Signals and Linear Systems

Mohammad Hadi

mohammad.hadi@sharif.edu

@MohammadHadiDastgerdi

Spring 2021

Mohammad Hadi

Communication systems

Spring 2021 1 / 111

Overview

3 Fourier Series

- 4 Fourier Transform
- 5 Power and Energy
- 6 Hilbert Transform
- Lowpass and Bandpass Signals

Signals

Mohammad Hadi

Communication systems

▶ ◀ ≣ ▶ ≣ → ♀ C Spring 2021 3/111

Basic Operations on Signals

Figure: Time shifting, time scaling, time reversal.

$$x(t)
ightarrow x(t-t_0); \quad x(t)
ightarrow x(at); \quad x(t)
ightarrow x(-t);$$

Mohammad Hadi

Communication systems

Figure: Continuous-time and discrete-time signals.

 $x(t), t \in \mathbb{R}; \quad x[n], n \in \mathbb{Z}$

Mohammad Hadi

Figure: Random and deterministic signals.

$$egin{aligned} \mathsf{x}(t,\omega) \in \mathbb{R}, t \in \mathbb{R}, \omega \sim \mathsf{P}[\Omega=\omega]; \quad \mathsf{x}(t) \in \mathbb{R}, t \in \mathbb{R} \ \mathbf{s}(t) = \mathsf{Audio Signal}; \quad c(t) = \mathsf{A}_c \cos(2\pi f_c t) \end{aligned}$$

Figure: Nonperiodic and periodic signals.

 $\nexists T_0 : x(t + T_0) = x(t); \quad \exists T_0 : x(t + T_0) = x(t)$

Figure: Causal and noncausal signals.

 $\forall t < 0: x(t) = 0; \quad \exists t < 0: x(t) \neq 0$

Mohammad Hadi

Figure: Energy and power signals.

$$0 < \mathcal{E}_x = \lim_{T \to \infty} \int\limits_{-T/2}^{T/2} |x(t)|^2 dt < \infty; \quad 0 < \mathcal{P}_x = \lim_{T \to \infty} \frac{\int\limits_{-T/2}^{T/2} |x(t)|^2 dt}{T} < \infty$$

Figure: Even and odd signals.

$$x(t) = x(-t); \quad x(t) = -x(-t)$$

Statement (Even-Odd Decomposition)

Any signal x(t) can be written as the sum of its even and odd parts as $x(t) = x_e(t) + x_o(t)$, where

$$x_{e}(t) = \frac{x(t) + x(-t)}{2}$$
$$x_{o}(t) = \frac{x(t) - x(-t)}{2}$$

Figure: Real and complex signals.

$$egin{aligned} & x(t) \in \mathbb{R}; \quad x(t) \in \mathbb{C} \ & |x(t)| = |A|; \quad igta x(t) = 2\pi f_0 t + heta \ & x(t) = |x(t)| e^{j igta x(t)} \end{aligned}$$

Mohammad Hadi

Statement (Complex Signal Representation)

For the complex signal $x(t) = x_r(t) + jx_i(t) = \Re\{x(t)\} + j\Im\{x(t)\} =$ $|x(t)|e^{j\angle x(t)},$ $x_r(t) = \Re\{x(t)\} = |x(t)|\cos(\angle x(t))$ $x_i(t) = \Im\{x(t)\} = |x(t)|\sin(\angle x(t))$ $|x(t)| = \sqrt{x_r^2(t) + x_i^2(t)}$ $\angle x(t) = \tan^{-1}(\frac{x_i(t)}{x_r(t)})$

Figure: Sinusoidal signal.

 $x(t) = A\cos(2\pi f_0 t + \theta) = A\cos(2\pi t/T_0 + \theta)$

Mohammad Hadi

Figure: Complex exponential signal.

 $x(t) = A\cos(2\pi f_0 t + \theta) + jA\sin(2\pi f_0 t + \theta) = Ae^{j(2\pi f_0 t + \theta)}$

Figure: Unit step signal.

$$u(t) = egin{cases} 1, & t \geqslant 0 \ 0, & t < 0 \end{cases}$$

Mohammad Hadi

Spring 2021 17 / 111

Figure: Rectangular signal.

$$end (t) = \operatorname{rect}(t) = egin{cases} 1, & |t| \leqslant 0.5 \ 0, & |t| > 0.5 \end{cases}$$

Mohammad Hadi

Spring 2021 19 / 111

< □ > < 凸

→ ∢ ∃

Figure: Sign signal.

$${
m sgn}(t) = egin{cases} 1, & t > 0 \ 0, & t = 0 \ -1, & t < 0 \end{cases}$$

Mohammad Hadi

Spring 2021 21 / 111

Figure: Unit impulse signal.

$$\delta(t) = \begin{cases} \infty, & t = 0\\ 0, & t \neq 0 \end{cases} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \operatorname{sinc}(\frac{t}{\epsilon}) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \sqcap (\frac{t}{\epsilon})$$

.

æ

Figure: Unit impulse signal.

$$\delta(t) = egin{cases} \infty, & t = 0 \ 0, & t
eq 0 \end{cases}$$

Definition (Convolution)

The convolution of the functions h(t) and x(t) is defined as

$$y(t) = x(t) * h(t) = h(t) * x(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Definition (Test Function)

x(t) is called a test function if it is infinitely differentiable and is zero outside a finite interval.

Definition (Unit Impulse Signal)

The unit impulse function $u_0(t) = \delta(t)$ is defined as the function satisfying

$$\int_{-\infty}^{+\infty} \delta(t) x(t) dt = x(0)$$

for any test function x(t).

