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Signals
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Basic Operations on Signals

Figure: Time shifting, time scaling, time reversal.

x(t)→ x(t − t0); x(t)→ x(at); x(t)→ x(−t)
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Classification of Signals

Figure: Continuous-time and discrete-time signals.

x(t), t ∈ R; x [n], n ∈ Z
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Classification of Signals

Figure: Random and deterministic signals.

x(t, ω) ∈ R, t ∈ R, ω ∼ P[Ω = ω]; x(t) ∈ R, t ∈ R

s(t) = Audio Signal; c(t) = Ac cos(2πfct)
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Classification of Signals

Figure: Nonperiodic and periodic signals.

@T0 : x(t + T0) = x(t); ∃T0 : x(t + T0) = x(t)

Mohammad Hadi Communication systems Spring 2021 7 / 111



Classification of Signals

Figure: Causal and noncausal signals.

∀t < 0 : x(t) = 0; ∃t < 0 : x(t) 6= 0
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Classification of Signals

Figure: Energy and power signals.

0 < Ex = lim
T→∞

T/2∫
−T/2

|x(t)|2dt <∞; 0 < Px = lim
T→∞

T/2∫
−T/2

|x(t)|2dt

T
<∞
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Classification of Signals

Figure: Even and odd signals.

x(t) = x(−t); x(t) = −x(−t)
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Classification of Signals

Statement (Even-Odd Decomposition)

Any signal x(t) can be written as the sum of its even and odd parts as
x(t) = xe(t) + xo(t), where

xe(t) =
x(t) + x(−t)

2

xo(t) =
x(t)− x(−t)

2
.
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Classification of Signals

Figure: Real and complex signals.

x(t) ∈ R; x(t) ∈ C

xr (t) = A cos(2πf0t + θ); xi (t) = A sin(2πf0t + θ)

x(t) = <{x(t)}+ j={x(t)} = xr (t) + jxi (t)
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Classification of Signals

Figure: Real and complex signals.

x(t) ∈ R; x(t) ∈ C

|x(t)| = |A|; ∠x(t) = 2πf0t + θ

x(t) = |x(t)|e j∠x(t)
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Classification of Signals

Statement (Complex Signal Representation)

For the complex signal x(t) = xr (t) + jxi (t) = <{x(t)} + j={x(t)} =
|x(t)|e j∠x(t),

xr (t) = <{x(t)} = |x(t)| cos(∠x(t))

xi (t) = ={x(t)} = |x(t)| sin(∠x(t))

|x(t)| =
√
x2
r (t) + x2

i (t)

∠x(t) = tan−1(
xi (t)

xr (t)
)

.
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Some Important Signals

Figure: Sinusoidal signal.

x(t) = A cos(2πf0t + θ) = A cos(2πt/T0 + θ)
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Some Important Signals

Figure: Complex exponential signal.

x(t) = A cos(2πf0t + θ) + jA sin(2πf0t + θ) = Ae j(2πf0t+θ)
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Some Important Signals

Figure: Unit step signal.

u(t) =

{
1, t > 0

0, t < 0
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Some Important Signals

Figure: Rectangular signal.

u(t) = rect(t) =

{
1, |t| 6 0.5

0, |t| > 0.5
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Some Important Signals

Figure: Triangle signal.

Λ(t) = tri(t) =

{
1− |t|, |t| 6 1

0, |t| > 1
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Some Important Signals

Figure: Sinc signal.

sinc(t) =

{
sin(πt)
πt , t 6= 0

1, t = 0
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Some Important Signals

Figure: Sign signal.

sgn(t) =


1, t > 0

0, t = 0

−1, t < 0
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Some Important Signals

Figure: Unit impulse signal.

δ(t) =

{
∞, t = 0

0, t 6= 0
= lim

ε→0

1

ε
sinc(

t

ε
) = lim

ε→0

1

ε
u (

t

ε
)
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Some Important Signals

Figure: Unit impulse signal.

δ(t) =

{
∞, t = 0

0, t 6= 0
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Singular Functions

Definition (Convolution)

The convolution of the functions h(t) and x(t) is defined as

y(t) = x(t) ∗ h(t) = h(t) ∗ x(t) =

∫ ∞
−∞

x(τ)h(t − τ)dτ

Definition (Test Function)

x(t) is called a test function if it is infinitely differentiable and is zero outside
a finite interval.
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Singular Functions

Definition (Unit Impulse Signal)

The unit impulse function u0(t) = δ(t) is defined as the function satisfying∫ +∞

−∞
δ(t)x(t)dt = x(0)

for any test function x(t).
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Singular Functions

Theorem (Properties of Unit Impulse Signal)

The unit impulse function satisfies the following identities∫ +∞

−∞
δ(t)dt = 1

x(t) = δ(t) ∗ x(t)

δ(at) =
1

|a|
δ(t), a 6= 0

x(t)δ(t) = x(0)δ(t)

tδ(t) = 0

δ(t) = 0, t 6= 0
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Singular Functions

Example (Area under δ(t))

The area under the unit impulse function is 1.

