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Basic Operations on Signals

x(t = tg)
[ o "
x(t) x(at)
| y ' ;
x(—t)
/\. ,

Figure: Time shifting, time scaling, time reversal.

x(t) = x(t — to);  x(t) = x(at); x(t) = x(—t)
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Classification of Signals

Figure: Continuous-time and discrete-time signals.

x(t),teR; x[n,neZ
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Classification of Signals

c(t) = Acos(2nf,t)

Figure: Random and deterministic signals.
x(t,w)eRteRw~P[Q=w];, x(t)eR,teR
s(t) = Audio Signal; ¢(t) = Ac cos(2rf.t)
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Classification of Signals

(1) (1)

. LAAN
R VRVATAY

Figure: Nonperiodic and periodic signals.

BTo : x(t + To) = x(t); 3To: x(t+ To) = x(t)
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Classification of Signals

I(t ) ,\'( [)

Andl
~

Figure: Causal and noncausal signals.

Vt<0:x(t)=0;, 3t<0:x(t)#0
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Classification of Signals

x(t) x(t)

ERVATATA

Figure: Energy and power signals.

T/2
T/2 S Ix(t)]?dt
0<& = lim / x(0)2dt < 00r 0< Py— lim 2 o
T—o0 T—o0 T

—T)2
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Classification of Signals

x(t)
x(1)

0 t /‘0 t

Figure: Even and odd signals.

x(t) = x(—t); x(t) = —x(—t)
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Classification of Signals

Statement (Even-Odd Decomposition)

Any signal x(t) can be written as the sum of its even and odd parts as
x(t) = xe(t) + xo(t), where

Xe(t) — X(t) +2X(_t)
Xo(t) _ X(t) _2X(_t)
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Classification of Signals

x(1) xi(1)

\

A Y

VL

Figure: Real and complex signals.

x(t)eR; x(t)eC

x(t) = Acos(2rfot +0);  xi(t) = Asin(2rfot + 0)
x(t) = R{x(t)} +j3{x(t)} = x(t) + jxi(t)
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Classification of Signals

(o) } 2x(r)

P

P

Figure: Real and complex signals.
x(t) eR; x(t)eC
Ix(t)| = |Al;  Zx(t) =2nfot +0
x(t) = (D]
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Classification of Signals

Statement (Complex Signal Representation)

For the complex signal x(t) = x,(t) + jxi(t) = R{x(t)} + jI{x(¢t)} =
[x(£)] (),

o () = R{x(t)} = [x(t)] cos(£x(2))
xi(t) = S{x(£)} = [x(8)|sin(£x(1))
Ix(8)] = \/x3(8) + x2(2)

Lodl) = tan_l(iiég)

Mohammad Hadi Communication systems Spring 2021 14 /111



Some Important Signals

AN
JATA

Figure: Sinusoidal signal.

x(t) = Acos(2rfot + 6) = Acos(2mt/ Ty + 6)

x(t)
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Some Important Signals

x:(0) xi(t)

AAA - AN
TV VS VIV

(ol 4 x0)

.

Figure: Complex exponential signal.

x(t) = Acos(2rfyt + 0) + jAsin(2rfot + 0) = Ae/2mht+0)
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Some Important Signals

u(t) |

Figure: Unit step signal.

1, t>0

MQZ{Q t<0
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Some Important Signals

me
1
| |
| |
| |
| |
1 |
! |
! i
1 I
1 ] N
1 1 t
2 2
Figure: Rectangular signal.
1 t| <05
n(t) = rect(t) =< el <
0, |t| > 0.5
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Some Important Signals

AQ)

-1 1 t

Figure: Triangle signal.

. 1_’t|7 ‘ﬂgl
A(t) = tri(t) = {0 > 1
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Some Important Signals

sinc (9)
1

Figure: Sinc signal.

sin(7rt), t 7,5 0

sinc(t) = wt
(t) 1, t=0
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Some Important Signals

sgn (1)
+1]

-1

Figure: Sign signal.

1, t>0
sgn(t) =<0, t=0
-1, t<0
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Some Important Signals

D=

ool—
EN

Figure: Unit impulse signal.

t=0 1 1
5(t) = {oo’ — lim =sinc(2) = lim =1 (})
0, t#£0 e=0¢€ € e—0 € €
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Some Important Signals

8(r)

0 t

Figure: Unit impulse signal.

o0, t=20
5(t):{o, t 40
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Singular Functions

Definition (Convolution)

The convolution of the functions h(t) and x(t) is defined as

o0

y(t):x(t)*h(t):h(t)*x(t):/ x()h(t — 7)dr

—00

Definition (Test Function)

x(t) is called a test function if it is infinitely differentiable and is zero outside
a finite interval.