Theorem (Properties of Unit Impulse Signal)

The unit impulse function satisfies the following identities

$$\int_{-\infty}^{+\infty} \delta(t) dt = 1$$

 $x(t) = \delta(t) * x(t)$
 $\delta(at) = rac{1}{|a|} \delta(t), a \neq 0$
 $x(t)\delta(t) = x(0)\delta(t)$
 $t\delta(t) = 0$
 $\delta(t) = 0, t \neq 0$

Mohammad Hadi

Singular Functions

Example (Area under $\delta(t)$)

The area under the unit impulse function is 1.

For x(t) = 1,

$$\int_{-\infty}^{+\infty} \delta(t) x(t) dt = \int_{-\infty}^{+\infty} \delta(t) dt = x(0) = 1$$

Example (Convolution with $\delta(t)$)

 $\delta(t)$ is the neutral function of the convolution operation, i.e. $x(t)=\delta(t)*x(t)$.

$$\delta(t) * x(t) = \int_{-\infty}^{+\infty} \delta(\tau) x(t-\tau) d\tau = x(t-0) = x(t)$$

Definition (Unit Doublet Signal)

The unit doublet function $u_1(t) = \delta'(t)$ is defined as the function satisfying

$$\int_{-\infty}^{+\infty} \delta'(t) x(t) dt = -x'(0)$$

for any test function x(t).

Definition (Higher-order Impulse Signals)

Generally, $u_n(t) = \delta^{(n)}(t), n \ge 0$ is defined as the function satisfying

$$\int_{-\infty}^{+\infty} \delta^{(n)}(t) x(t) dt = (-1)^n x^{(n)}(0)$$

for any test function x(t).

Singular Functions

Theorem (Convolution with $u_n(t)$)

 $u_n(t), n \ge 1$ satisfies $x^{(n)}(t) = u_n(t) * x(t)$.

For n = 1,

$$u_1(t)*x(t)=\int_{-\infty}^{+\infty}\delta'(au)x(t- au)d au=-rac{dx(t- au)}{d au}|_{ au=0}=x'(t)$$

Theorem (Relation of $\delta'(t)$ and $u_n(t)$)

$$u_n(t), n \geq 2$$
 relates to $u_1(t) = \delta'(t)$ as $u_n(t) = \underbrace{u_1(t) * u_1(t) * \cdots * u_1(t)}_{n \text{ times}}$.

For n = 2,

$$\frac{d^2(t)}{dt^2} = \frac{d}{dt} \left(\frac{dx(t)}{dt} \right) = \frac{d}{dt} \left(x(t) * u_1(t) \right) = x(t) * u_1(t) * u_1(t)$$

イロト イポト イヨト イヨト

Definition (Unit Step Signal)

The unit step function $u_{-1}(t) = u(t)$ is defined as the function satisfying

$$\int_{-\infty}^{+\infty} u(t)x(t)dt = \int_{0}^{+\infty} x(t)dt$$

for any test function x(t).

Definition (Higher-order Step Signals)

Generally, $u_{-n}(t), n \ge 2$ is defined as

$$u_{-n}(t) = \underbrace{u_{-1}(t) * u_{-1}(t) * \cdots * u_{-1}(t)}_{n \text{ times}}$$

n times

Theorem (Explicit representation of $u_{-n}(t), n \ge 2$)

 $u_{-n}(t), n \geq 2$ can be represented as

$$u_{-n}(t) = \frac{t^{n-1}}{(n-1)!} u_{-1}(t)$$

For n = 2,

$$u_{-2}(t) = u_{-1}(t) * u_{-1}(t) = u(t) * u(t) = tu(t) = r(t)$$

.

Figure: Singular functions.

Example (Representation of other signals using the singular signals)

x(t) can be represented by u(t) and its shifted versions as

$$x(t) = u(t) + 2u(t-1) - u(t-2)$$

Figure: The signal u(t) + 2u(t-1) - u(t-2).

Mohammad Hadi

Example (Simplification using the properties of the singular functions)

$$\cos(t)\delta(t) = \cos(0)\delta(t) = \delta(t)$$

$$\cos(t)\delta(2t-3) = \cos(t)\delta(2(t-\frac{3}{2})) = \frac{1}{2}\delta(t-\frac{3}{2})\cos(t) = \frac{\cos(\frac{3}{2})}{2}\delta(t-\frac{3}{2})$$

$$\int_{-\infty}^{\infty} e^{-t}\delta'(t-1)dt = \int_{-\infty}^{\infty} e^{-u-1}\delta'(u)du = e^{-1}(-1)\frac{de^{-u}}{du}|_{u=0} = e^{-1}$$

Communication systems

Systems

Mohammad Hadi

Communication systems

≣▶ ◀ ≣▶ 불 ∽ ९.୦ Spring 2021 35 / 111

<ロト < 四ト < 三ト < 三ト

Definition (System)

A system is an entity that is excited by an input signal x(t) and, as a result of this excitation, produces an output signal y(t). The output is uniquely defined for any legitimate input by

$$y(t) = \mathcal{T}\{x(t)\}$$

Figure: System block diagram.
Definition (Continuous-time System)

For a continuous-time system, both input and output signals are continuous-time signals.

Definition (Discrete-time System)

For a discrete-time system, both input and output signals are discrete-time signals.

Definition (Linear System)

A system \mathcal{T} is linear if and only if, for any two input signals $x_1(t)$ and $x_2(t)$ and for any two scalars α and β , we have,

$$\mathcal{T}\{\alpha x_1(t) + \beta x_2(t)\} = \alpha \mathcal{T}\{x_1(t)\} + \beta \mathcal{T}\{x_2(t)\}$$

Definition (Nonlinear System)

A system is nonlinear if it is not linear.