For x(t) = 1, ∫ +∞

−∞
δ(t)x(t)dt =

∫ +∞

−∞
δ(t)dt = x(0) = 1

Example (Convolution with δ(t))

δ(t) is the neutral function of the convolution operation, i.e. x(t) = δ(t) ∗
x(t) .

δ(t) ∗ x(t) =

∫ +∞

−∞
δ(τ)x(t − τ)dτ = x(t − 0) = x(t)

Mohammad Hadi Communication systems Spring 2021 27 / 111



Singular Functions

Definition (Unit Doublet Signal)

The unit doublet function u1(t) = δ′(t) is defined as the function satisfying∫ +∞

−∞
δ′(t)x(t)dt = −x ′(0)

for any test function x(t).

Definition (Higher-order Impulse Signals)

Generally, un(t) = δ(n)(t), n ≥ 0 is defined as the function satisfying∫ +∞

−∞
δ(n)(t)x(t)dt = (−1)nx (n)(0)

for any test function x(t).
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Singular Functions

Theorem (Convolution with un(t))

un(t), n ≥ 1 satisfies x (n)(t) = un(t) ∗ x(t).

For n = 1,

u1(t) ∗ x(t) =

∫ +∞

−∞
δ′(τ)x(t − τ)dτ = −dx(t − τ)

dτ
|τ=0 = x ′(t)

Theorem (Relation of δ′(t) and un(t))

un(t), n ≥ 2 relates to u1(t) = δ′(t) as un(t) = u1(t) ∗ u1(t) ∗ · · · ∗ u1(t)︸ ︷︷ ︸
n times

.

For n = 2,

d2(t)

dt2
=

d

dt

(dx(t)

dt

)
=

d

dt

(
x(t) ∗ u1(t)

)
= x(t) ∗ u1(t) ∗ u1(t)
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Singular Functions

Definition (Unit Step Signal)

The unit step function u−1(t) = u(t) is defined as the function satisfying∫ +∞

−∞
u(t)x(t)dt =

∫ +∞

0
x(t)dt

for any test function x(t).

Definition (Higher-order Step Signals)

Generally, u−n(t), n ≥ 2 is defined as

u−n(t) = u−1(t) ∗ u−1(t) ∗ · · · ∗ u−1(t)︸ ︷︷ ︸
n times
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Singular Functions

Theorem (Explicit representation of u−n(t), n ≥ 2)

u−n(t), n ≥ 2 can be represented as

u−n(t) =
tn−1

(n − 1)!
u−1(t)

.

For n = 2,

u−2(t) = u−1(t) ∗ u−1(t) = u(t) ∗ u(t) = tu(t) = r(t)

Mohammad Hadi Communication systems Spring 2021 31 / 111



Singular Functions

0 1 2 3 4-1-2-3-4

( )t( )u t ( )t ( )r t ( )t 

0 ( )u t1( )u t 1( )u t2 ( )u t 2 ( )u t 3( )u t3( )u t4 ( )u t 4 ( )u t

Figure: Singular functions.
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Singular Functions

Example (Representation of other signals using the singular signals)

x(t) can be represented by u(t) and its shifted versions as

x(t) = u(t) + 2u(t − 1)− u(t − 2)

Figure: The signal u(t) + 2u(t − 1)− u(t − 2).
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Some Important Signals

Example (Simplification using the properties of the singular functions)

cos(t)δ(t) = cos(0)δ(t) = δ(t)

cos(t)δ(2t − 3) = cos(t)δ(2(t − 3

2
)) =

1

2
δ(t − 3

2
) cos(t) =

cos( 3
2 )

2
δ(t − 3

2
)∫ ∞

−∞
e−tδ′(t − 1)dt =

∫ ∞
−∞

e−u−1δ′(u)du = e−1(−1)
de−u

du
|u=0 = e−1
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Systems
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Classification of Signals

Definition (System)

A system is an entity that is excited by an input signal x(t) and, as a result
of this excitation, produces an output signal y(t). The output is uniquely
defined for any legitimate input by

y(t) = T {x(t)}

.

Figure: System block diagram.
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Classification of Systems

Definition (Continuous-time System)

For a continuous-time system, both input and output signals are continuous-
time signals.

Definition (Discrete-time System)

For a discrete-time system, both input and output signals are discrete-time
signals.
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Classification of Systems

Definition (Linear System)

A system T is linear if and only if, for any two input signals x1(t) and x2(t)
and for any two scalars α and β, we have,

T {αx1(t) + βx2(t)} = αT {x1(t)}+ βT {x2(t)}

.

