\}+j \Im\{x(t)\}=x_{r}(t)+j x_{i}(t)
$$

Classification of Signals

Figure: Real and complex signals.

$$
\begin{gathered}
x(t) \in \mathbb{R} ; \quad x(t) \in \mathbb{C} \\
|x(t)|=|A| ; \quad \angle x(t)=2 \pi f_{0} t+\theta \\
x(t)=|x(t)| e^{j \angle x(t)}
\end{gathered}
$$

Classification of Signals

Statement (Complex Signal Representation)

For the complex signal $x(t)=x_{r}(t)+j x_{i}(t)=\Re\{x(t)\}+j \Im\{x(t)\}=$ $|x(t)| e^{j \angle x(t)}$,

$$
\begin{gathered}
x_{r}(t)=\Re\{x(t)\}=|x(t)| \cos (\angle x(t)) \\
x_{i}(t)=\Im\{x(t)\}=|x(t)| \sin (\angle x(t)) \\
|x(t)|=\sqrt{x_{r}^{2}(t)+x_{i}^{2}(t)} \\
\angle x(t)=\tan ^{-1}\left(\frac{x_{i}(t)}{x_{r}(t)}\right)
\end{gathered}
$$

Some Important Signals

Figure: Sinusoidal signal.

$$
x(t)=A \cos \left(2 \pi f_{0} t+\theta\right)=A \cos \left(2 \pi t / T_{0}+\theta\right)
$$

Some Important Signals

Figure: Complex exponential signal.

$$
x(t)=A \cos \left(2 \pi f_{0} t+\theta\right)+j A \sin \left(2 \pi f_{0} t+\theta\right)=A e^{j\left(2 \pi f_{0} t+\theta\right)}
$$

Some Important Signals

Figure: Unit step signal.

$$
u(t)= \begin{cases}1, & t \geqslant 0 \\ 0, & t<0\end{cases}
$$

Some Important Signals

Figure: Rectangular signal.

$$
\sqcap(t)=\operatorname{rect}(t)= \begin{cases}1, & |t| \leqslant 0.5 \\ 0, & |t|>0.5\end{cases}
$$

Some Important Signals

Figure: Triangle signal.

$$
\Lambda(t)=\operatorname{tri}(t)= \begin{cases}1-|t|, & |t| \leqslant 1 \\ 0, & |t|>1\end{cases}
$$

Some Important Signals

Figure: Sinc signal.

$$
\operatorname{sinc}(t)= \begin{cases}\frac{\sin (\pi t)}{\pi t}, & t \neq 0 \\ 1, & t=0\end{cases}
$$

Some Important Signals

Figure: Sign signal.

$$
\operatorname{sgn}(t)= \begin{cases}1, & t>0 \\ 0, & t=0 \\ -1, & t<0\end{cases}
$$

Some Important Signals

Figure: Unit impulse signal.

$$
\delta(t)=\left\{\begin{array}{ll}
\infty, & t=0 \\
0, & t \neq 0
\end{array}=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \operatorname{sinc}\left(\frac{t}{\epsilon}\right)=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \sqcap\left(\frac{t}{\epsilon}\right)\right.
$$

Some Important Signals

Figure: Unit impulse signal.
$\delta(t)= \begin{cases}\infty, & t=0 \\ 0, & t \neq 0\end{cases}$

Singular Functions

Definition (Convolution)

The convolution of the functions $h(t)$ and $x(t)$ is defined as

$$
y(t)=x(t) * h(t)=h(t) * x(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

Definition (Test Function)

$x(t)$ is called a test function if it is infinitely differentiable and is zero outside a finite interval.

Singular Functions

Definition (Unit Impulse Signal)

The unit impulse function $u_{0}(t)=\delta(t)$ is defined as the function satisfying

$$
\int_{-\infty}^{+\infty} \delta(t) x(t) d t=x(0)
$$

for any test function $x(t)$.

Singular Functions

Theorem (Properties of Unit Impulse Signal)

The unit impulse function satisfies the following identities

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \delta(t) d t & =1 \\
x(t) & =\delta(t) * x(t) \\
\delta(a t) & =\frac{1}{|a|} \delta(t), a \neq 0 \\
x(t) \delta(t) & =x(0) \delta(t) \\
t \delta(t) & =0 \\
\delta(t) & =0, t \neq 0
\end{aligned}
$$

Singular Functions

Example (Area under $\delta(t)$)

The area under the unit impulse function is 1 .
For $x(t)=1$,

$$
\int_{-\infty}^{+\infty} \delta(t) x(t) d t=\int_{-\infty}^{+\infty} \delta(t) d t=x(0)=1
$$

Example (Convolution with $\delta(t)$)

$\delta(t)$ is the neutral function of the convolution operation, i.e. $x(t)=\delta(t) *$ $x(t)$.

$$
\delta(t) * x(t)=\int_{-\infty}^{+\infty} \delta(\tau) x(t-\tau) d \tau=x(t-0)=x(t)
$$

Singular Functions

Definition (Unit Doublet Signal)

The unit doublet function $u_{1}(t)=\delta^{\prime}(t)$ is defined as the function satisfying

$$
\int_{-\infty}^{+\infty} \delta^{\prime}(t) x(t) d t=-x^{\prime}(0)
$$

for any test function $x(t)$.

Definition (Higher-order Impulse Signals)

Generally, $u_{n}(t)=\delta^{(n)}(t), n \geq 0$ is defined as the function satisfying

$$
\int_{-\infty}^{+\infty} \delta^{(n)}(t) x(t) d t=(-1)^{n} x^{(n)}(0)
$$

for any test function $x(t)$.