Definition (Time-Invariant System)

A system is time-invariant if and only if, for all x(t) and all values of t_0 , its response to $x(t - t_0)$ is $y(t - t_0)$, where y(t) is the response of the system to x(t).

Definition (Time-variant System)

A system is time-variant if it is not time-invariant.

Definition (Causal System)

A system is causal if its output at any time t_0 depends on the input at times prior to t_0 , i.e.,

$$y(t_0)=\mathcal{T}\{x(t):t\leqslant t_0\}.$$

Definition (Noncausal System)

A system is noncausal if it is not causal.

Definition (Stable System)

A system is stable if its output is bounded for any bounded input, i.e.,

$$|x(t)| < B \Rightarrow |y(t)| < M.$$

Definition (Instable System)

A system is instable if it is not stable.

LTI Systems

Statement (Linear Time-Invariant System)

у

A system is Linear Time-Invariant (LTI) if it is simultaneously linear and time-invariant. An LTI system is completely characterized by its impulse response $h(t) = \mathcal{T}\{\delta(t)\}$.

$$\begin{aligned} (t) &= \mathcal{T}\{x(t)\} \\ &= \mathcal{T}\{\int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau\} \\ &= \int_{-\infty}^{\infty} x(\tau)\mathcal{T}\{\delta(t-\tau)\}d\tau \\ &= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \\ &= x(t)*h(t) \end{aligned}$$

Statement (Causality of LTI Systems)

An LTI system is causal if and only if h(t) = 0, t < 0.

Statement (Stability of LTI Systems)

An LTI system is stable if and only if $\int_{-\infty}^{+\infty} |h(t)| dt < \infty$.

LTI System

Example (Complex exponential response)

The response of an LTI system h(t) to the exponential input $x(t) = Ae^{j(2\pi f_0 t + \theta)}$ can be obtained by

$$y(t) = AH(f_0)e^{j(2\pi f_0 t + \theta)} = A|H(f_0)|e^{j(2\pi f_0 t + \theta + \angle H(f_0))}$$

, where

$$H(f_0) = |H(f_0)|e^{j \ge H(f_0)} = \int_{-\infty}^{\infty} h(\tau)e^{-j2\pi f_0 \tau} d\tau$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau) A e^{j(2\pi f_0(t-\tau)+\theta)} d\tau$$
$$= A e^{j(2\pi f_0 t+\theta)} \int_{-\infty}^{\infty} h(\tau) e^{-j2\pi f_0 \tau} d\tau$$
$$= A |H(f_0)| e^{j(2\pi f_0 t+\theta+\angle H(f_0))}$$

Mohammad Hadi

Fourier Series

э.

• • • • • • • • • • • •

Definition (Fourier Series)

The periodic signal $x(t + T_0) = x(t)$ can be expanded in terms of the complex exponential $\{e^{j2\pi nt/T_0}\}_{n=-\infty}^{\infty}$ as

$$x(t) = \sum_{n=-\infty}^{\infty} x_n e^{j2\pi nt/T_0}$$

, where

$$x_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi nt/T_0} dt$$

Dirichlet sufficient conditions for existence of the Fourier series are:

- x(t) is absolutely integrable over its period, i.e., $\int_0^{T_0} |x(t)| dt < \infty$.
- **2** The number of maxima and minima of x(t) in each period is finite.
- **③** The number of discontinuities of x(t) in each period is finite.

- The quantity $f_0 = 1/T_0$ is called the fundamental frequency of the signal x(t).
- The frequency of the *n*th complex exponential signal is *nf*₀, which is called the *n*th harmonic.
- In general, $x_n = |x_n|e^{j∠x_n}$, where $|x_n|$ gives the magnitude of the *n*th harmonic and ∠x_n gives its phase.
- For real signals $x(t) = x^*(t)$, $x_{-n} = x_n^*$.

Fourier Series and Its Properties

Figure: Positive and negative frequencies.

Fourier Series and Its Properties

Example (Fourier series of rectangular-pulse train)

$$x(t) = \sum_{n=-\infty}^{\infty} \sqcap(\frac{t-nT_0}{\tau}) = \sum_{n=-\infty}^{\infty} \frac{\tau}{T_0} \operatorname{sinc}(\frac{n\tau}{T_0}) e^{jn2\pi t/T_0}$$

Figure: The discrete spectrum of the rectangular-pulse train.

Definition (Trigonometric Fourier Series)

The real periodic signal $x(t + T_0) = x(t)$ can be expanded as

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi nt/T_0) + \sum_{n=1}^{\infty} b_n \sin(2\pi nt/T_0)$$

, where

$$a_n = \frac{2}{T_0} \int_{T_0} x(t) \cos(2\pi nt/T_0) dt$$

and

$$b_n = \frac{2}{T_0} \int_{T_0} x(t) \sin(2\pi nt/T_0) dt$$

- $\bullet x_n = \frac{a_n}{2} j\frac{b_n}{2}.$
- **2** For even real periodic signals, $b_n = 0$.
- Solution For odd real periodic signals, $a_n = 0$.

Example (Response of LTI Systems to Periodic Signals)

The response of an LTI system h(t) to the periodic input $x(t + T_0) = x(t)$ can be obtained by

$$y(t) = \sum_{n=-\infty}^{\infty} x_n H(n/T_0) e^{j2\pi nt/T_0}$$

, where

$$H(f) = |H(f)|e^{j\angle H(f)} = \int_{-\infty}^{+\infty} h(t)e^{-j2\pi ft}dt.$$

$$y(t) = \mathcal{T}\{x(t)\} = \mathcal{T}\{\sum_{n=-\infty}^{\infty} x_n e^{j2\pi nt/T_0}\}$$
$$= \sum_{n=-\infty}^{\infty} x_n \mathcal{T}\{e^{j2\pi nt/T_0}\} = \sum_{n=-\infty}^{\infty} x_n \mathcal{H}(n/T_0) e^{j2\pi nt/T_0}$$

Mohammad Hadi

- If the input to an LTI system is periodic with period T_0 , then the output is also periodic with period T_0 .
- 2 The output has a Fourier-series expansion given by $y(t) = \sum_{n=-\infty}^{\infty} y_n e^{\frac{j2\pi nt}{T_0}}$, where $y_n = x_n H(n/T_0)$.
- An LTI system cannot introduce new frequency components in the output.