.

Mohammad Hadi Communication systems Spring 2021 24 /111



Singular Functions

Definition (Unit Impulse Signal)

The unit impulse function ug(t) = 4(t) is defined as the function satisfying

+o0o
/ 5(t)x(t)dt = x(0)

—00

for any test function x(t).
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Singular Functions

Theorem (Properties of Unit Impulse Signal)

The unit impulse function satisfies the following identities

+o0
/ o(t)dt =
x(t) = o(t) = x(t)
5(at) = %5&), 240
x(£)3(t) = x(0)8(¢)

to(t) =0

o(t)=0,t#0
Mohammad Hadi Communication systems Spring 2021 26 /111



Singular Functions

Example (Area under §(t))

The area under the unit impulse function is 1.

For x(t) =1,

Example (Convolution with 6(t))

0(t) is the neutral function of the convolution operation, i.e. x(t) = d(t) *

x(t) .

+oo
5(t) # x(t) :/ S(r)x(t — 7)dr = x(t — 0) = x(¢t)

—0o0
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Singular Functions

Definition (Unit Doublet Signal)

The unit doublet function uy(t) = ¢’(t) is defined as the function satisfying

+o0o
/_ 5 (£)x(t)dt = —x'(0)

(e 9]

for any test function x(t).

Definition (Higher-order Impulse Signals)

Generally, u,(t) = 6(")(t),n > 0 is defined as the function satisfying

/ T 50 ()x(£)dt = (—1)"xP(0)

(e.9]

for any test function x(t).

v
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Singular Functions

Theorem (Convolution with u,(t))

un(t), n > 1 satisfies x("(t) = u,(t) * x(t).

For n=1,

oo x(t — T
ur(t) = x(t) = / §(m)x(t — 7)dT = —Mh:o = X'(t)

oo dr

Theorem (Relation of §'(t) and wu,(t))

up(t), n > 2 relates to uy(t) = &§'(t) as up(t) = ur(t) * ug(t) *---* uy(t) .
n %ES

For n =2,

T _ 9 FE) 9 (1) 0 (1) = x(0) * (1) * (1)
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Singular Functions

Definition (Unit Step Signal)

The unit step function u_1(t) = u(t) is defined as the function satisfying

/ ™ Ox(0)de = /0 T ()t

— 00

for any test function x(t).

Definition (Higher-order Step Signals)

Generally, u_n(t),n > 2 is defined as

u_n(t) =u_1(t) * u_1(t) *-- - x u_1(t)

n times
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Singular Functions

Theorem (Explicit representation of u_,(t), n > 2)

u_np(t),n > 2 can be represented as

tn—l

u_n(t) = !u_l(t)

(n—1)
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Singular Functions

r(t) U(t) 5(t) &' (t) 5(1)

4(t) Us(t) U_z(t) U_l(t) u (t) U(I) u (t) us(t) U, ()

Figure: Singular functions.
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Singular Functions

Example (Representation of other signals using the singular signals)

x(t) can be represented by u(t) and its shifted versions as

x(t) = u(t)+2u(t —1) — u(t —2)

x(@) |}

|- ————

;‘ :

= ———

Figure: The signal u(t) + 2u(t — 1) — u(t — 2).
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Some Important Signals

Example (Simplification using the properties of the singular functions)

cos(t)d(t) = cos(0)d(t) = o(t)

cos(t)5(2t — 3) = cos(t)(2(t — g)) = 150t — 3y cos(t) = COS(%)é(t _3

- —tg/ > —u—1g¢/ =il de”" =1
e t'(t—1)dt = e 0'(u)du=e(-1) y lu=0 =€

—00 — 00
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Systems
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Classification of Signals

Definition (System)

A system is an entity that is excited by an input signal x(t) and, as a result
of this excitation, produces an output signal y(t). The output is uniquely
defined for any legitimate input by

y(t) = T{x(t)}

x()—= T p—=y()

Figure: System block diagram.

Mohammad Hadi Communication systems Spring 2021 36/111



Classification of Systems

Definition (Continuous-time System)

For a continuous-time system, both input and output signals are continuous-
time signals.