Definition (Nonlinear System)

A system is nonlinear if it is not linear.

Mohammad Hadi Communication systems Spring 2021 38 / 111



Classification of Systems

Definition (Time-Invariant System)

A system is time-invariant if and only if, for all x(t) and all values of t0, its
response to x(t − t0) is y(t − t0), where y(t) is the response of the system
to x(t).

Definition (Time-variant System)

A system is time-variant if it is not time-invariant.
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Classification of Systems

Definition (Causal System)

A system is causal if its output at any time t0 depends on the input at times
prior to t0, i.e.,

y(t0) = T {x(t) : t 6 t0}.

Definition (Noncausal System)

A system is noncausal if it is not causal.
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Classification of Systems

Definition (Stable System)

A system is stable if its output is bounded for any bounded input, i.e.,

|x(t)| < B ⇒ |y(t)| < M.

Definition (Instable System)

A system is instable if it is not stable.
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LTI Systems

Statement (Linear Time-Invariant System)

A system is Linear Time-Invariant (LTI) if it is simultaneously linear and
time-invariant. An LTI system is completely characterized by its impulse
response h(t) = T {δ(t)}.

y(t) = T {x(t)}

= T {
∫ ∞
−∞

x(τ)δ(t − τ)dτ}

=

∫ ∞
−∞

x(τ)T {δ(t − τ)}dτ

=

∫ ∞
−∞

x(τ)h(t − τ)dτ

= x(t) ∗ h(t)
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LTI System

Statement (Causality of LTI Systems)

An LTI system is causal if and only if h(t) = 0, t < 0.

Statement (Stability of LTI Systems)

An LTI system is stable if and only if
∫ +∞
−∞ |h(t)|dt <∞.
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LTI System

Example (Complex exponential response)

The response of an LTI system h(t) to the exponential input x(t) =
Ae j(2πf0t+θ) can be obtained by

y(t) = AH(f0)e j(2πf0t+θ) = A|H(f0)|e j(2πf0t+θ+∠H(f0))

, where

H(f0) = |H(f0)|e j∠H(f0) =

∫ ∞
−∞

h(τ)e−j2πf0τdτ

.

y(t) =

∫ ∞
−∞

h(τ)Ae j(2πf0(t−τ)+θ)dτ

= Ae j(2πf0t+θ)

∫ ∞
−∞

h(τ)e−j2πf0τdτ

= A|H(f0)|e j(2πf0t+θ+∠H(f0))
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Fourier Series
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Fourier Series and Its Properties

Definition (Fourier Series)

The periodic signal x(t + T0) = x(t) can be expanded in terms of the
complex exponential {e j2πnt/T0}∞n=−∞ as

x(t) =
∞∑

n=−∞
xne

j2πnt/T0

, where

xn =
1

T0

∫
T0

x(t)e−j2πnt/T0dt

.
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Fourier Series and Its Properties

Dirichlet sufficient conditions for existence of the Fourier series are:

1 x(t) is absolutely integrable over its period, i.e.,
∫ T0

0 |x(t)|dt <∞.

2 The number of maxima and minima of x(t) in each period is finite.

3 The number of discontinuities of x(t) in each period is finite.
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Fourier Series and Its Properties

1 The quantity f0 = 1/T0 is called the fundamental frequency of the
signal x(t).

2 The frequency of the nth complex exponential signal is nf0, which is
called the nth harmonic.

3 In general, xn = |xn|e j∠xn , where |xn| gives the magnitude of the nth
harmonic and ∠xn gives its phase.

4 For real signals x(t) = x∗(t), x−n = x∗n .
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Fourier Series and Its Properties

Figure: Positive and negative frequencies.
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Fourier Series and Its Properties

Example (Fourier series of rectangular-pulse train)

x(t) =
∞∑

n=−∞
u(

t − nT0

τ
) =

∞∑
n=−∞

τ

T0
sinc(

nτ

T0
)e jn2πt/T0

Figure: The discrete spectrum of the rectangular-pulse train.
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Fourier Series and Its Properties

Definition (Trigonometric Fourier Series)

The real periodic signal x(t + T0) = x(t) can be expanded as

x(t) =
a0

2
+
∞∑
n=1

an cos(2πnt/T0) +
∞∑
n=1

bn sin(2πnt/T0)

, where

an =
2

T0

∫
T0

x(t) cos(2πnt/T0)dt

and

bn =
2

T0

∫
T0

x(t) sin(2πnt/T0)dt

.
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Fourier Series and Its Properties

1 xn = an
2 − j bn2 .