Statement (Rayleigh's Relation)

For a periodic signal $x(t + T_0) = x(t)$,

$$\mathcal{P}_x = rac{1}{T_0}\int_{T_0}|x(t)|^2dt = \sum_{n=-\infty}^{\infty}|x_n|^2$$

Mohammad Hadi

Fourier Transform

Image: A mathematical states and a mathem

Definition (Fourier Transform)

If the Fourier transform of x(t), defined by

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt$$

exists, the original signal can be obtained from its Fourier transform by

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df$$

Dirichlet sufficient conditions for existence of the Fourier transform are:

- x(t) is absolutely integrable over the real line, i.e., $\int_{-\infty}^{\infty} |x(t)| dt < \infty$.
- The number of maxima and minima of x(t) in any finite real interval is finite.
- Solution The number of discontinuities of x(t) in any finite real interval is finite.

- X(f) is generally a complex function. Its magnitude |X(f)| and phase ∠X(f) represent the amplitude and phase of various frequency components in x(t).
- The function X(f) is sometimes referred to as the spectrum of the signal x(t).
- To denote that X(f) is the Fourier transform of x(t), we frequently employ the notations $X(f) = \mathcal{F}\{x(t)\}, x(t) = \mathcal{F}^{-1}\{X(f)\}, \text{ or } x(t) \leftrightarrow X(f)$.

• For real signals $x(t) = x^*(t)$,

 $X(-f) = X^*(f)$ $\Re[X(-f)] = \Re[X(f)]$ $\Im[X(-f)] = -\Im[X(f)]$ |X(-f)| = |X(f)| $\angle X(-f) = -\angle X(f)$

If x(t) is real and even, X(f) will be real and even.
If x(t) is real and odd, X(f) will be imaginary and odd.

Statement (Signal Bandwidth)

We define the bandwidth of a real signal x(t) as the range of positive frequencies contributing strongly in the spectrum of the signal.

Figure: Bandwidth of a real signal.

Example (Fourier transform of $\sqcap(t)$)

$$\mathcal{F}\{\Pi(t)\} = \int_{-\infty}^{+\infty} \Pi(t) e^{-j2\pi f t} dt = \int_{-0.5}^{0.5} e^{-j2\pi f t} dt = \frac{\sin(\pi f)}{\pi f} = \operatorname{sinc}(f)$$

Figure: $\sqcap(t)$ and its Fourier transform.

Example (Modulation Property)

$$X(t)\cos(2\pi f_0 t)\leftrightarrow \frac{1}{2}[X(f-f_0)+X(f+f_0)]$$

Figure: Effect of modulation in both the time and frequency domain.

Mohammad Hadi

< □ > < 凸

Spring 2021 63 / 111

Property	Signal	Fourier
Assumption	x(t)	X(f)
Assumption	y(t)	Y(f)
Linearity	ax(t) + by(t)	aX(f) + bY(f)
Time Shifting	$x(t-t_0)$	$e^{-j2\pi ft_0}X(f)$
Frequency Shifting	$e^{j2\pi f_0 t}x(t)$	$X(f-f_0)$
Time Scaling	x(at)	$\frac{1}{ a }X(\frac{f}{a})$
Conjugation	$x^{*}(t)$	$X^{*}(-f)$
Convolution	x(t) * y(t)	X(f)Y(f)
Modulation	x(t)y(t)	X(f) * Y(f)
Sinusoidal Modulation	$x(t)\cos(2\pi f_0 t)$	$\frac{1}{2}[X(f-f_0)+X(f+f_0)]$
Auto-correlation	$x(t) * x^*(-t)$	$ X(f) ^2$
Time Differentiation	$\frac{d \times (t)}{dt}$	$j2\pi fX(f)$
Time Differentiation	$\frac{d^n \times (t)}{dt^n}$	$(j2\pi f)^n X(f)$
Frequency Differentiation	$t^n x(t)$	$\left(\frac{j}{2\pi}\right)^n \frac{d^n X(f)}{df^n}$
Integration	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{X(f)}{i2\pi f} + \frac{1}{2}X(0)\delta(f)$
Duality	X(t)	x(-f)
Periodicity	$\sum_{n=-\infty}^{\infty} x_n e^{j2\pi nt/T_0}$	$\sum_{n=-\infty}^{\infty} x_n \delta(f - n/T_0)$

Table: Properties of the Fourier transform.

э

Signal	Fourier
$\delta(t)$	1
1	$\delta(f)$
$\delta(t-t_0)$	$e^{-j2\pi ft_0}$
$\delta^n(t)$	$(j2\pi f)^n$
$e^{j2\pi f_0 t}$	$\delta(f-f_0)$
sgn(t)	$\frac{1}{i\pi f}$
1	$-j\pi \operatorname{sgn}(f)$
u(t)	$\frac{1}{i2\pi f} + \frac{1}{2}\delta(f)$
$\cos(2\pi f_0 t)$	$\frac{1}{2}[\delta(f-f_0)+\delta(f+f_0)]$
$sin(2\pi f_0 t)$	$\frac{1}{2i}[\delta(f-f_0)-\delta(f+f_0)]$
$\sqcap(t)$	-5 sinc(f)
sinc(t)	$\Box(f)$
$\Lambda(t)$	$\operatorname{sinc}^2(f)$
$sinc^{2}(t)$	$\Lambda(f)$
$e^{-at}u(t), a > 0$	$\frac{1}{i2\pi f+a}$
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), a>0$	$\frac{1}{(i2\pi f+a)^n}$
$\sum_{n=-\infty}^{\infty} \delta(t-nT_0)$	$\frac{1}{T_0}\sum_{n=-\infty}^{\infty}\delta(f-n/T_0)$

Table: Fourier transform of elementary functions.