Singular Functions

Theorem (Convolution with $u_{n}(t)$)
$u_{n}(t), n \geq 1$ satisfies $x^{(n)}(t)=u_{n}(t) * x(t)$.
For $n=1$,

$$
u_{1}(t) * x(t)=\int_{-\infty}^{+\infty} \delta^{\prime}(\tau) x(t-\tau) d \tau=-\left.\frac{d x(t-\tau)}{d \tau}\right|_{\tau=0}=x^{\prime}(t)
$$

Theorem (Relation of $\delta^{\prime}(t)$ and $u_{n}(t)$)
$u_{n}(t), n \geq 2$ relates to $u_{1}(t)=\delta^{\prime}(t)$ as $u_{n}(t)=\underbrace{u_{1}(t) * u_{1}(t) * \cdots * u_{1}(t)}_{n \text { times }}$.
For $n=2$,

$$
\frac{d^{2}(t)}{d t^{2}}=\frac{d}{d t}\left(\frac{d x(t)}{d t}\right)=\frac{d}{d t}\left(x(t) * u_{1}(t)\right)=x(t) * u_{1}(t) * u_{1}(t)
$$

Singular Functions

Definition (Unit Step Signal)

The unit step function $u_{-1}(t)=u(t)$ is defined as the function satisfying

$$
\int_{-\infty}^{+\infty} u(t) x(t) d t=\int_{0}^{+\infty} x(t) d t
$$

for any test function $x(t)$.

Definition (Higher-order Step Signals)

Generally, $u_{-n}(t), n \geq 2$ is defined as

$$
u_{-n}(t)=\underbrace{u_{-1}(t) * u_{-1}(t) * \cdots * u_{-1}(t)}_{n \text { times }}
$$

Singular Functions

Theorem (Explicit representation of $u_{-n}(t), n \geq 2$)

$u_{-n}(t), n \geq 2$ can be represented as

$$
u_{-n}(t)=\frac{t^{n-1}}{(n-1)!} u_{-1}(t)
$$

For $n=2$,

$$
u_{-2}(t)=u_{-1}(t) * u_{-1}(t)=u(t) * u(t)=t u(t)=r(t)
$$

Singular Functions

Figure: Singular functions.

Singular Functions

Example (Representation of other signals using the singular signals)

$x(t)$ can be represented by $u(t)$ and its shifted versions as

$$
x(t)=u(t)+2 u(t-1)-u(t-2)
$$

Figure: The signal $u(t)+2 u(t-1)-u(t-2)$.

Some Important Signals

Example (Simplification using the properties of the singular functions)

$$
\begin{gathered}
\cos (t) \delta(t)=\cos (0) \delta(t)=\delta(t) \\
\cos (t) \delta(2 t-3)=\cos (t) \delta\left(2\left(t-\frac{3}{2}\right)\right)=\frac{1}{2} \delta\left(t-\frac{3}{2}\right) \cos (t)=\frac{\cos \left(\frac{3}{2}\right)}{2} \delta\left(t-\frac{3}{2}\right) \\
\int_{-\infty}^{\infty} e^{-t} \delta^{\prime}(t-1) d t=\int_{-\infty}^{\infty} e^{-u-1} \delta^{\prime}(u) d u=\left.e^{-1}(-1) \frac{d e^{-u}}{d u}\right|_{u=0}=e^{-1}
\end{gathered}
$$

Systems

Classification of Signals

Definition (System)

A system is an entity that is excited by an input signal $x(t)$ and, as a result of this excitation, produces an output signal $y(t)$. The output is uniquely defined for any legitimate input by

$$
y(t)=\mathcal{T}\{x(t)\}
$$

Figure: System block diagram.

Classification of Systems

Definition (Continuous-time System)

For a continuous-time system, both input and output signals are continuoustime signals.

Definition (Discrete-time System)

For a discrete-time system, both input and output signals are discrete-time signals.

Classification of Systems

Definition (Linear System)

A system \mathcal{T} is linear if and only if, for any two input signals $x_{1}(t)$ and $x_{2}(t)$ and for any two scalars α and β, we have,

$$
\mathcal{T}\left\{\alpha x_{1}(t)+\beta x_{2}(t)\right\}=\alpha \mathcal{T}\left\{x_{1}(t)\right\}+\beta \mathcal{T}\left\{x_{2}(t)\right\}
$$

Definition (Nonlinear System)

A system is nonlinear if it is not linear.

Classification of Systems

Definition (Time-Invariant System)

A system is time-invariant if and only if, for all $x(t)$ and all values of t_{0}, its response to $x\left(t-t_{0}\right)$ is $y\left(t-t_{0}\right)$, where $y(t)$ is the response of the system to $x(t)$.

Definition (Time-variant System)

A system is time-variant if it is not time-invariant.

Classification of Systems

Definition (Causal System)

A system is causal if its output at any time t_{0} depends on the input at times prior to t_{0}, i.e.,

$$
y\left(t_{0}\right)=\mathcal{T}\left\{x(t): t \leqslant t_{0}\right\} .
$$

Definition (Noncausal System)

A system is noncausal if it is not causal.

Classification of Systems

Definition (Stable System)

A system is stable if its output is bounded for any bounded input, i.e.,

$$
|x(t)|<B \Rightarrow|y(t)|<M .
$$

Definition (Instable System)

A system is instable if it is not stable.

LTI Systems

Statement (Linear Time-Invariant System)

A system is Linear Time-Invariant (LTI) if it is simultaneously linear and time-invariant. An LTI system is completely characterized by its impulse response $h(t)=\mathcal{T}\{\delta(t)\}$.

$$
\begin{aligned}
y(t) & =\mathcal{T}\{x(t)\} \\
& =\mathcal{T}\left\{\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau\right\} \\
& =\int_{-\infty}^{\infty} x(\tau) \mathcal{T}\{\delta(t-\tau)\} d \tau \\
& =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =x(t) * h(t)
\end{aligned}
$$

LTI System

Statement (Causality of LTI Systems)

An LTI system is causal if and only if $h(t)=0, t<0$.

Statement (Stability of LTI Systems)

An LTI system is stable if and only if $\int_{-\infty}^{+\infty}|h(t)| d t<\infty$.