2 For even real periodic signals, bn = 0.

3 For odd real periodic signals, an = 0.
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Fourier Series and Its Properties

Example (Response of LTl Systems to Periodic Signals)

The response of an LTI system h(t) to the periodic input x(t + T0) = x(t)
can be obtained by

y(t) =
∞∑

n=−∞
xnH(n/T0)e j2πnt/T0

, where

H(f ) = |H(f )|e j∠H(f ) =

∫ +∞

−∞
h(t)e−j2πftdt.

y(t) = T {x(t)} = T {
∞∑

n=−∞
xne

j2πnt/T0}

=
∞∑

n=−∞
xnT {e j2πnt/T0} =

∞∑
n=−∞

xnH(n/T0)e j2πnt/T0
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Fourier Series and Its Properties

1 If the input to an LTI system is periodic with period T0, then the output
is also periodic with period T0.

2 The output has a Fourier-series expansion given by y(t) =
∞∑

n=−∞
yne

j2πnt
T0 ,

where yn = xnH(n/T0).

3 An LTI system cannot introduce new frequency components in the
output.
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Fourier Series and Its Properties

Statement (Rayleigh’s Relation)

For a periodic signal x(t + T0) = x(t),

Px =
1

T0

∫
T0

|x(t)|2dt =
∞∑

n=−∞
|xn|2

.
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Fourier Transform
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Fourier Transform

Definition (Fourier Transform)

If the Fourier transform of x(t), defined by

X (f ) =

∫ ∞
−∞

x(t)e−j2πftdt

exists, the original signal can be obtained from its Fourier transform by

x(t) =

∫ ∞
−∞

X (f )e j2πftdf

.
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Fourier Transform and Its Properties

Dirichlet sufficient conditions for existence of the Fourier transform are:

1 x(t) is absolutely integrable over the real line, i.e.,
∫∞
−∞ |x(t)|dt <∞.

2 The number of maxima and minima of x(t) in any finite real interval
is finite.

3 The number of discontinuities of x(t) in any finite real interval is finite.
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Fourier Transform and Its Properties

1 X (f ) is generally a complex function. Its magnitude |X (f )| and phase
∠X (f ) represent the amplitude and phase of various frequency com-
ponents in x(t).

2 The function X (f ) is sometimes referred to as the spectrum of the
signal x(t).

3 To denote that X (f ) is the Fourier transform of x(t), we frequently
employ the notations X (f ) = F{x(t)}, x(t) = F−1{X (f )}, or x(t)↔
X (f ).
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Fourier Transform and Its Properties

1 For real signals x(t) = x∗(t),

X (−f ) = X ∗(f )

<[X (−f )] = <[X (f )]

=[X (−f )] = −=[X (f )]

|X (−f )| = |X (f )|
∠X (−f ) = −∠X (f )

2 If x(t) is real and even, X (f ) will be real and even.

3 If x(t) is real and odd, X (f ) will be imaginary and odd.
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Fourier Transform and Its Properties

Statement (Signal Bandwidth)

We define the bandwidth of a real signal x(t) as the range of positive
frequencies contributing strongly in the spectrum of the signal.

Figure: Bandwidth of a real signal.
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Fourier Transform and Its Properties

Example (Fourier transform of u(t))

F{u(t)} =

∫ +∞

−∞
u(t)e−j2πftdt =

∫ 0.5

−0.5
e−j2πftdt =

sin(πf )

πf
= sinc(f )

Figure: u(t) and its Fourier transform.
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Fourier Transform and Its Properties

Example (Modulation Property)

x(t) cos(2πf0t)↔ 1

2
[X (f − f0) + X (f + f0)]

Figure: Effect of modulation in both the time and frequency domain.
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Fourier Transform and Its Properties

Property Signal Fourier

Assumption x(t) X (f )
Assumption y(t) Y (f )
Linearity ax(t) + by(t) aX (f ) + bY (f )
Time Shifting x(t − t0) e−j2πft0X (f )
Frequency Shifting e j2πf0tx(t) X (f − f0)

Time Scaling x(at) 1
|a|X ( f

a
)

Conjugation x∗(t) X∗(−f )
Convolution x(t) ∗ y(t) X (f )Y (f )
Modulation x(t)y(t) X (f ) ∗ Y (f )
Sinusoidal Modulation x(t) cos(2πf0t) 1

2
[X (f − f0) + X (f + f0)]

Auto-correlation x(t) ∗ x∗(−t) |X (f )|2

Time Differentiation dx(t)
dt

j2πfX (f )

Time Differentiation dnx(t)
dtn

(j2πf )nX (f )

Frequency Differentiation tnx(t) ( j
2π

)n dnX (f )
df n

Integration
∫ t
−∞ x(τ)dτ X (f )

j2πf
+ 1

2
X (0)δ(f )

Duality X (t) x(−f )

Periodicity
∑∞

n=−∞ xne j2πnt/T0
∑∞

n=−∞ xnδ(f − n/T0)

Table: Properties of the Fourier transform.
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Fourier Transform and Its Properties