Definition (Discrete-time System)

For a discrete-time system, both input and output signals are discrete-time
signals.

v
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Classification of Systems

Definition (Linear System)

A system T is linear if and only if, for any two input signals x;(t) and x(t)
and for any two scalars « and 3, we have,

T{axi(t) + Bxa(t)} = aT {x1(t)} + BT {x2(t)}

Definition (Nonlinear System)

A system is nonlinear if it is not linear.

Mohammad Hadi Communication systems Spring 2021 38/111



Classification of Systems

Definition (Time-Invariant System)

A system is time-invariant if and only if, for all x(t) and all values of ty, its
response to x(t — tg) is y(t — tp), where y(t) is the response of the system
to x(t).

Definition (Time-variant System)

A system is time-variant if it is not time-invariant.
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Classification of Systems

Definition (Causal System)

A system is causal if its output at any time ty depends on the input at times
prior to ty, i.e.,

y(to) = T{x(t) : t < to}.

Definition (Noncausal System)

A system is noncausal if it is not causal.
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Classification of Systems

Definition (Stable System)
A system is stable if its output is bounded for any bounded input, i.e.,

Ix(t)] < B=ly(t)| < M.

Definition (Instable System)

A system is instable if it is not stable.
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LTI Systems

Statement (Linear Time-Invariant System)

A system is Linear Time-Invariant (LTI) if it is simultaneously linear and
time-invariant. An LTI system is completely characterized by its impulse
response h(t) = T{d(t)}.

y(t) = T{x(t)}
= T{/_ x(1)o(t — 7)dT}

:/wx@ﬂqap~ﬂwr

—00

:/WXQMU—TWT

—00

= x(t) = h(t)
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LTI System

Statement (Causality of LTI Systems)
An LTI system is causal if and only if h(t) = 0,t < 0.

Statement (Stability of LTI Systems)

An LTI system is stable if and only if fj;o |h(t)|dt < oco.
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LTI System

Example (Complex exponential response)

The response of an LTI system h(t) to the exponential input x(t) =
Ae/2mht+9) can be obtained by

y(t) = AH(fb)ej(zﬁﬁ)t+9) _ A’H(fo)|ej(27rfbt+0+4H(fb))

, where

H() = |H(&)| <40 = [ hr)e o7 dr

—00

y(t) = / h(r) A @TH(E=T)+0) g7

— Aej(27rfot+9) /OO h(T)eszﬂfonT
= A|H(fy)|/Crhot+0+2H(k))
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Fourier Series
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Fourier Series and Its Properties

Definition (Fourier Series)

The periodic signal x(t + To) = x(t) can be expanded in terms of the
complex exponential {e/2™/To}>0 a5

o0

X(t) _ Z Xnej27rnt/To
n=—oo
, Where
Xp = S x(t)e =27t/ To gy
To J1,
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Fourier Series and Its Properties

Dirichlet sufficient conditions for existence of the Fourier series are:
0
@ x(t) is absolutely integrable over its period, i.e. fo |x(t)|dt < 0.
@ The number of maxima and minima of x(t) in each period is finite.

© The number of discontinuities of x(t) in each period is finite.
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Fourier Series and Its Properties

© The quantity fy = 1/ Ty is called the fundamental frequency of the
signal x(t).

@ The frequency of the nth complex exponential signal is nfy, which is
called the nth harmonic.

© In general, x, = |x,|e/“*", where |x,| gives the magnitude of the nth
harmonic and Zx, gives its phase.

@ For real signals x(t) = x*(t), x_, = x,..
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Fourier Series and Its Properties

— T~
/// \\
e N
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Figure: Positive and negative frequencies.
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Fourier Series and Its Properties

Example (Fourier series of rectangular-pulse train)

\)
Al
1 T o n
- SINC | —
il T (To)
x@)
i
— T < — T - —> T - : 1
1
i \
! i
| | N a [
-Ty _% % Ty t ‘MIA_ZO 2 4 n

Figure: The discrete spectrum of the rectangular-pulse train.
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Fourier Series and Its Properties

Definition (Trigonometric Fourier Series)

The real periodic signal x(t + Tog) = x(t) can be expanded as

x(t) = % + Z ap cos(2mnt/ Ty) + Z by sin(2wnt/ To)

n=1 n=1
, where
2
an=— | x(t)cos(2wnt/Ty)dt
To J1,
and ;
bp=— [ x(t)sin(2wnt/Ty)dt
To J1,
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Fourier Series and Its Properties

Q x,= % 7./%
@ For even real periodic signals, b, = 0.