Mohammad Hadi

Spring 2021 65 / 111

< □ > < 同 > < 回 > < 回 > < 回 >

æ

Statement (Parseval's Relation)

If the Fourier transforms of the signals x(t) and y(t) are denoted by X(f)and Y(f), respectively, then

$$\int_{-\infty}^{\infty} x(t) y^*(t) dt = \int_{-\infty}^{\infty} X(f) Y^*(f) df$$

Statement (Rayleigh's Relation)

If the Fourier transforms of the signals x(t) is denoted by X(f), then

$$\mathcal{E}_{\mathsf{x}} = \int_{-\infty}^{\infty} |\mathsf{x}(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$

Example (LTI Systems)

The output of an LTI system is represented by the convolution integral

$$y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(t-\tau) x(\tau) d\tau = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$

, where h(t) is the impulse response of the LTI system. In the frequency domain,

$$Y(f) = H(f)X(f)$$

, where the frequency response H(f) is the Fourier transform of the impulse response h(t).

Example (Interconnection of LTI systems)

The overall frequency response H(f) of the parallel, feedback, and series interconnection of the LTI systems $H_1(f)$ and $H_2(f)$ is $H_1(f) + H_2(f)$, $H_1(f)/(1 + H_1(f)H_2(f))$, and $H_1(f)H_2(f)$, respectively.

Figure: (a) Parallel, (b) Feedback, and (c) series interconnection of LTI systems.

Power and Energy

Image: A matrix and a matrix

Definition (Energy Signal)

The signal x(t) is energy-type if its energy content is nonzero and limited, i.e.,

$$0 < \mathcal{E}_x = \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$$

Definition (Power Signal)

The signal x(t) is power-type if its power content is nonzero and limited, i.e.,

$$0 < \mathcal{P}_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt < \infty$$

- A signal cannot be both power- and energy-type because P_x = 0 for energy-type signals, and E_x = ∞ for power-type signals.
- A signal can be neither energy-type nor power-type.

Definition (Autocorrelation)

For an energy-type signal x(t), we define the autocorrelation function

$$R_x(\tau) = x(\tau) * x^*(-\tau) = \int_{-\infty}^{\infty} x(t) x^*(t-\tau) dt = \int_{-\infty}^{\infty} x(t+\tau) x^*(t) dt$$

< ∃ ►
- \$\mathcal{F}\$ \{R_x(\tau)\} = |X(f)|^2 = \mathcal{E}_x(f)\$, where \$\mathcal{E}_x(f)\$ is called the energy spectral density of a signal \$x(t)\$.
- If we pass the signal x(t) through an LTI system with the impulse response h(t) and frequency response H(f),

$$\begin{aligned} R_{y}(\tau) &= \mathcal{F}^{-1}\{|Y(f)|^{2}\} \\ &= \mathcal{F}^{-1}\{|X(f)|^{2}|H(f)|^{2}\} \\ &= \mathcal{F}^{-1}\{|X(f)|^{2}\} * \mathcal{F}^{-1}\{|H(f)|^{2}\} = R_{x}(\tau) * R_{h}(\tau) \end{aligned}$$

Example (Energy of rectangular pulse)

The energy content of $x(t) = A \sqcap (\frac{t}{T})$ is $\mathcal{E}_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-T/2}^{T/2} A^2 dt = A^2 T$.

Example (Energy spectral density of rectangular pulse)

The energy spectral density of $x(t) = A \sqcap (\frac{t}{T})$ is $\mathcal{E}_x(f) = \left| \mathcal{F} \{A \sqcap (\frac{t}{T})\} \right|^2 = T^2 A^2 \operatorname{sinc}^2(Tf)$.

Example (Autocorrelation of rectangular pulse)

The autocorrelation of $x(t) = A \sqcap (\frac{t}{T})$ is $\mathcal{R}_x(\tau) = \mathcal{F}^{-1}{\mathcal{E}_x(f)} = A^2 T \Lambda(\frac{\tau}{T})$.

Definition (Time-Average Autocorrelation)

For a power-type signal x(t), we define the time-average autocorrelation function

$$R_{x}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^{*}(t-\tau) dt$$

\$\mathcal{S}_x(f) = \mathcal{F} \{R_x(\tau)\}\$ is called power-spectral density or the power spectrum of the signal \$x(t)\$.

$$P_{\mathsf{x}} = R_{\mathsf{x}}(0) = \int_{-\infty}^{\infty} \mathcal{S}_{\mathsf{x}}(f) df.$$

Solution If we pass the signal x(t) through an LTI system with the impulse response h(t) and frequency response H(f), $R_y(\tau) = R_x(\tau) * h(\tau) * h^*(-\tau) \text{ and } S_y(f) = S_x(f) |H(f)|^2.$

Power-Type Signals

Example (Power of periodic signals)

Any periodic signal $x(t) = x(t + T_0)$ is a power-type signal and its power content equals the average power in one period as

$$\mathcal{P}_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^{2} dt = \lim_{n \to \infty} \frac{1}{nT_{0}} \int_{-nT_{0}/2}^{nT_{0}/2} |x(t)|^{2} dt$$
$$= \lim_{n \to \infty} \frac{n}{nT_{0}} \int_{-T_{0}/2}^{T_{0}/2} |x(t)|^{2} dt = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} |x(t)|^{2} dt$$