Signal Fourier

δ(t) 1
1 δ(f )

δ(t − t0) e−j2πft0

δn(t) (j2πf )n

e j2πf0t δ(f − f0)
sgn(t) 1

jπf
1
t

−jπsgn(f )

u(t) 1
j2πf

+ 1
2
δ(f )

cos(2πf0t) 1
2

[δ(f − f0) + δ(f + f0)]

sin(2πf0t) 1
2j

[δ(f − f0)− δ(f + f0)]

u(t) sinc(f )
sinc(t) u(f )

Λ(t) sinc2(f )
sinc2(t) Λ(f )

e−atu(t), a > 0 1
j2πf +a

tn−1

(n−1)!
e−atu(t), a > 0 1

(j2πf +a)n∑∞
n=−∞ δ(t − nT0) 1

T0

∑∞
n=−∞ δ(f − n/T0)

Table: Fourier transform of elementary functions.
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Fourier Transform and Its Properties

Statement (Parseval’s Relation)

If the Fourier transforms of the signals x(t) and y(t) are denoted by X (f )
and Y (f ), respectively, then∫ ∞

−∞
x(t)y∗(t)dt =

∫ ∞
−∞

X (f )Y ∗(f )df

.

Statement (Rayleigh’s Relation)

If the Fourier transforms of the signals x(t) is denoted by X (f ), then

Ex =

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|X (f )|2df

.
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Fourier Transform and Its Properties

Example (LTI Systems)

The output of an LTI system is represented by the convolution integral

y(t) = h(t) ∗ x(t) =

∫ ∞
−∞

h(t − τ)x(τ)dτ =

∫ ∞
−∞

h(τ)x(t − τ)dτ

, where h(t) is the impulse response of the LTI system. In the frequency
domain,

Y (f ) = H(f )X (f )

, where the frequency response H(f ) is the Fourier transform of the impulse
response h(t).

Mohammad Hadi Communication systems Spring 2021 67 / 111



Fourier Transform and Its Properties

Example (Interconnection of LTI systems)

The overall frequency response H(f ) of the parallel, feedback, and series
interconnection of the LTI systems H1(f ) and H2(f ) is H1(f ) + H2(f ),
H1(f )/(1 + H1(f )H2(f )), and H1(f )H2(f ), respectively.

Figure: (a) Parallel, (b) Feedback, and (c) series interconnection of LTI systems.
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Power and Energy
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Power and Energy

Definition (Energy Signal)

The signal x(t) is energy-type if its energy content is nonzero and limited,
i.e.,

0 < Ex =

∫ ∞
−∞
|x(t)|2dt <∞

.

Definition (Power Signal)

The signal x(t) is power-type if its power content is nonzero and limited,
i.e.,

0 < Px = lim
T→∞

1

T

∫ T/2

−T/2
|x(t)|2dt <∞

.
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Power and Energy

1 A signal cannot be both power- and energy-type because Px = 0 for
energy-type signals, and Ex =∞ for power-type signals.

2 A signal can be neither energy-type nor power-type.
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Energy-Type Signals

Definition (Autocorrelation)

For an energy-type signal x(t), we define the autocorrelation function

Rx(τ) = x(τ) ∗ x∗(−τ) =

∫ ∞
−∞

x(t)x∗(t − τ)dt =

∫ ∞
−∞

x(t + τ)x∗(t)dt

.
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Energy-Type Signals

1 F{Rx(τ)} = |X (f )|2 = Ex(f ), where Ex(f ) is called the energy spectral
density of a signal x(t).

2 Ex = Rx(0) =
∫∞
−∞ |x(t)|2dt =

∫∞
−∞ Ex(f )df .

3 If we pass the signal x(t) through an LTI system with the impulse
response h(t) and frequency response H(f ),

Ry (τ) = F−1{|Y (f )|2}
= F−1{|X (f )|2|H(f )|2}
= F−1{|X (f )|2} ∗ F−1{|H(f )|2} = Rx(τ) ∗ Rh(τ)
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Energy-Type Signals

Example (Energy of rectangular pulse)

The energy content of x(t) = A u ( t
T ) is Ex =

∫∞
−∞ |x(t)|2dt =∫ T/2

−T/2 A
2dt = A2T .

Example (Energy spectral density of rectangular pulse)

The energy spectral density of x(t) = Au ( t
T ) is Ex(f ) =

∣∣F{Au ( t
T )}

∣∣2 =
T 2A2sinc2(Tf ).