LTI System

Example (Complex exponential response)

The response of an LTI system $h(t)$ to the exponential input $x(t)=$ $A e^{j\left(2 \pi f_{0} t+\theta\right)}$ can be obtained by

$$
y(t)=A H\left(f_{0}\right) e^{j\left(2 \pi f_{0} t+\theta\right)}=A\left|H\left(f_{0}\right)\right| e^{j\left(2 \pi f_{0} t+\theta+\angle H\left(f_{0}\right)\right)}
$$

, where

$$
H\left(f_{0}\right)=\left|H\left(f_{0}\right)\right| e^{j \angle H\left(f_{0}\right)}=\int_{-\infty}^{\infty} h(\tau) e^{-j 2 \pi f_{0} \tau} d \tau
$$

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(\tau) A e^{j\left(2 \pi f_{0}(t-\tau)+\theta\right)} d \tau \\
& =A e^{j\left(2 \pi f_{0} t+\theta\right)} \int_{-\infty}^{\infty} h(\tau) e^{-j 2 \pi f_{0} \tau} d \tau \\
& =A\left|H\left(f_{0}\right)\right| e^{j\left(2 \pi f_{0} t+\theta+\angle H\left(f_{0}\right)\right)}
\end{aligned}
$$

Fourier Series

Fourier Series and Its Properties

Definition (Fourier Series)

The periodic signal $x\left(t+T_{0}\right)=x(t)$ can be expanded in terms of the complex exponential $\left\{e^{j 2 \pi n t / T_{0}}\right\}_{n=-\infty}^{\infty}$ as

$$
x(t)=\sum_{n=-\infty}^{\infty} x_{n} e^{j 2 \pi n t / T_{0}}
$$

, where

$$
x_{n}=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j 2 \pi n t / T_{0}} d t
$$

Fourier Series and Its Properties

Dirichlet sufficient conditions for existence of the Fourier series are:
(1) $x(t)$ is absolutely integrable over its period, i.e., $\int_{0}^{T_{0}}|x(t)| d t<\infty$.
(2) The number of maxima and minima of $x(t)$ in each period is finite.
(3) The number of discontinuities of $x(t)$ in each period is finite.

Fourier Series and Its Properties

(1) The quantity $f_{0}=1 / T_{0}$ is called the fundamental frequency of the signal $x(t)$.
(2) The frequency of the nth complex exponential signal is $n f_{0}$, which is called the nth harmonic.
(3) In general, $x_{n}=\left|x_{n}\right| e^{j \angle x_{n}}$, where $\left|x_{n}\right|$ gives the magnitude of the nth harmonic and $\angle x_{n}$ gives its phase.
(9) For real signals $x(t)=x^{*}(t), x_{-n}=x_{n}^{*}$.

Fourier Series and Its Properties

Figure: Positive and negative frequencies.

Fourier Series and Its Properties

Example (Fourier series of rectangular-pulse train)

$$
x(t)=\sum_{n=-\infty}^{\infty} \sqcap\left(\frac{t-n T_{0}}{\tau}\right)=\sum_{n=-\infty}^{\infty} \frac{\tau}{T_{0}} \operatorname{sinc}\left(\frac{n \tau}{T_{0}}\right) e^{j n 2 \pi t / T_{0}}
$$

Figure: The discrete spectrum of the rectangular-pulse train.

Fourier Series and Its Properties

Definition (Trigonometric Fourier Series)

The real periodic signal $x\left(t+T_{0}\right)=x(t)$ can be expanded as

$$
x(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(2 \pi n t / T_{0}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(2 \pi n t / T_{0}\right)
$$

, where

$$
a_{n}=\frac{2}{T_{0}} \int_{T_{0}} x(t) \cos \left(2 \pi n t / T_{0}\right) d t
$$

and

$$
b_{n}=\frac{2}{T_{0}} \int_{T_{0}} x(t) \sin \left(2 \pi n t / T_{0}\right) d t
$$

Fourier Series and Its Properties

(1) $x_{n}=\frac{a_{n}}{2}-j \frac{b_{n}}{2}$.
(2) For even real periodic signals, $b_{n}=0$.
(3) For odd real periodic signals, $a_{n}=0$.

Fourier Series and Its Properties

Example (Response of LTI Systems to Periodic Signals)

The response of an LTI system $h(t)$ to the periodic input $x\left(t+T_{0}\right)=x(t)$ can be obtained by

$$
y(t)=\sum_{n=-\infty}^{\infty} x_{n} H\left(n / T_{0}\right) e^{j 2 \pi n t / T_{0}}
$$

, where

$$
H(f)=|H(f)| e^{j \angle H(f)}=\int_{-\infty}^{+\infty} h(t) e^{-j 2 \pi f t} d t
$$

$$
\begin{aligned}
y(t) & =\mathcal{T}\{x(t)\}=\mathcal{T}\left\{\sum_{n=-\infty}^{\infty} x_{n} e^{j 2 \pi n t / T_{0}}\right\} \\
& =\sum_{n=-\infty}^{\infty} x_{n} \mathcal{T}\left\{e^{j 2 \pi n t / T_{0}}\right\}=\sum_{n=-\infty}^{\infty} x_{n} H\left(n / T_{0}\right) e^{j 2 \pi n t / T_{0}}
\end{aligned}
$$

Fourier Series and Its Properties

(1) If the input to an LTI system is periodic with period T_{0}, then the output is also periodic with period T_{0}.
(2) The output has a Fourier-series expansion given by $y(t)=\sum_{n=-\infty}^{\infty} y_{n} e^{\frac{j 2 \pi n t}{T_{0}}}$, where $y_{n}=x_{n} H\left(n / T_{0}\right)$.
(3) An LTI system cannot introduce new frequency components in the output.

Fourier Series and Its Properties

Statement (Rayleigh's Relation)

For a periodic signal $x\left(t+T_{0}\right)=x(t)$,

$$
\mathcal{P}_{x}=\frac{1}{T_{0}} \int_{T_{0}}|x(t)|^{2} d t=\sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2}
$$

Fourier Transform

Fourier Transform

Definition (Fourier Transform)

If the Fourier transform of $x(t)$, defined by

$$
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

exists, the original signal can be obtained from its Fourier transform by

$$
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
$$

Fourier Transform and Its Properties

Dirichlet sufficient conditions for existence of the Fourier transform are:
(1) $x(t)$ is absolutely integrable over the real line, i.e., $\int_{-\infty}^{\infty}|x(t)| d t<\infty$.
(2) The number of maxima and minima of $x(t)$ in any finite real interval is finite.
(3) The number of discontinuities of $x(t)$ in any finite real interval is finite.