© For odd real periodic signals, a, = 0.
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Fourier Series and Its Properties

Example (Response of LTI Systems to Periodic Signals)

The response of an LTI system h(t) to the periodic input x(t + To) = x(t)
can be obtained by

(e.9]

y(t)= Y xaH(n/To)e>m/Te

n=—0oo

, Where

. +0o0 .
H(f) = |H(f)|e/“H() = / h(t)e 2™t dt.

—00

y(8) = T{x(0)} = T{ Y x>/ 70}
— Z XnT{ej27Tnt/To}: Z XnH(n/TO)ej27rnt/To
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Fourier Series and Its Properties

@ If the input to an LTI system is periodic with period Ty, then the output
is also periodic with period Tp.

o0 j2mnt
@ The output has a Fourier-series expansion given by y(t) = Y. y,e T,

n=—oo

where y, = x,H(n/ Tp).
© An LTI system cannot introduce new frequency components in the
output.
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Fourier Series and Its Properties

Statement (Rayleigh's Relation)

For a periodic signal x(t + To) = x(t),

o0

1
‘PX—_—/ x(t)|?dt = Xn?
To To‘()| E |Xn]

n=—0o0
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Fourier Transform

Mohammad Hadi Communication systems Spring 2021 56 /111



Fourier Transform

Definition (Fourier Transform)

If the Fourier transform of x(t), defined by

X(f) = /oo x(t)e J2 gt

— 00

exists, the original signal can be obtained from its Fourier transform by

x(t) = /_oo X(f)e>ft df

Mohammad Hadi Communication systems
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Fourier Transform and Its Properties

Dirichlet sufficient conditions for existence of the Fourier transform are:
@ x(t) is absolutely integrable over the real line, i.e., [ [x(t)|dt < cc.
@ The number of maxima and minima of x(t) in any finite real interval
is finite.

© The number of discontinuities of x(t) in any finite real interval is finite.
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Fourier Transform and Its Properties

@ X(f) is generally a complex function. lts magnitude |X(f)| and phase
ZX(f) represent the amplitude and phase of various frequency com-
ponents in x(t).

@ The function X(f) is sometimes referred to as the spectrum of the
signal x(t).

© To denote that X(f) is the Fourier transform of x(t), we frequently
employ the notations X(f) = F{x(t)}, x(t) = FH{X(f)}, or x(t) <>
X(f).
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Fourier Transform and Its Properties

@ For real signals x(t) = x*(t),

X(=f) = X*(f)
RIX(=F)] = RIX(f)]
SX(=)] = =SIX(7)]

(X(=H)l = IX(F)|
IX(—F) = —£X(f)

@ If x(t) is real and even, X(f) will be real and even.
@ If x(t) is real and odd, X(f) will be imaginary and odd.
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Fourier Transform and Its Properties

Statement (Signal Bandwidth)

We define the bandwidth of a real signal x(t) as the range of positive
frequencies contributing strongly in the spectrum of the signal.

Xl

Figure: Bandwidth of a real signal.
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Fourier Transform and Its Properties

Example (Fourier transform of M(t))

+oo . 0.5 . . f
F{O(t)} = / M(t)e 72t gt = / ety = SNTE) o)
—0o0 —0.5 7T
Sinc (f)
1

m@ 4,
N

! i AN VAN
-1 1 r -5 N3 \/—1 1\/ NS 5 g

Figure: M(t) and its Fourier transform.
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Fourier Transform and Its Properties

Example (Modulation Property)

x(£) cos(2mfot) <> %[X(f — ) + X(F + )]

x(t)

1
08 X(f)
06}~
04} .
02 L f
s 0 5
L x(t) cos 2nfy t
05 Ix(r-m+ix(r+fo)
0
N e N
—05 ~fo vl fo f
-1
-5 0 5

Figure: Effect of modulation in both the time and frequency domain.
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Fourier Transform and Its Properties

Property Signal Fourier
Assumption x(t) X(f)
Assumption y(t) Y(f)
Linearity ax(t) + by(t) aX(f)+ bY (f)
Time Shifting x(t — to) e~ /2mfto X (f)
Frequency Shifting &2 htx(t) X(f —fo)

Time Scaling x(at) ﬁX(g)
Conjugation x*(t) X*(—f)
Convolution x(t) * y(t) X(F)Y(f)
Modulation x(t)y(t) X(f) = Y(f)
Sinusoidal Modulation x(t) cos(2mfyt) [X(f — o) + X(f + )]
Auto-correlation x(t) * x*(—t) |X(F)]2