Example (Power of cosine)

The power content of $x(t) = A\cos(2\pi f_0 t + \theta)$ is

$$\mathcal{P}_{x} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} A^{2} \cos^{2}(2\pi f_{0}t + \theta) dt = \frac{A^{2}}{2}$$

Mohammad Hadi

Example (Time-average autocorrelation of periodic signals)

Let the signal x(t) be a periodic signal with the period T_0 . Then,

$$R_{x}(\tau) = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) x^{*}(t-\tau) dt$$

$$\begin{aligned} \mathcal{R}_{x}(\tau) &= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^{*}(t-\tau) dt \\ &= \lim_{k \to \infty} \frac{1}{kT_{0}} \int_{-kT_{0}/2}^{kT_{0}/2} x(t) x^{*}(t-\tau) dt \\ &= \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) x^{*}(t-\tau) dt \end{aligned}$$

Mohammad Hadi

Example (Time-average autocorrelation of periodic signals)

Let the signal x(t) be a periodic signal with the period T_0 and have the Fourier-series coefficients x_n . Then, $R_x(\tau) = \sum_{n=-\infty}^{\infty} |x_n|^2 e^{j2\pi n\tau/T_0}$.

 $\frac{1}{T_0}\int_{-T_0/2}^{T_0/2}e^{j2\pi(n-m)t/T_0}dt = \delta_{nm}$, which is nonzeros when n = m. So

$$\begin{aligned} R_{x}(\tau) &= \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) x^{*}(t-\tau) dt \\ &= \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x_{n} x_{m}^{*} e^{j2\pi m\tau/T_{0}} e^{j2\pi (n-m)t/T_{0}} dt \\ &= \sum_{n=-\infty}^{\infty} |x_{n}|^{2} e^{j2\pi n\tau/T_{0}} \end{aligned}$$

Hilbert Transform

Definition (Hilbert Transform)

The Hilbert transform of the signal x(t) is a signal $\hat{x}(t)$ whose frequency components lag the frequency components of x(t) by 90°.

A delay of π/2 for e^{j2πf₀t} results in e^{j(2πf₀t-π/2)} = -je^{j2πf₀t}.
 A delay of π/2 for e^{-j2πf₀t} results in e^{-j(2πf₀t-π/2)} = je^{-j2πf₀t}.

Statement (Hilbert Transform)

Assume that x(t) is real and has no DC component, i.e., X(0) = 0. Then,

$$\mathcal{F}\{\hat{x}(t)\} = -j sgn(f) X(f)$$

and

$$\hat{x}(t) = rac{1}{\pi t} * x(t) = rac{1}{\pi} \int_{-\infty}^{\infty} rac{x(au)}{t- au} d au$$

★ ∃ ►

- The Hilbert transform of an even real signal is odd, and the Hilbert transform of an odd real signal is even.
- Applying the Hilbert-transform operation to a signal twice causes a sign reversal of the signal, i.e., $\hat{x}(t) = -x(t)$.
- **③** Energy content of a signal is equal to the energy content of its Hilbert transform, i.e., $\mathcal{E}_{x} = \mathcal{E}_{\hat{x}}$.
- The signal x(t) and its Hilbert transform are orthogonal, i.e.,

$$\int_{-\infty}^{\infty} x(t) \hat{x}(t) dt = 0$$

Example (Hilbert transform of a cosine)

$$\begin{aligned} x(t) &= A\cos(2\pi f_0 t + \theta) \leftrightarrow \frac{A}{2} e^{j\theta} \delta(f - f_0) + \frac{A}{2} e^{-j\theta} \delta(f + f_0) \\ \hat{x}(t) \leftrightarrow -j \operatorname{sgn}(f) \Big[\frac{A}{2} e^{j\theta} \delta(f - f_0) + \frac{A}{2} e^{-j\theta} \delta(f + f_0) \Big] \\ \hat{x}(t) \leftrightarrow \frac{A}{2j} e^{j\theta} \delta(f - f_0) - \frac{A}{2j} e^{-j\theta} \delta(f + f_0) \\ \hat{x}(t) &= A \sin(2\pi f_0 t + \theta) \leftrightarrow \frac{A}{2j} e^{j\theta} \delta(f - f_0) - \frac{A}{2j} e^{-j\theta} \delta(f + f_0) \end{aligned}$$

Example (Energy of a signal and its Hilbert transform)

$$\mathcal{E}_{\hat{x}} = \int_{-\infty}^{\infty} |\hat{x}(t)|^2 dt = \int_{-\infty}^{\infty} |\mathcal{F}\{\hat{x}(t)\}|^2 df$$
$$= \int_{-\infty}^{\infty} |-j\operatorname{sgn}(f)X(f)|^2 df = \int_{-\infty}^{\infty} |X(f)|^2 df = \int_{-\infty}^{\infty} |x(t)|^2 dt = \mathcal{E}_x$$

Example (Orthogonality of a signal and its Hilbert transform)

$$\int_{-\infty}^{\infty} \hat{x}(t)x(t)dt \int_{-\infty}^{\infty} \hat{x}(t) [x^*(t)]^* dt = \int_{-\infty}^{\infty} -j \operatorname{sgn}(f)X(f) [X^*(-f)]^* df = \int_{-\infty}^{\infty} -j \operatorname{sgn}(f)X(f)X(-f) df = 0$$

Lowpass and Bandpass Signals

Mohammad Hadi

Communication systems

Spring 2021 86 / 111

Image: A matrix and a matrix

Definition (Lowpass Signal)

A lowpass signal is a signal, whose spectrum is located around the zero frequency.