Fourier Transform and Its Properties

(1) $X(f)$ is generally a complex function. Its magnitude $|X(f)|$ and phase $\angle X(f)$ represent the amplitude and phase of various frequency components in $x(t)$.
(2) The function $X(f)$ is sometimes referred to as the spectrum of the signal $x(t)$.
(3) To denote that $X(f)$ is the Fourier transform of $x(t)$, we frequently employ the notations $X(f)=\mathcal{F}\{x(t)\}, x(t)=\mathcal{F}^{-1}\{X(f)\}$, or $x(t) \leftrightarrow$ $X(f)$.

Fourier Transform and Its Properties

(1) For real signals $x(t)=x^{*}(t)$,

$$
\begin{aligned}
X(-f) & =X^{*}(f) \\
\Re[X(-f)] & =\Re[X(f)] \\
\Im[X(-f)] & =-\Im[X(f)] \\
|X(-f)| & =|X(f)| \\
\angle X(-f) & =-\angle X(f)
\end{aligned}
$$

(2) If $x(t)$ is real and even, $X(f)$ will be real and even.
(3) If $x(t)$ is real and odd, $X(f)$ will be imaginary and odd.

Fourier Transform and Its Properties

Statement (Signal Bandwidth)

We define the bandwidth of a real signal $x(t)$ as the range of positive frequencies contributing strongly in the spectrum of the signal.

Figure: Bandwidth of a real signal.

Fourier Transform and Its Properties

Example (Fourier transform of $\Pi(t)$)

$$
\mathcal{F}\{\sqcap(t)\}=\int_{-\infty}^{+\infty} \Pi(t) e^{-j 2 \pi f t} d t=\int_{-0.5}^{0.5} e^{-j 2 \pi f t} d t=\frac{\sin (\pi f)}{\pi f}=\operatorname{sinc}(f)
$$

Figure: $\Pi(t)$ and its Fourier transform.

Fourier Transform and Its Properties

Example (Modulation Property)

$$
x(t) \cos \left(2 \pi f_{0} t\right) \leftrightarrow \frac{1}{2}\left[X\left(f-f_{0}\right)+X\left(f+f_{0}\right)\right]
$$

Figure: Effect of modulation in both the time and frequency domain.

Fourier Transform and Its Properties

Property	Signal	Fourier
Assumption	$x(t)$	$X(f)$
Assumption	$y(t)$	$Y(f)$
Linearity	$a x(t)+b y(t)$	$a X(f)+b Y(f)$
Time Shifting	$x\left(t-t_{0}\right)$	$e^{-j 2 \pi f t_{0}} X(f)$
Frequency Shifting	$e^{2 \pi f_{0} t} x(t)$	$X\left(f-f_{0}\right)$
Time Scaling	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{f}{a}\right)$
Conjugation	$x^{*}(t)$	$X^{*}(-f)$
Convolution	$x(t) * y(t)$	$X(f) Y(f)$
Modulation	$x(t) y(t)$	$X(f) * Y(f)$
Sinusoidal Modulation	$x(t) \cos \left(2 \pi f_{0} t\right)$	$\frac{1}{2}\left[X\left(f-f_{0}\right)+X\left(f+f_{0}\right)\right]$
Auto-correlation	$x(t) * x^{*}(-t)$	$\|X(f)\|^{2}$
Time Differentiation	$\frac{d x(t)}{d^{\prime} t}$	$j 2 \pi f X(f)$
Time Differentiation	$\frac{d^{\prime}(t)}{d t n}$	$(j 2 \pi f)^{n} X(f)$
Frequency Differentiation	$t^{n} x(t)$	$\left(\frac{j}{2 \pi}\right)^{n} \frac{d^{n} X(f)}{d f n}$
Integration	$\int_{-\infty}^{t} x(\tau) d \tau$	$\frac{X(f)}{j 2 \pi f}+\frac{1}{2} X(0) \delta(f)$
Duality	$X(t)$	$x(-f)$
Periodicity	$\sum_{n=-\infty}^{\infty} x_{n} e^{j 2 \pi n t / T_{0}}$	$\sum_{n=-\infty}^{\infty} x_{n} \delta\left(f-n / T_{0}\right)$

Table: Properties of the Fourier transform.

Fourier Transform and Its Properties

Signal	Fourier
$\delta(t)$	1
1	$\delta(f)$
$\delta\left(t-t_{0}\right)$	$e^{-j 2 \pi f t_{0}}$
$\delta^{n}(t)$	$(j 2 \pi f)^{n}$
$e^{j 2 \pi f_{0} t}$	$\delta\left(f-f_{0}\right)$
$\operatorname{sgn}(t)$	$\frac{1}{j \pi f}$
$\frac{1}{t}$	$-j \pi \mathrm{sgn}(f)$
$u(t)$	$\frac{1}{j 2 \pi f}+\frac{1}{2} \delta(f)$
$\cos \left(2 \pi f_{0} t\right)$	$\frac{1}{2}\left[\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right]$
$\sin \left(2 \pi f_{0} t\right)$	$\frac{1}{2 j}\left[\delta\left(f-f_{0}\right)-\delta\left(f+f_{0}\right)\right]$
$\Pi(t)$	$\operatorname{sinc}(f)$
$\operatorname{sinc}(t)$	$\square(f)$
$\Lambda(t)$	$\operatorname{sinc}{ }^{2}(f)$
$\operatorname{sinc}^{2}(t)$	$\Lambda(f)$
$e^{-a t} u(t), a>0$	$\frac{1}{j 2 \pi f+a}$
$\frac{t^{n-1}}{(n-1)!} e^{-a t} u(t), a>0$	$\frac{1}{(j 2 \pi f+a)^{n}}$
$\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{0}\right)$	$\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \delta\left(f-n / T_{0}\right)$

Table: Fourier transform of elementary functions.