Time Differentiation d);(tt) Jj2rfX(f)

Time Differentiation ddxtf,t) (j27rf)"X(f)
Frequency Differentiation "x(t) (&£ )" d d);f,f)
Integration It x(T)dT 12(72 + X(O)é(f)
Duality X(t) x(—f)
Periodicity S0 xpel2mt/ To > oo Xnd(f — n/To)

Table: Properties of the Fourier transform.
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Fourier Transform and Its Properties

Signal Fourier
o(t) 1
1 o(f)
6(t _ to) e—J2rfty

6"(1) (j2mf)"

e/2mht o(f — fo)
sgn(t) ﬂ%f
% —stgn(f)

u(t) szf + 5(f)
cos(2mfyt) %[é(f— fo)+5(f+fo)]
sin(2rfot) 116(F — 1) — o(F + )]

n(t) sinc(f)

sinc(t) mn(f)
A(t) sinc?(f)
sinc?(t) A(f)
e‘atu(t) a>0 mﬁ
(;’7 l)le_a U(t) a>0 m

s d(t—nTo) £ 3202 8(f —n/To)

n=—oo

Table: Fourier transform of elementary functions.
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Fourier Transform and Its Properties

Statement (Parseval’s Relation)

If the Fourier transforms of the signals x(t) and y(t) are denoted by X(f)
and Y (f), respectively, then

/_x(t dt/XY*f

Statement (Rayleigh's Relation)

If the Fourier transforms of the signals x(t) is denoted by X(f), then

E = /oo Ix(t)dt = /OO |X(F)|2df
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Fourier Transform and Its Properties

Example (LTI Systems)
The output of an LTI system is represented by the convolution integral
y(t) = h(t) * x(t) :/ h(t — 7)x(r)dr :/ hr)x(t — 7)dr

, where h(t) is the impulse response of the LTI system. In the frequency
domain,

Y(f) = H(f)X(f)

, where the frequency response H(f) is the Fourier transform of the impulse
response h(t).

v
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Fourier Transform and Its Properties

Example (Interconnection of LTI systems)

The overall frequency response H(f) of the parallel, feedback, and series
interconnection of the LTI systems Hi(f) and Ha(f) is Hi(f) + Ha(f),
Hi(f)/(1 + Hi(f)H2(f)), and Hi(f)Ha(f), respectively.

1(f) X(f)—» Hi(f) Y{(f)

L~
A

Ha(f) Hy(f)

(b)

X(f) = H(f) | I(f) —>Y(f)

(c)

Figure: (a) Parallel, (b) Feedback, and (c) series interconnection of LTI systems.
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Power and Energy
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Power and Energy

Definition (Energy Signal)

The signal x(t) is energy-type if its energy content is nonzero and limited,
i.e.,

0<€ :/ Ix(£)2dt < 00

Definition (Power Signal)

The signal x(t) is power-type if its power content is nonzero and limited,
i.e.,
T/2

— Im - 2
0<Px= TlE;noo 7)1 |x(t)|“dt < 0o
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Power and Energy

@ A signal cannot be both power- and energy-type because P, = 0 for
energy-type signals, and & = oo for power-type signals.

@ A signal can be neither energy-type nor power-type.
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Energy-Type Signals

Definition (Autocorrelation)

For an energy-type signal x(t), we define the autocorrelation function

(e.9] (e.9]

RX(T):X(T)*X*(—T)=/ x(t)x*(t—r)dtz/ x(t + 7)x" (t)dt

— 00 — 00
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Energy-Type Signals

Q@ F{R.(7)} = |X(F)|> = E.(f), where E(f) is called the energy spectral
density of a signal x( ).

© &= Ru(0) = J2, Ix(1)Pdt = [ Ex(
© If we pass the signal x(t) through an LTI system with the impulse
response h(t) and frequency response H(f),
Ry(r) = FH{IY(F)P*}
= FHIX(O)PIH(A)I*}
= FHIX(A)IP} = FTHIH(A)P} = Ru(7) * Ri(7)
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Energy-Type Signals

Example (Energy of rectangular pulse)
(

The energy content of x(t) = AT (%) is & = [T |x(t)]?dt =

T/2 _
12, Aldt = APT.

v

Example (Energy spectral density of rectangular pulse)

The energy spectral density of x(t) = AT1(%) is &(f) = |F{AM (%)}‘2 =
T2 A%sinc?( TF).

v

Example (Autocorrelation of rectangular pulse)

The autocorrelation of x(t) = AT (£) is Ru(r) = FHE(F)} =
A2TA(Z).

v
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Power-Type Signals

Definition (Time-Average Autocorrelation)

For a power-type signal x(t), we define the time-average autocorrelation
function
1 T/2
Re(7) = lim = x(t)x*(t — 7)dt
T—oo T —T/2
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Power-Type Signals

O S«(f) = F{R«(7)} is called power-spectral density or the power
spectrum of the signal x(t).