Example (Autocorrelation of rectangular pulse)

The autocorrelation of x(t) = A u ( t
T ) is Rx(τ) = F−1{Ex(f )} =

A2TΛ( τT ).
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Power-Type Signals

Definition (Time-Average Autocorrelation)

For a power-type signal x(t), we define the time-average autocorrelation
function

Rx(τ) = lim
T→∞

1

T

∫ T/2

−T/2
x(t)x∗(t − τ)dt

.
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Power-Type Signals

1 Sx(f ) = F{Rx(τ)} is called power-spectral density or the power
spectrum of the signal x(t).

2 Px = Rx(0) =
∫∞
−∞ Sx(f )df .

3 If we pass the signal x(t) through an LTI system with the impulse
response h(t) and frequency response H(f ),
Ry (τ) = Rx(τ) ∗ h(τ) ∗ h∗(−τ) and Sy (f ) = Sx(f )|H(f )|2.

Mohammad Hadi Communication systems Spring 2021 76 / 111



Power-Type Signals

Example (Power of periodic signals)

Any periodic signal x(t) = x(t + T0) is a power-type signal and its power
content equals the average power in one period as

Px = lim
T→∞

1

T

∫ T/2

−T/2
|x(t)|2dt = lim

n→∞

1

nT0

∫ nT0/2

−nT0/2
|x(t)|2dt

= lim
n→∞

n

nT0

∫ T0/2

−T0/2
|x(t)|2dt =

1

T0

∫ T0/2

−T0/2
|x(t)|2dt

Example (Power of cosine)

The power content of x(t) = A cos(2πf0t + θ) is

Px =
1

T0

∫ T0/2

−T0/2
A2 cos2(2πf0t + θ)dt =

A2

2
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Power-Type Signals

Example (Time-average autocorrelation of periodic signals)

Let the signal x(t) be a periodic signal with the period T0. Then,

Rx(τ) =
1

T0

∫ T0/2

−T0/2
x(t)x∗(t − τ)dt

.

Rx(τ) = lim
T→∞

1

T

∫ T/2

−T/2
x(t)x∗(t − τ)dt

= lim
k→∞

1

kT0

∫ kT0/2

−kT0/2
x(t)x∗(t − τ)dt

=
1

T0

∫ T0/2

−T0/2
x(t)x∗(t − τ)dt
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Power-Type Signals

Example (Time-average autocorrelation of periodic signals)

Let the signal x(t) be a periodic signal with the period T0 and have the
Fourier-series coefficients xn. Then, Rx(τ) =

∑∞
n=−∞ |xn|2e j2πnτ/T0 .

1
T0

∫ T0/2
−T0/2 e

j2π(n−m)t/T0dt = δnm, which is nonzeros when n = m. So

Rx(τ) =
1

T0

∫ T0/2

−T0/2
x(t)x∗(t − τ)dt

=
1

T0

∫ T0/2

−T0/2

∞∑
n=−∞

∞∑
m=−∞

xnx
∗
me

j2πmτ/T0e j2π(n−m)t/T0dt

=
∞∑

n=−∞
|xn|2e j2πnτ/T0
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Hilbert Transform
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Hilbert Transform

Definition (Hilbert Transform)

The Hilbert transform of the signal x(t) is a signal x̂(t) whose frequency
components lag the frequency components of x(t) by 90◦.

1 A delay of π/2 for e j2πf0t results in e j(2πf0t−π/2) = −je j2πf0t .
2 A delay of π/2 for e−j2πf0t results in e−j(2πf0t−π/2) = je−j2πf0t .
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Hilbert Transform

Statement (Hilbert Transform)

Assume that x(t) is real and has no DC component, i.e., X (0) = 0. Then,

F{x̂(t)} = −jsgn(f )X (f )

and

x̂(t) =
1

πt
∗ x(t) =

1

π

∫ ∞
−∞

x(τ)

t − τ
dτ
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Hilbert Transform

1 The Hilbert transform of an even real signal is odd, and the Hilbert
transform of an odd real signal is even.

2 Applying the Hilbert-transform operation to a signal twice causes a sign
reversal of the signal, i.e., ˆ̂x(t) = −x(t).

3 Energy content of a signal is equal to the energy content of its Hilbert
transform, i.e., Ex = Ex̂ .

4 The signal x(t) and its Hilbert transform are orthogonal, i.e.,∫ ∞
−∞

x(t)x̂(t)dt = 0

.
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Hilbert Transform

Example (Hilbert transform of a cosine)

x(t) = A cos(2πf0t + θ)↔ A

2
e jθδ(f − f0) +

A

2
e−jθδ(f + f0)

x̂(t)↔ −jsgn(f )
[A

2
e jθδ(f − f0) +

A

2
e−jθδ(f + f0)

]
x̂(t)↔ A

2j
e jθδ(f − f0)− A

2j
e−jθδ(f + f0)

x̂(t) = A sin(2πf0t + θ)↔ A

2j
e jθδ(f − f0)− A

2j
e−jθδ(f + f0)
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Hilbert Transform

Example (Energy of a signal and its Hilbert transform)