Fourier Transform and Its Properties

Statement (Parseval's Relation)

If the Fourier transforms of the signals $x(t)$ and $y(t)$ are denoted by $X(f)$ and $Y(f)$, respectively, then

$$
\int_{-\infty}^{\infty} x(t) y^{*}(t) d t=\int_{-\infty}^{\infty} X(f) Y^{*}(f) d f
$$

Statement (Rayleigh's Relation)

If the Fourier transforms of the signals $x(t)$ is denoted by $X(f)$, then

$$
\mathcal{E}_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f
$$

Fourier Transform and Its Properties

Example (LTI Systems)

The output of an LTI system is represented by the convolution integral

$$
y(t)=h(t) * x(t)=\int_{-\infty}^{\infty} h(t-\tau) x(\tau) d \tau=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau
$$

, where $h(t)$ is the impulse response of the LTI system. In the frequency domain,

$$
Y(f)=H(f) X(f)
$$

, where the frequency response $H(f)$ is the Fourier transform of the impulse response $h(t)$.

Fourier Transform and Its Properties

Example (Interconnection of LTI systems)

The overall frequency response $H(f)$ of the parallel, feedback, and series interconnection of the LTI systems $H_{1}(f)$ and $H_{2}(f)$ is $H_{1}(f)+H_{2}(f)$, $H_{1}(f) /\left(1+H_{1}(f) H_{2}(f)\right)$, and $H_{1}(f) H_{2}(f)$, respectively.

Figure: (a) Parallel, (b) Feedback, and (c) series interconnection of LTI systems.

Power and Energy

Power and Energy

Definition (Energy Signal)

The signal $x(t)$ is energy-type if its energy content is nonzero and limited, i.e.,

$$
0<\mathcal{E}_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t<\infty
$$

Definition (Power Signal)

The signal $x(t)$ is power-type if its power content is nonzero and limited, i.e.,

$$
0<\mathcal{P}_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t<\infty
$$

Power and Energy

(1) A signal cannot be both power- and energy-type because $\mathcal{P}_{x}=0$ for energy-type signals, and $\mathcal{E}_{x}=\infty$ for power-type signals.
(2) A signal can be neither energy-type nor power-type.

Energy-Type Signals

Definition (Autocorrelation)

For an energy-type signal $x(t)$, we define the autocorrelation function

$$
R_{x}(\tau)=x(\tau) * x^{*}(-\tau)=\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t=\int_{-\infty}^{\infty} x(t+\tau) x^{*}(t) d t
$$

Energy-Type Signals

(1) $\mathcal{F}\left\{R_{x}(\tau)\right\}=|X(f)|^{2}=\mathcal{E}_{x}(f)$, where $\mathcal{E}_{x}(f)$ is called the energy spectral density of a signal $x(t)$.
(2) $\mathcal{E}_{x}=R_{x}(0)=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty} \mathcal{E}_{x}(f) d f$.
(3) If we pass the signal $x(t)$ through an LTI system with the impulse response $h(t)$ and frequency response $H(f)$,

$$
\begin{aligned}
R_{y}(\tau) & =\mathcal{F}^{-1}\left\{|Y(f)|^{2}\right\} \\
& =\mathcal{F}^{-1}\left\{|X(f)|^{2}|H(f)|^{2}\right\} \\
& =\mathcal{F}^{-1}\left\{|X(f)|^{2}\right\} * \mathcal{F}^{-1}\left\{|H(f)|^{2}\right\}=R_{x}(\tau) * R_{h}(\tau)
\end{aligned}
$$

Energy-Type Signals

Example (Energy of rectangular pulse)

The energy content of $x(t)=A \sqcap\left(\frac{t}{T}\right)$ is $\mathcal{E}_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=$ $\int_{-T / 2}^{T / 2} A^{2} d t=A^{2} T$.

Example (Energy spectral density of rectangular pulse)

The energy spectral density of $x(t)=A \sqcap\left(\frac{t}{T}\right)$ is $\mathcal{E}_{x}(f)=\left|\mathcal{F}\left\{A \sqcap\left(\frac{t}{T}\right)\right\}\right|^{2}=$ $T^{2} A^{2} \operatorname{sinc}^{2}(T f)$.

Example (Autocorrelation of rectangular pulse)

The autocorrelation of $x(t)=A \sqcap\left(\frac{t}{T}\right)$ is $\mathcal{R}_{x}(\tau)=\mathcal{F}^{-1}\left\{\mathcal{E}_{x}(f)\right\}=$ $A^{2} T \wedge\left(\frac{\tau}{T}\right)$.

Power-Type Signals

Definition (Time-Average Autocorrelation)

For a power-type signal $x(t)$, we define the time-average autocorrelation function

$$
R_{x}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x(t) x^{*}(t-\tau) d t
$$

Power-Type Signals

(1) $\mathcal{S}_{x}(f)=\mathcal{F}\left\{R_{x}(\tau)\right\}$ is called power-spectral density or the power spectrum of the signal $x(t)$.
(2) $\mathcal{P}_{x}=R_{x}(0)=\int_{-\infty}^{\infty} \mathcal{S}_{x}(f) d f$.
(3) If we pass the signal $x(t)$ through an LTI system with the impulse response $h(t)$ and frequency response $H(f)$, $R_{y}(\tau)=R_{x}(\tau) * h(\tau) * h^{*}(-\tau)$ and $S_{y}(f)=S_{x}(f)|H(f)|^{2}$.

Power-Type Signals

Example (Power of periodic signals)

Any periodic signal $x(t)=x\left(t+T_{0}\right)$ is a power-type signal and its power content equals the average power in one period as

$$
\begin{aligned}
\mathcal{P}_{x} & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t=\lim _{n \rightarrow \infty} \frac{1}{n T_{0}} \int_{-n T_{0} / 2}^{n T_{0} / 2}|x(t)|^{2} d t \\
& =\lim _{n \rightarrow \infty} \frac{n}{n T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2}|x(t)|^{2} d t=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2}|x(t)|^{2} d t
\end{aligned}
$$

Example (Power of cosine)

The power content of $x(t)=A \cos \left(2 \pi f_{0} t+\theta\right)$ is

$$
\mathcal{P}_{x}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} A^{2} \cos ^{2}\left(2 \pi f_{0} t+\theta\right) d t=\frac{A^{2}}{2}
$$

Power-Type Signals

Example (Time-average autocorrelation of periodic signals)