Figure: Spectrum of a lowpass signal.

Definition (Bandpass Signal)

A bandpass signal is a signal with a spectrum far from the zero frequency.

Figure: Spectrum of a bandpass signal.

- The spectrum of a bandpass signal is usually located around a center frequency f_c , which is much higher than the bandwidth of the signal.
- 2 The extreme case of a bandpass signal is $x(t) = A\cos(2\pi f_c t + \theta)$, which can be represented by a phasor $x_l = Ae^{j\theta} = x_c + jx_s$, where A, θ, x_c , and x_s are called envelope, phase, in-phase component, and quadrature component, respectively.
- The original signal x(t) can be reconstructed from its phasor as $x(t) = A\cos(2\pi f_c t + \theta) = x_c \cos(2\pi f_c t) x_s \sin(2\pi f_c t)$.

Statement (Slowly-varying Lowpass Phasor)

Assume that we have a slowly-varying lowpass phasor $x_l(t) = A(t)e^{j\theta(t)} = x_c(t) + jx_s(t)$, where $A(t) \ge 0$, $\theta(t)$, $x_s(t)$, and $x_c(t)$ are slowly-varying signals compared to f_c . The real bandpass signal $x(t) = A(t)\cos(2\pi f_c t + \theta(t))$ relates to the complex time-varying phasor $x_l(t)$ as

$$\begin{aligned} x(t) &= \Re\{x_l(t)e^{j2\pi f_c t}\} = \Re\{A(t)e^{j(2\pi f_c t + \theta(t))}\}\\ &= x_c(t)\cos(2\pi f_c t) - x_s(t)\sin(2\pi f_c t)\end{aligned}$$

Lowpass and Bandpass Signals

- $x_l(t) = A(t)e^{j\theta(t)} = x_c(t) + jx_s(t)$ is is called the lowpass equivalent of the bandpass signal $x(t) = A(t)\cos(2\pi f_c t + \theta(t))$.
- ② The envelope $|x_l(t)|$ and the phase ∠ $x_l(t)$ of the bandpass signal are defined as

$$|x_l(t)| = A(t) = \sqrt{x_c^2(t) + x_s^2(t)}$$

and

$$\angle x_l(t) = \theta(t) = \tan^{-1}(\frac{x_s(t)}{x_c(t)})$$

Obviously, the in-phase and quadrature components satisfy

$$x_c(t) = A(t)\cos(\theta(t))$$

and

$$x_s(t) = A(t)\sin(\theta(t))$$

Example (Spectrum of the bandpass signal)

$$x(t) = \Re\{x_l(t)e^{j2\pi f_c t}\} = \frac{1}{2} [x_l(t)e^{j2\pi f_c t} + x_l^*(t)e^{-j2\pi f_c t}]$$

So,

$$X(f) = \frac{1}{2}X_{l}(f - f_{c}) + \frac{1}{2}X_{l}^{*}(-(f + f_{c}))$$

Mohammad Hadi

Lowpass and Bandpass Signals

Example (Spectrum of the bandpass signal)

$$X(f) = \frac{1}{2}X_{l}(f - f_{c}) + \frac{1}{2}X_{l}^{*}(-(f + f_{c}))$$

Figure: Spectrum of the lowpass signal and its associated bandpass signal.

Mohammad Hadi

Spring 2021 93 / 111

< ロト < 同ト < ヨト < ヨ

Example (Spectrum of the lowpass signal)

If the bandwidth of the bandpass signal W is much less than the central frequency f_c , then

$$X(f) = \frac{1}{2}X_{l}(f - f_{c}) + \frac{1}{2}X_{l}^{*}(-(f + f_{c}))$$

$$X(f + f_{c}) = \frac{1}{2}X_{l}(f) + \frac{1}{2}X_{l}^{*}(-(f + 2f_{c}))$$

$$X(f + f_{c})u(f + f_{c}) = \frac{1}{2}X_{l}(f)u(f + f_{c}) + \frac{1}{2}X_{l}^{*}(-(f + 2f_{c}))u(f + f_{c})$$

$$X(f + f_{c})u(f + f_{c}) = \frac{1}{2}X_{l}(f)$$

$$2X(f + f_{c})u(f + f_{c}) = X_{l}(f)$$

Lowpass and Bandpass Signals

Example (Spectrum of the lowpass signal)

If the bandwidth of the bandpass signal W is much less than the central frequency f_c , then

$$X_l(f) = 2X(f+f_c)u(f+f_c)$$

Figure: Spectrum of the bandpass signal and its associated lowpass signal.

Mohammad Hadi

< □ > < 凸

Spring 2021 95 / 111

Example (Lowpass equivalent of a bandpass signal)

$$X_{I}(f) = 2X(f + f_{c})u(f + f_{c})$$

= $2X(f + f_{c})\frac{1 + \text{sgn}(f + f_{c})}{2}$
= $2X(f + f_{c})\frac{1 - j^{2}\text{sgn}(f + f_{c})}{2}$
= $X(f + f_{c}) + j[-j\text{sgn}(f + f_{c})X(f + f_{c})]$

So,

$$x_l(t) = \left[x(t) + j\hat{x}(t)\right]e^{-j2\pi f_c t}$$

Mohammad Hadi

Example (In-phase component of a bandpass signal)

$$x_l(t) = \left[x(t) + j\hat{x}(t)\right]e^{-j2\pi f_c t}$$

So,

$$x_l(t) = \left[x(t) + j\hat{x}(t)\right] \left[\cos(2\pi f_c t) - j\sin(2\pi f_c t)\right]$$