Ex̂ =

∫ ∞
−∞
|x̂(t)|2dt =

∫ ∞
−∞
|F{x̂(t)}|2df

=

∫ ∞
−∞
| − jsgn(f )X (f )|2df =

∫ ∞
−∞
|X (f )|2df =

∫ ∞
−∞
|x(t)|2dt = Ex

Example (Orthogonality of a signal and its Hilbert transform)

∫ ∞
−∞

x̂(t)x(t)dt

∫ ∞
−∞

x̂(t)
[
x∗(t)

]∗
dt =∫ ∞

−∞
−jsgn(f )X (f )

[
X ∗(−f )

]∗
df =

∫ ∞
−∞
−jsgn(f )X (f )X (−f )df = 0
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Lowpass and Bandpass Signals
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Lowpass and Bandpass Signals

Definition (Lowpass Signal)

A lowpass signal is a signal, whose spectrum is located around the zero
frequency.

Figure: Spectrum of a lowpass signal.
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Lowpass and Bandpass Signals

Definition (Bandpass Signal)

A bandpass signal is a signal with a spectrum far from the zero frequency.

Figure: Spectrum of a bandpass signal.
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Lowpass and Bandpass Signals

1 The spectrum of a bandpass signal is usually located around a center
frequency fc , which is much higher than the bandwidth of the signal.

2 The extreme case of a bandpass signal is x(t) = A cos(2πfct + θ),
which can be represented by a phasor xl = Ae jθ = xc + jxs , where
A, θ, xc , and xs are called envelope, phase, in-phase component, and
quadrature component, respectively.

3 The original signal x(t) can be reconstructed from its phasor as x(t) =
A cos(2πfct + θ) = xc cos(2πfct)− xs sin(2πfct).
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Lowpass and Bandpass Signals

Statement (Slowly-varying Lowpass Phasor)

Assume that we have a slowly-varying lowpass phasor xl(t) = A(t)e jθ(t) =
xc(t) + jxs(t), where A(t) ≥ 0, θ(t), xs(t), and xc(t) are slowly-varying
signals compared to fc . The real bandpass signal x(t) = A(t) cos(2πfct +
θ(t)) relates to the complex time-varying phasor xl(t) as

x(t) = <{xl(t)e j2πfc t} = <{A(t)e j(2πfc t+θ(t))}
= xc(t) cos(2πfct)− xs(t) sin(2πfct)

.
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Lowpass and Bandpass Signals

1 xl(t) = A(t)e jθ(t) = xc(t) + jxs(t) is is called the lowpass equivalent
of the bandpass signal x(t) = A(t) cos(2πfct + θ(t)).

2 The envelope |xl(t)| and the phase ∠xl(t) of the bandpass signal are
defined as

|xl(t)| = A(t) =
√

x2
c (t) + x2

s (t)

and

∠xl(t) = θ(t) = tan−1(
xs(t)

xc(t)
)

3 Obviously, the in-phase and quadrature components satisfy

xc(t) = A(t) cos(θ(t))

and
xs(t) = A(t) sin(θ(t))
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Lowpass and Bandpass Signals

Example (Spectrum of the bandpass signal)

x(t) = <{xl(t)e j2πfc t} =
1

2

[
xl(t)e j2πfc t + x∗l (t)e−j2πfc t

]
So,

X (f ) =
1

2
Xl(f − fc) +

1

2
X ∗l (−(f + fc))
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Lowpass and Bandpass Signals

Example (Spectrum of the bandpass signal)

X (f ) =
1

2
Xl(f − fc) +

1

2
X ∗l (−(f + fc))

Figure: Spectrum of the lowpass signal and its associated bandpass signal.
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Lowpass and Bandpass Signals

Example (Spectrum of the lowpass signal)

If the bandwidth of the bandpass signal W is much less than the central
frequency fc , then

X (f ) =
1

2
Xl(f − fc) +

1

2
X ∗l (−(f + fc))

X (f + fc) =
1

2
Xl(f ) +

1

2
X ∗l (−(f + 2fc))

X (f + fc)u(f + fc) =
1

2
Xl(f )u(f + fc) +

1

2
X ∗l (−(f + 2fc))u(f + fc)

X (f + fc)u(f + fc) =
1

2
Xl(f )

2X (f + fc)u(f + fc) = Xl(f )
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Lowpass and Bandpass Signals

Example (Spectrum of the lowpass signal)

If the bandwidth of the bandpass signal W is much less than the central
frequency fc , then

Xl(f ) = 2X (f + fc)u(f + fc)

Figure: Spectrum of the bandpass signal and its associated lowpass signal.
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Lowpass and Bandpass Signals

Example (Lowpass equivalent of a bandpass signal)

Xl(f ) = 2X (f + fc)u(f + fc)

= 2X (f + fc)
1 + sgn(f + fc)