Let the signal $x(t)$ be a periodic signal with the period T_{0}. Then,

$$
R_{x}(\tau)=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) x^{*}(t-\tau) d t
$$

$$
\begin{aligned}
R_{x}(\tau) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x(t) x^{*}(t-\tau) d t \\
& =\lim _{k \rightarrow \infty} \frac{1}{k T_{0}} \int_{-k T_{0} / 2}^{k T_{0} / 2} x(t) x^{*}(t-\tau) d t \\
& =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) x^{*}(t-\tau) d t
\end{aligned}
$$

Power-Type Signals

Example (Time-average autocorrelation of periodic signals)

Let the signal $x(t)$ be a periodic signal with the period T_{0} and have the Fourier-series coefficients x_{n}. Then, $R_{x}(\tau)=\sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2} e^{j 2 \pi n \tau / T_{0}}$.
$\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} e^{j 2 \pi(n-m) t / T_{0}} d t=\delta_{n m}$, which is nonzeros when $n=m$. So

$$
\begin{aligned}
R_{x}(\tau) & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) x^{*}(t-\tau) d t \\
& =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x_{n} x_{m}^{*} e^{j 2 \pi m \tau / T_{0}} e^{j 2 \pi(n-m) t / T_{0}} d t \\
& =\sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2} e^{j 2 \pi n \tau / T_{0}}
\end{aligned}
$$

Hilbert Transform

Hilbert Transform

Definition (Hilbert Transform)

The Hilbert transform of the signal $x(t)$ is a signal $\hat{x}(t)$ whose frequency components lag the frequency components of $x(t)$ by 90°.
(1) A delay of $\pi / 2$ for $e^{j 2 \pi f_{0} t}$ results in $e^{j\left(2 \pi f_{0} t-\pi / 2\right)}=-j e^{j 2 \pi f_{0} t}$.
(2) A delay of $\pi / 2$ for $e^{-j 2 \pi f_{0} t}$ results in $e^{-j\left(2 \pi f_{0} t-\pi / 2\right)}=j e^{-j 2 \pi f_{0} t}$.

Hilbert Transform

Statement (Hilbert Transform)

Assume that $x(t)$ is real and has no $D C$ component, i.e., $X(0)=0$. Then,

$$
\mathcal{F}\{\hat{x}(t)\}=-j \operatorname{sgn}(f) X(f)
$$

and

$$
\hat{x}(t)=\frac{1}{\pi t} * x(t)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d \tau
$$

Hilbert Transform

(1) The Hilbert transform of an even real signal is odd, and the Hilbert transform of an odd real signal is even.
(2) Applying the Hilbert-transform operation to a signal twice causes a sign reversal of the signal, i.e., $\hat{\hat{x}}(t)=-x(t)$.
(3) Energy content of a signal is equal to the energy content of its Hilbert transform, i.e., $\mathcal{E}_{x}=\mathcal{E}_{\hat{x}}$.
(9) The signal $x(t)$ and its Hilbert transform are orthogonal, i.e.,

$$
\int_{-\infty}^{\infty} x(t) \hat{x}(t) d t=0
$$

Hilbert Transform

Example (Hilbert transform of a cosine)

$$
\begin{aligned}
x(t)=A \cos \left(2 \pi f_{0} t+\theta\right) & \leftrightarrow \frac{A}{2} e^{j \theta} \delta\left(f-f_{0}\right)+\frac{A}{2} e^{-j \theta} \delta\left(f+f_{0}\right) \\
\hat{x}(t) & \leftrightarrow-j \operatorname{sgn}(f)\left[\frac{A}{2} e^{j \theta} \delta\left(f-f_{0}\right)+\frac{A}{2} e^{-j \theta} \delta\left(f+f_{0}\right)\right] \\
\hat{x}(t) & \leftrightarrow \frac{A}{2 j} e^{j \theta} \delta\left(f-f_{0}\right)-\frac{A}{2 j} e^{-j \theta} \delta\left(f+f_{0}\right) \\
\hat{x}(t)=A \sin \left(2 \pi f_{0} t+\theta\right) & \leftrightarrow \frac{A}{2 j} e^{j \theta} \delta\left(f-f_{0}\right)-\frac{A}{2 j} e^{-j \theta} \delta\left(f+f_{0}\right)
\end{aligned}
$$

Hilbert Transform

Example (Energy of a signal and its Hilbert transform)

$$
\begin{aligned}
\mathcal{E}_{\hat{x}} & =\int_{-\infty}^{\infty}|\hat{x}(t)|^{2} d t=\int_{-\infty}^{\infty}|\mathcal{F}\{\hat{x}(t)\}|^{2} d f \\
& =\int_{-\infty}^{\infty}|-j \operatorname{sgn}(f) X(f)|^{2} d f=\int_{-\infty}^{\infty}|X(f)|^{2} d f=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\mathcal{E}_{x}
\end{aligned}
$$

Example (Orthogonality of a signal and its Hilbert transform)

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \hat{x}(t) x(t) d t \int_{-\infty}^{\infty} \hat{x}(t)\left[x^{*}(t)\right]^{*} d t= \\
& \int_{-\infty}^{\infty}-j \operatorname{sgn}(f) X(f)\left[X^{*}(-f)\right]^{*} d f=\int_{-\infty}^{\infty}-j \operatorname{sgn}(f) X(f) X(-f) d f=0
\end{aligned}
$$

Lowpass and Bandpass Signals

Lowpass and Bandpass Signals

Definition (Lowpass Signal)

A lowpass signal is a signal, whose spectrum is located around the zero frequency.

Figure: Spectrum of a lowpass signal.

Lowpass and Bandpass Signals

Definition (Bandpass Signal)

A bandpass signal is a signal with a spectrum far from the zero frequency.

Figure: Spectrum of a bandpass signal.

Lowpass and Bandpass Signals

(1) The spectrum of a bandpass signal is usually located around a center frequency f_{c}, which is much higher than the bandwidth of the signal.
(2) The extreme case of a bandpass signal is $x(t)=A \cos \left(2 \pi f_{c} t+\theta\right)$, which can be represented by a phasor $x_{l}=A e^{j \theta}=x_{c}+j x_{s}$, where A, θ, x_{c}, and x_{s} are called envelope, phase, in-phase component, and quadrature component, respectively.
(3) The original signal $x(t)$ can be reconstructed from its phasor as $x(t)=$ $A \cos \left(2 \pi f_{c} t+\theta\right)=x_{c} \cos \left(2 \pi f_{c} t\right)-x_{s} \sin \left(2 \pi f_{c} t\right)$.