@ P, = R.(0) = [, Su(F)dfF.

© If we pass the signal x(t) through an LTI system with the impulse
response h(t) and frequency response H(f),
Ry(7) = Re(7) * h(7)  h*(—7) and S,(f) = Sx(f)|H(f)|>.
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Power-Type Signals

Example (Power of periodic signals)

Any periodic signal x(t) = x(t + Tp) is a power-type signal and its power
content equals the average power in one period as

T/2 1 nTo/2
Py = lim — Ix(t)|?dt = lim — x(t)|*dt
Tooo T J_11 n—o0 nTo J_p1y/2
T0/2 1 T0/2
— i 2 Ix(t) Pt = —/ Ix(£) Pt
=2 nTO —To/2 TO —To/2

Example (Power of cosine)

The power content of x(t) = Acos(2rfyt + 6) is

1 [To/2 A2
Py = — / A? c052(27rf0t +0)dt = —
T() _TO/2 2
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Power-Type Signals

Example (Time-average autocorrelation of periodic signals)

Let the signal x(t) be a periodic signal with the period Ty. Then,

1 To/2
Ru(T) = = x(t)x*(t — 7)dt
To J_1,)2
1 T/2
Re(7) = lim — x(t)x*(t — 7)dt
T—oo —T/2
1 kTo/2
= lim — x(t)x*(t — 7)dt
k—o0 kTO 7kTo/2 ( ) ( )
1 T0/2
= — x(t)x*(t — 7)dt
To J_1,)2
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Power-Type Signals

Example (Time-average autocorrelation of periodic signals)

Let the signal x(t) be a periodic signal with the period Ty and have the

Fourier-series coefficients x,. Then, Ry(7) = > ]Xn|2ei27mT/To.
%0 fj%ﬁ% ef2m(n=m)t/Togr — 5, which is nonzeros when n = m. So
1 To/2
Ru(T) = = x(t)x*(t — 7)dt
To —To/2
1 To/2 i i * ej27rm7-/To ej27r(n—m)t/ To dt
= — XnXp
To —T0/2 p=—o0 m=——oo
— Z |Xn|2€j27rn7—/T0
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Hilbert Transform
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Hilbert Transform

Definition (Hilbert Transform)

The Hilbert transform of the signal x(t) is a signal X(t) whose frequency
components lag the frequency components of x(t) by 90°.

Q A delay of 7/2 for e/271 results in /(20t=7/2) — _ jei2nhot

Q A delay of 7/2 for e /270t results in e J(2mht=m/2) — jo—j2rfot
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Hilbert Transform

Statement (Hilbert Transform)
Assume that x(t) is real and has no DC component, i.e., X(0) = 0. Then,

F{&(t)} = —jsgn(F)X(f)

Mohammad Hadi Communication systems Spring 2021 82 /111



Hilbert Transform

© The Hilbert transform of an even real signal is odd, and the Hilbert
transform of an odd real signal is even.

@ Applying the Hilbert-transform operation to a signal twice causes a sign
reversal of the signal, i.e., X(t) = —x(t).

© Energy content of a signal is equal to the energy content of its Hilbert
transform, i.e., & = &;.

@ The signal x(t) and its Hilbert transform are orthogonal, i.e.,

/Oo x(t)x(t)dt =0

—00
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Hilbert Transform

Example (Hilbert transform of a cosine)

x(t) = Acos(2rfyt + 6) < gejaé(f —fo) + ge_jeé(f + o)
R(t) & —jsgn(f)[gejed(f —fo) + ge_jed(f + fo)]

o A o A g
X(t)<—>2je’ S(F —fo) 2J,e o(f + fo)

A . A .
R(t) = Asin(2rfot + 0) < 2—je195(f — ) — 2_je—105(f + )
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Hilbert Transform

Example (Energy of a signal and its Hilbert transform)

&:/oo |>A<(t)|2dt:/oo F{R(£)} 2

= [T i-dsexorer = [ ix(opar= [ opa =,

v

Example (Orthogonality of a signal and its Hilbert transform)

/OO )“((t)x(t)dt/oo R(8) [x*(8)] "dt =

/_OO —jsgn(f)X(f) [X*(—f)]*df = /_00 —jsgn(F)X(F)X(—f)df =0

v

Mohammad Hadi Communication systems Spring 2021 85/111



Lowpass and Bandpass Signals
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Lowpass and Bandpass Signals

Definition (Lowpass Signal)

A lowpass signal is a signal, whose spectrum is located around the zero
frequency.