 $x_{l}(t) = x(t)\cos(2\pi f_{c}t) + \hat{x}(t)\sin(2\pi f_{c}t) + j[\hat{x}(t)\cos(2\pi f_{c}t) - x(t)\sin(2\pi f_{c}t)]$

and,

$$\Re\{x_l(t)\} = x_c(t) = x(t)\cos(2\pi f_c t) + \hat{x}(t)\sin(2\pi f_c t)$$

Example (Quadrature component of a bandpass signal)

$$x_l(t) = \left[x(t) + j\hat{x}(t)\right]e^{-j2\pi f_c t}$$

So,

$$x_l(t) = \left[x(t) + j\hat{x}(t)\right] \left[\cos(2\pi f_c t) - j\sin(2\pi f_c t)\right]$$

 $x_{l}(t) = x(t)\cos(2\pi f_{c}t) + \hat{x}(t)\sin(2\pi f_{c}t) + j[\hat{x}(t)\cos(2\pi f_{c}t) - x(t)\sin(2\pi f_{c}t)]$

and,

$$\Im\{x_{l}(t)\} = x_{s}(t) = \hat{x}(t)\cos(2\pi f_{c}t) - x(t)\sin(2\pi f_{c}t)$$

Example (Envelope of a bandpass signal)

$$x_l(t) = \left[x(t) + j\hat{x}(t)\right]e^{-j2\pi f_c t}$$

So,

$$|x_l(t)| = A(t) = \sqrt{x^2(t) + \hat{x}^2(t)}$$

Mohammad Hadi

Example (Phase of a bandpass signal)

$$x_l(t) = \left[x(t) + j\hat{x}(t)\right]e^{-j2\pi f_c t}$$

So,

$$x_{l}(t) = \left[x(t) + j\hat{x}(t)\right] \left[\cos(2\pi f_{c}t) - j\sin(2\pi f_{c}t)\right]$$

 $x_{l}(t) = x(t)\cos(2\pi f_{c}t) + \hat{x}(t)\sin(2\pi f_{c}t) + j[\hat{x}(t)\cos(2\pi f_{c}t) - x(t)\sin(2\pi f_{c}t)]$ and,

$$\angle x_l(t) = heta(t) = an^{-1} \left[rac{\hat{x}(t)\cos(2\pi f_c t) - x(t)\sin(2\pi f_c t)}{x(t)\cos(2\pi f_c t) + \hat{x}(t)\sin(2\pi f_c t)}
ight]$$

э

Example (Lowpass equivalent of sinusoidal signal)

Lowpass equivalent of the bandpass signal $x(t) = A\cos(2\pi f_c t + \theta)$ is

$$\begin{aligned} x_l(t) &= \left[x(t) + j\hat{x}(t) \right] e^{-j2\pi f_c t} \\ &= \left[A\cos(2\pi f_c t + \theta) + jA\sin(2\pi f_c t + \theta) \right] e^{-j2\pi f_c t} \\ &= Ae^{j(2\pi f_c t + \theta)} e^{-j2\pi f_c t} = Ae^{j\theta} \end{aligned}$$

So, A(t) = |A|, $\theta(t) = \theta + u(-A)\pi$, $x_s(t) = A\cos(\theta)$, and $x_s(t) = A\sin(\theta)$.

Example (Lowpass equivalent of sinusoidal signal)

Lowpass equivalent of the bandpass signal $x(t) = \operatorname{sinc}(t) \cos(2\pi f_c t + \frac{\pi}{4})$ can be obtained as

$$x(t) = \operatorname{sinc}(t) \cos(\frac{\pi}{4}) \cos(2\pi f_c t) - \operatorname{sinc}(t) \sin(\frac{\pi}{4}) \sin(2\pi f_c t)$$
$$x_c(t) = \frac{\sqrt{2}}{2} \operatorname{sinc}(t), \quad x_s(t) = \frac{\sqrt{2}}{2} \operatorname{sinc}(t)$$
$$x_l(t) = x_c(t) + jx_s(t) = \frac{\sqrt{2}}{2} \operatorname{sinc}(t)(1+j) = \operatorname{sinc}(t)e^{j\frac{\pi}{4}}$$

Mohammad Hadi

Filters

Mohammad Hadi

Communication systems

Spring 2021 103

æ

メロト メポト メヨト メヨト

Figure: Ideal LPF frequency response and its impulse response.

$$H(f) = \sqcap(\frac{f}{2W}) \leftrightarrow h(t) = 2W\operatorname{sinc}(2Wt)$$

Mohammad Hadi

Spring 2021 104 / 111

э

Figure: Linear-phase ideal LPF frequency response and its impulse response.

$$H(f) = \sqcap(rac{f}{2W})e^{-j2\pi ft_d} \leftrightarrow h(t) = 2W\operatorname{sinc}(2W(t-t_d))$$

Mohammad Hadi

Spring 2021 105 / 111

Figure: Truncated LPF impulse response.

 $h(t) = 2W \operatorname{sinc}(2W(t - t_d))$ $h(t) = 2W \operatorname{sinc}(2W(t - t_d))u(t)$

Figure: Butterworth LPF frequency characteristic.

$$|H(f)| = \frac{1}{\sqrt{1 + (\frac{f}{B})^{2n}}}$$

Mohammad Hadi

Communication systems

Spring 2021 107 / 111

æ

Lowpass Filter

Figure: Comparison of butterworth and ideal filters.

Figure: Basic filters. (a) LPF (b) HPF (c) BPF.

Mohammad Hadi

Communication systems

-Spring 2021

æ

109/111

Spring 2021

Ξ.

110/111

<ロト <回ト < 回ト < 回ト < 回ト -

The End

Mohammad Hadi

Communication systems

Spring 2021 111 /

æ

メロト メポト メヨト メヨト