Lowpass and Bandpass Signals

Statement (Slowly-varying Lowpass Phasor)

Assume that we have a slowly-varying lowpass phasor $x_{l}(t)=A(t) e^{j \theta(t)}=$ $x_{c}(t)+j x_{s}(t)$, where $A(t) \geq 0, \theta(t), x_{s}(t)$, and $x_{c}(t)$ are slowly-varying signals compared to f_{c}. The real bandpass signal $x(t)=A(t) \cos \left(2 \pi f_{c} t+\right.$ $\theta(t))$ relates to the complex time-varying phasor $x_{l}(t)$ as

$$
\begin{aligned}
x(t) & =\Re\left\{x_{l}(t) e^{j 2 \pi f_{c} t}\right\}=\Re\left\{A(t) e^{j\left(2 \pi f_{c} t+\theta(t)\right)}\right\} \\
& =x_{c}(t) \cos \left(2 \pi f_{c} t\right)-x_{s}(t) \sin \left(2 \pi f_{c} t\right)
\end{aligned}
$$

Lowpass and Bandpass Signals

(1) $x_{l}(t)=A(t) e^{j \theta(t)}=x_{c}(t)+j x_{s}(t)$ is is called the lowpass equivalent of the bandpass signal $x(t)=A(t) \cos \left(2 \pi f_{c} t+\theta(t)\right)$.
(2) The envelope $\left|x_{l}(t)\right|$ and the phase $\angle x_{l}(t)$ of the bandpass signal are defined as

$$
\left|x_{l}(t)\right|=A(t)=\sqrt{x_{c}^{2}(t)+x_{s}^{2}(t)}
$$

and

$$
\angle x_{l}(t)=\theta(t)=\tan ^{-1}\left(\frac{x_{s}(t)}{x_{c}(t)}\right)
$$

(3) Obviously, the in-phase and quadrature components satisfy

$$
x_{c}(t)=A(t) \cos (\theta(t))
$$

and

$$
x_{s}(t)=A(t) \sin (\theta(t))
$$

Lowpass and Bandpass Signals

Example (Spectrum of the bandpass signal)

$$
x(t)=\Re\left\{x_{l}(t) e^{j 2 \pi f_{c} t}\right\}=\frac{1}{2}\left[x_{l}(t) e^{j 2 \pi f_{c} t}+x_{l}^{*}(t) e^{-j 2 \pi f_{c} t}\right]
$$

So,

$$
X(f)=\frac{1}{2} X_{l}\left(f-f_{c}\right)+\frac{1}{2} X_{l}^{*}\left(-\left(f+f_{c}\right)\right)
$$

Lowpass and Bandpass Signals

Example (Spectrum of the bandpass signal)

$$
X(f)=\frac{1}{2} X_{l}\left(f-f_{c}\right)+\frac{1}{2} X_{l}^{*}\left(-\left(f+f_{c}\right)\right)
$$

Figure: Spectrum of the lowpass signal and its associated bandpass signal.

Lowpass and Bandpass Signals

Example (Spectrum of the lowpass signal)

If the bandwidth of the bandpass signal W is much less than the central frequency f_{c}, then

$$
\begin{aligned}
X(f) & =\frac{1}{2} X_{l}\left(f-f_{c}\right)+\frac{1}{2} X_{l}^{*}\left(-\left(f+f_{c}\right)\right) \\
X\left(f+f_{c}\right) & =\frac{1}{2} X_{l}(f)+\frac{1}{2} X_{l}^{*}\left(-\left(f+2 f_{c}\right)\right) \\
X\left(f+f_{c}\right) u\left(f+f_{c}\right) & =\frac{1}{2} X_{l}(f) u\left(f+f_{c}\right)+\frac{1}{2} X_{l}^{*}\left(-\left(f+2 f_{c}\right)\right) u\left(f+f_{c}\right) \\
X\left(f+f_{c}\right) u\left(f+f_{c}\right) & =\frac{1}{2} X_{l}(f) \\
2 X\left(f+f_{c}\right) u\left(f+f_{c}\right) & =X_{l}(f)
\end{aligned}
$$

Lowpass and Bandpass Signals

Example (Spectrum of the lowpass signal)

If the bandwidth of the bandpass signal W is much less than the central frequency f_{c}, then

$$
X_{l}(f)=2 X\left(f+f_{c}\right) u\left(f+f_{c}\right)
$$

Figure: Spectrum of the bandpass signal and its associated lowpass signal.

Lowpass and Bandpass Signals

Example (Lowpass equivalent of a bandpass signal)

$$
\begin{aligned}
X_{l}(f) & =2 X\left(f+f_{c}\right) u\left(f+f_{c}\right) \\
& =2 X\left(f+f_{c}\right) \frac{1+\operatorname{sgn}\left(f+f_{c}\right)}{2} \\
& =2 X\left(f+f_{c}\right) \frac{1-j^{2} \operatorname{sgn}\left(f+f_{c}\right)}{2} \\
& =X\left(f+f_{c}\right)+j\left[-j \operatorname{sgn}\left(f+f_{c}\right) X\left(f+f_{c}\right)\right]
\end{aligned}
$$

So,

$$
x_{l}(t)=[x(t)+j \hat{x}(t)] e^{-j 2 \pi f_{c} t}
$$

Lowpass and Bandpass Signals

Example (In-phase component of a bandpass signal)

$$
x_{l}(t)=[x(t)+j \hat{x}(t)] e^{-j 2 \pi f_{c} t}
$$

So,

$$
x_{l}(t)=[x(t)+j \hat{x}(t)]\left[\cos \left(2 \pi f_{c} t\right)-j \sin \left(2 \pi f_{c} t\right)\right]
$$