X

M

-W + W f

Figure: Spectrum of a lowpass signal.
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Lowpass and Bandpass Signals

Definition (Bandpass Signal)

A bandpass signal is a signal with a spectrum far from the zero frequency.

X(f)

A AN

~fe-W—f ~f+W fe=W fo fo+W f

Figure: Spectrum of a bandpass signal.
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Lowpass and Bandpass Signals

© The spectrum of a bandpass signal is usually located around a center
frequency f., which is much higher than the bandwidth of the signal.

@ The extreme case of a bandpass signal is x(t) = Acos(2nf.t + 0),
which can be represented by a phasor x; = Ae/’ = x. + jxs, where
A, 0, xc, and x; are called envelope, phase, in-phase component, and
quadrature component, respectively.

© The original signal x(t) can be reconstructed from its phasor as x(t) =
Acos(2nfet 4+ 0) = xc cos(2mft) — xssin(27fct).
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Lowpass and Bandpass Signals

Statement (Slowly-varying Lowpass Phasor)

Assume that we have a slowly-varying lowpass phasor x)(t) = A(t)e/?(t) =
xc(t) + jxs(t), where A(t) > 0, 0(t), xs(t), and x.(t) are slowly-varying
signals compared to f.. The real bandpass signal x(t) = A(t) cos(2nf.t +
0(t)) relates to the complex time-varying phasor x;(t) as

x(t) = R{x/(t)/*™ "} = R{A(t)e/>t+0(1)y
= xc(t) cos(2nf-t) — xs(t) sin(27f,t)
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Lowpass and Bandpass Signals

Q x/(t) = A(t)e() = x(t) + jxs(t) is is called the lowpass equivalent
of the bandpass signal x(t) = A(t) cos(27f.t + 6(t)).

@ The envelope |x/(t)| and the phase Zx;(t) of the bandpass signal are
defined as

()] = A(t) = \/x2(t) + x&(t)

and

Zx(t) = 0(t) = tanl(j:g;)

© Obviously, the in-phase and quadrature components satisfy
xc(t) = A(t) cos(6(t))

and

xs(t) = A(t) sin(6(t))
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Lowpass and Bandpass Signals

Example (Spectrum of the bandpass signal)

X(t) = %{X[(t)ej2ﬂ'fct} _ %[Xl(t)ej%rfct + Xl*(t)efﬂrrfct]

So,

X(f) = %X,(f —f) + %X,*(_(f + 1))
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Lowpass and Bandpass Signals

Example (Spectrum of the bandpass signal)

X(f) = %X,(f —f)+ %X,*(—(f +£))

X }
-W +W ]:
X() A
R Wf, f AW W AW

Figure: Spectrum of the lowpass signal and its associated bandpass signal.
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Lowpass and Bandpass Signals

Example (Spectrum of the lowpass signal)

If the bandwidth of the bandpass signal W is much less than the central
frequency f, then

X(F) = 2XUF — £+ SXT(=(F +£))
X(F + )= SX(F) + S X0(~(F +2£))
X(F+ £)u(F + £2) = SXUNulF + ) + 27 (—(F + 26l +12)
X(F 4 2)u(f + ) = 2 Xi(F)
2X(F + £)u(f + £2) = X(F)
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Lowpass and Bandpass Signals

Example (Spectrum of the lowpass signal)
If the bandwidth of the bandpass signal W is much less than the central
frequency f, then

Xi(f) =2X(f + fo)u(f + fc)

X(f)
oW ftW W f AW 7
X()
f 5 -w W 2f. j’T

Figure: Spectrum of the bandpass signal and its associated lowpass signal.
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Lowpass and Bandpass Signals

Example (Lowpass equivalent of a bandpass signal)

Xi(f) =2X(f + f)u(f + f)
1+sgn(f+ 1)
2

_j2
— oX(f + £) Sgg(f+fC)

= X(f +fc) +j| — jsgn(f + f)X(f + 12)]

= 2X(f + f.)