2

= 2X (f + fc)
1− j2sgn(f + fc)

2
= X (f + fc) + j

[
− jsgn(f + fc)X (f + fc)

]
So,

xl(t) =
[
x(t) + j x̂(t)

]
e−j2πfc t

Mohammad Hadi Communication systems Spring 2021 96 / 111



Lowpass and Bandpass Signals

Example (In-phase component of a bandpass signal)

xl(t) =
[
x(t) + j x̂(t)

]
e−j2πfc t

So,
xl(t) =

[
x(t) + j x̂(t)

][
cos(2πfct)− j sin(2πfct)

]
xl(t) = x(t) cos(2πfct)+x̂(t) sin(2πfct)+j

[
x̂(t) cos(2πfct)−x(t) sin(2πfct)

]
and,

<{xl(t)} = xc(t) = x(t) cos(2πfct) + x̂(t) sin(2πfct)
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Lowpass and Bandpass Signals

Example (Quadrature component of a bandpass signal)

xl(t) =
[
x(t) + j x̂(t)

]
e−j2πfc t

So,
xl(t) =

[
x(t) + j x̂(t)

][
cos(2πfct)− j sin(2πfct)

]
xl(t) = x(t) cos(2πfct)+x̂(t) sin(2πfct)+j

[
x̂(t) cos(2πfct)−x(t) sin(2πfct)

]
and,

={xl(t)} = xs(t) = x̂(t) cos(2πfct)− x(t) sin(2πfct)

Mohammad Hadi Communication systems Spring 2021 98 / 111



Lowpass and Bandpass Signals

Example (Envelope of a bandpass signal)

xl(t) =
[
x(t) + j x̂(t)

]
e−j2πfc t

So,

|xl(t)| = A(t) =
√

x2(t) + x̂2(t)
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Lowpass and Bandpass Signals

Example (Phase of a bandpass signal)

xl(t) =
[
x(t) + j x̂(t)

]
e−j2πfc t

So,
xl(t) =

[
x(t) + j x̂(t)

][
cos(2πfct)− j sin(2πfct)

]
xl(t) = x(t) cos(2πfct)+x̂(t) sin(2πfct)+j

[
x̂(t) cos(2πfct)−x(t) sin(2πfct)

]
and,

∠xl(t) = θ(t) = tan−1
[ x̂(t) cos(2πfct)− x(t) sin(2πfct)

x(t) cos(2πfct) + x̂(t) sin(2πfct)

]
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Lowpass and Bandpass Signals

Example (Lowpass equivalent of sinusoidal signal)

Lowpass equivalent of the bandpass signal x(t) = A cos(2πfct + θ) is

xl(t) =
[
x(t) + j x̂(t)

]
e−j2πfc t

=
[
A cos(2πfct + θ) + jA sin(2πfct + θ)

]
e−j2πfc t

= Ae j(2πfc t+θ)e−j2πfc t = Ae jθ

So, A(t) = |A|, θ(t) = θ+u(−A)π, xs(t) = A cos(θ), and xs(t) = A sin(θ).

Mohammad Hadi Communication systems Spring 2021 101 / 111



Lowpass and Bandpass Signals

Example (Lowpass equivalent of sinusoidal signal)

Lowpass equivalent of the bandpass signal x(t) = sinc(t) cos(2πfct + π
4 )

can be obtained as

x(t) = sinc(t) cos(
π

4
) cos(2πfct)− sinc(t) sin(

π

4
) sin(2πfct)

xc(t) =

√
2

2
sinc(t), xs(t) =

√
2

2
sinc(t)

xl(t) = xc(t) + jxs(t) =

√
2

2
sinc(t)(1 + j) = sinc(t)e j

π
4
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Filters
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Lowpass Filter

Figure: Ideal LPF frequency response and its impulse response.

H(f ) = u(
f

2W
)↔ h(t) = 2W sinc(2Wt)
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Lowpass Filter

Figure: Linear-phase ideal LPF frequency response and its impulse response.

H(f ) = u(
f

2W
)e−j2πftd ↔ h(t) = 2W sinc(2W (t − td))
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Lowpass Filter

Figure: Truncated LPF impulse response.

h(t) = 2W sinc(2W (t − td)) h(t) = 2W sinc(2W (t − td))u(t)
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Lowpass Filter

Figure: Butterworth LPF frequency characteristic.

|H(f )| =
1√

1 + ( f
B )2n
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Lowpass Filter

Figure: Comparison of butterworth and ideal filters.
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Basic Filters

Figure: Basic filters. (a) LPF (b) HPF (c) BPF.

Mohammad Hadi Communication systems Spring 2021 109 / 111



Filter Design

Approx-
imation

Factor-
ization

Transfor-
mation

Realization
Study of
imper-

fections

Imple-
mentation

Figure: Design process.
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The End
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