$x_{l}(t)=x(t) \cos \left(2 \pi f_{c} t\right)+\hat{x}(t) \sin \left(2 \pi f_{c} t\right)+j\left[\hat{x}(t) \cos \left(2 \pi f_{c} t\right)-x(t) \sin \left(2 \pi f_{c} t\right)\right]$ and,

$$
\Re\left\{x_{l}(t)\right\}=x_{c}(t)=x(t) \cos \left(2 \pi f_{c} t\right)+\hat{x}(t) \sin \left(2 \pi f_{c} t\right)
$$

Lowpass and Bandpass Signals

Example (Quadrature component of a bandpass signal)

$$
x_{l}(t)=[x(t)+j \hat{x}(t)] e^{-j 2 \pi f_{c} t}
$$

So,

$$
x_{l}(t)=[x(t)+j \hat{x}(t)]\left[\cos \left(2 \pi f_{c} t\right)-j \sin \left(2 \pi f_{c} t\right)\right]
$$

$x_{l}(t)=x(t) \cos \left(2 \pi f_{c} t\right)+\hat{x}(t) \sin \left(2 \pi f_{c} t\right)+j\left[\hat{x}(t) \cos \left(2 \pi f_{c} t\right)-x(t) \sin \left(2 \pi f_{c} t\right)\right]$ and,

$$
\Im\left\{x_{l}(t)\right\}=x_{s}(t)=\hat{x}(t) \cos \left(2 \pi f_{c} t\right)-x(t) \sin \left(2 \pi f_{c} t\right)
$$

Lowpass and Bandpass Signals

Example (Envelope of a bandpass signal)

$$
x_{l}(t)=[x(t)+j \hat{x}(t)] e^{-j 2 \pi f_{c} t}
$$

So,

$$
\left|x_{l}(t)\right|=A(t)=\sqrt{x^{2}(t)+\hat{x}^{2}(t)}
$$

Lowpass and Bandpass Signals

Example (Phase of a bandpass signal)

$$
x_{l}(t)=[x(t)+j \hat{x}(t)] e^{-j 2 \pi f_{c} t}
$$

So,

$$
x_{l}(t)=[x(t)+j \hat{x}(t)]\left[\cos \left(2 \pi f_{c} t\right)-j \sin \left(2 \pi f_{c} t\right)\right]
$$

$x_{l}(t)=x(t) \cos \left(2 \pi f_{c} t\right)+\hat{x}(t) \sin \left(2 \pi f_{c} t\right)+j\left[\hat{x}(t) \cos \left(2 \pi f_{c} t\right)-x(t) \sin \left(2 \pi f_{c} t\right)\right]$ and,

$$
\angle x_{l}(t)=\theta(t)=\tan ^{-1}\left[\frac{\hat{x}(t) \cos \left(2 \pi f_{c} t\right)-x(t) \sin \left(2 \pi f_{c} t\right)}{x(t) \cos \left(2 \pi f_{c} t\right)+\hat{x}(t) \sin \left(2 \pi f_{c} t\right)}\right]
$$

Lowpass and Bandpass Signals

Example (Lowpass equivalent of sinusoidal signal)

Lowpass equivalent of the bandpass signal $x(t)=A \cos \left(2 \pi f_{c} t+\theta\right)$ is

$$
\begin{aligned}
x_{l}(t) & =[x(t)+j \hat{x}(t)] e^{-j 2 \pi f_{c} t} \\
& =\left[A \cos \left(2 \pi f_{c} t+\theta\right)+j A \sin \left(2 \pi f_{c} t+\theta\right)\right] e^{-j 2 \pi f_{c} t} \\
& =A e^{j\left(2 \pi f_{c} t+\theta\right)} e^{-j 2 \pi f_{c} t}=A e^{j \theta}
\end{aligned}
$$

So, $A(t)=|A|, \theta(t)=\theta+u(-A) \pi, x_{s}(t)=A \cos (\theta)$, and $x_{s}(t)=A \sin (\theta)$.

Lowpass and Bandpass Signals

Example (Lowpass equivalent of sinusoidal signal)

Lowpass equivalent of the bandpass signal $x(t)=\operatorname{sinc}(t) \cos \left(2 \pi f_{c} t+\frac{\pi}{4}\right)$ can be obtained as

$$
\begin{aligned}
& x(t)=\operatorname{sinc}(t) \cos \left(\frac{\pi}{4}\right) \cos \left(2 \pi f_{c} t\right)-\operatorname{sinc}(t) \sin \left(\frac{\pi}{4}\right) \sin \left(2 \pi f_{c} t\right) \\
& x_{c}(t)=\frac{\sqrt{2}}{2} \operatorname{sinc}(t), \quad x_{s}(t)=\frac{\sqrt{2}}{2} \operatorname{sinc}(t) \\
& x_{l}(t)=x_{c}(t)+j x_{s}(t)=\frac{\sqrt{2}}{2} \operatorname{sinc}(t)(1+j)=\operatorname{sinc}(t) e^{j \frac{\pi}{4}}
\end{aligned}
$$

Filters

Lowpass Filter

Figure: Ideal LPF frequency response and its impulse response.

$$
H(f)=\sqcap\left(\frac{f}{2 W}\right) \leftrightarrow h(t)=2 W \operatorname{sinc}(2 W t)
$$

Lowpass Filter

Figure: Linear-phase ideal LPF frequency response and its impulse response.

$$
H(f)=\Pi\left(\frac{f}{2 W}\right) e^{-j 2 \pi f_{d}} \leftrightarrow h(t)=2 W \operatorname{sinc}\left(2 W\left(t-t_{d}\right)\right)
$$

Lowpass Filter

Figure: Truncated LPF impulse response.

$$
h(t)=2 W \operatorname{sinc}\left(2 W\left(t-t_{d}\right)\right) \quad h(t)=2 W \operatorname{sinc}\left(2 W\left(t-t_{d}\right)\right) u(t)
$$

Lowpass Filter

Figure: Butterworth LPF frequency characteristic.

$$
|H(f)|=\frac{1}{\sqrt{1+\left(\frac{f}{B}\right)^{2 n}}}
$$

Lowpass Filter

Figure: Comparison of butterworth and ideal filters.

Basic Filters

Figure: Basic filters. (a) LPF (b) HPF (c) BPF.

Filter Design

Figure: Design process.

The End