So,
x(t) = [x(t) + j&(t)] e 2"t
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Lowpass and Bandpass Signals

Example (In-phase component of a bandpass signal)

x(t) = [x(t) + j&(t)] e 2"t

So,
x(t) = [x(t) +jx(t)] [ cos(2nf.t) — jsin(2rfet)]

x/(t) = x(t) cos(2mfot)+&(t) sin(2mfet)+j[X(t) cos(2mfc t) —x(t) sin(27fct)]

and,

R{x1(t)} = xc(t) = x(t) cos(2nf.t) + X(t) sin(2wft)
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Lowpass and Bandpass Signals

Example (Quadrature component of a bandpass signal)

x(t) = [x(t) + j&(t)] e 2"t

So,
x(t) = [x(t) +jx(t)] [ cos(2nf.t) — jsin(2rfet)]

x/(t) = x(t) cos(2mfot)+&(t) sin(2mfet)+j[X(t) cos(2mfc t) —x(t) sin(27fct)]

and,

I{x/(t)} = xs(t) = R(t) cos(2nfct) — x(t) sin(27wf.t)
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Lowpass and Bandpass Signals

Example (Envelope of a bandpass signal)

x(t) = [x(t) + j%(t)] e/t

So,
[xi(t)] = A(t) = /x3(t) + X2(t)
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Lowpass and Bandpass Signals

Example (Phase of a bandpass signal)

x(t) = [x(t) + j&(t)] e 2"t

So,
x(t) = [x(t) +j&(t)] [ cos(2nf.t) — jsin(2rfet)]

x/(t) = x(t) cos(2mfet)+&(t) sin(2mfet)+j[X(t) cos(2mft)—x(t) sin(27fct)]

and,

~

_ 1 (X(t)cos(2nf.t) — x(t)sin(2nf.t)
Lx(t) = 8(t) = tan = [ T R(0) sn(2nfet).
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Lowpass and Bandpass Signals

Example (Lowpass equivalent of sinusoidal signal)
Lowpass equivalent of the bandpass signal x(t) = Acos(27nf.t + 0) is
xi(t) = [x(t) +j&(t)] e 7"t

= [Acos(27fct + 0) + jAsin(2nfct + 6)] e—j2mfct
— Ae/@rfet+0) g—j2mfet _ A0

So, A(t) = |A|, 8(t) = 0+ u(—A)r, xs(t) = Acos(f), and xs(t) = Asin(h).
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Lowpass and Bandpass Signals

Example (Lowpass equivalent of sinusoidal signal)
Lowpass equivalent of the bandpass signal x(t) = sinc(t) cos(2nfct + )
can be obtained as

x(t) = sinc(t) cos(%) cos(27f.t) — sinc(t) sin(%) sin(2f.t)

xe(t) = ;sinc(t) xo(t) = ?sinc(t)

V2 .
2

x1(t) = xc(t) + jxs(t) = — sinc(t)(1 + j) = sinc(t)e’

~13
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Filters
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Lowpass Filter

H(f) "o

Figure: Ideal LPF frequency response and its impulse response.

H(f) = n(ﬁ) & h(t) = 2W sinc(2Wt)
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Lowpass Filter

V203 ”(’)\A /\

\/10 " \/ f \/ \./t

8,(f)=-2nf1,

Figure: Linear-phase ideal LPF frequency response and its impulse response.

H(f) = n(ﬁ)e—ﬂ”ftd & h(t) = 2WsincQW(t — tq))
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Lowpass Filter

h(:)\\ /\ ")
\/ \/t N\ .

OF/\/‘d\/v’

Figure: Truncated LPF impulse response.

h(t) = 2W sincQW(t — t4)) h(t) = 2W sincRQW/(t — tq))u(t)
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Lowpass Filter

1

[H(r) 997
0.84

0.74

0.61

0.5t

0.4¢1
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1
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Mohammad Hadi Communication systems Spring 2021 107 /111



Lowpass Filter

h(z)

LH(7)]

6i(r)

\,
T Ideal—"\_

AN

Figure: Comparison of butterworth and ideal filters.
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Basic Filters

%)

1:46)

Figure: Basic filters. (a) LPF (b) HPF (c) BPF.
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Filter Design

Approx- Factor-
imation 1zation

Imple- Transfor-
mentation mation

Study of
imper- Realization

fections

Figure: Design process.
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The End
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