MATHEMATICAL QUESTIONS

Question 1

Use the definitions of the unit step, unit impulse, and unit doublet function to prove the following identities.
Hint: Obviously, if $\int_{-\infty}^{+\infty} f(t) x(t) d t=\int_{-\infty}^{+\infty} g(t) x(t) d t$ for any test function $x(t)$, the singular functions $f(t)$ and $g(t)$ are equal.
(a) $u_{-1}^{\prime}(t)=u_{0}(t)$.

Integration by parts yields

$$
\begin{align*}
& \int_{-\infty}^{+\infty} u_{-1}^{\prime}(t) x(t) d t=\left.u_{-1}(t) x(t)\right|_{-\infty} ^{+\infty}-\int_{-\infty}^{+\infty} u_{-1}(t) x^{\prime}(t) d t \\
& =-\int_{-\infty}^{+\infty} u_{-1}(t) x^{\prime}(t) d t=-\int_{0}^{+\infty} x^{\prime}(t) d t=-\left.x(t)\right|_{0} ^{+\infty}=x(0) \tag{1}
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
x(0)=\int_{-\infty}^{+\infty} u_{0}(t) x(t) d t \tag{2}
\end{equation*}
$$

Equating (17) and (2)

$$
\begin{equation*}
\int_{-\infty}^{+\infty} u_{0}(t) x(t) d t=\int_{-\infty}^{+\infty} u_{-1}^{\prime}(t) x(t) d t \tag{3}
\end{equation*}
$$

results in $u_{-1}^{\prime}(t)=u_{0}(t)$ by the definition of the equality of singular functions.
(b) $u_{0}^{\prime}(t)=u_{1}(t)$.

Integration by parts yields

$$
\begin{equation*}
\int_{-\infty}^{+\infty} u_{0}^{\prime}(t) x(t) d t=\left.u_{0}(t) x(t)\right|_{-\infty} ^{+\infty}-\int_{-\infty}^{+\infty} u_{0}(t) x^{\prime}(t) d t=-\int_{-\infty}^{+\infty} u_{0}(t) x^{\prime}(t) d t=-x^{\prime}(0) \tag{4}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
-x^{\prime}(0)=\int_{-\infty}^{+\infty} u_{1}(t) x(t) d t \tag{5}
\end{equation*}
$$

Equating (4) and (5)

$$
\begin{equation*}
\int_{-\infty}^{+\infty} u_{1}(t) x(t) d t=\int_{-\infty}^{+\infty} u_{0}^{\prime}(t) x(t) d t \tag{6}
\end{equation*}
$$

leads to $u_{1}(t)=u_{0}^{\prime}(t)$ by the definition of the equality of singular functions.
(c) $\delta(a t)=\frac{1}{|a|} \delta(t), a \neq 0$.

Assume that $a>0$. We have

$$
\begin{equation*}
\int_{-\infty}^{+\infty} u_{0}(a t) x(t) d t=\frac{1}{a} \int_{-\infty}^{+\infty} u_{0}(v) x\left(\frac{v}{a}\right) d v=\frac{1}{a} x\left(\frac{0}{a}\right)=\frac{1}{a} x(0) \tag{7}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\frac{1}{a} x(0)=\int_{-\infty}^{+\infty} u_{0}(t) \frac{1}{a} x(t) d t \tag{8}
\end{equation*}
$$

Equating (7) and (8)

$$
\begin{equation*}
\int_{-\infty}^{+\infty} u_{0}(t) \frac{1}{a} x(t) d t=\int_{-\infty}^{+\infty} u_{0}(a t) x(t) d t \tag{9}
\end{equation*}
$$

results in $\delta(a t)=\frac{1}{|a|} \delta(t), a>0$ by the definition of the equality of singular functions. The same method can be used to prove $\delta(a t)=\frac{1}{-a} \delta(t), a<0$.

Question 2

Take the Fourier transform of $x(t)=A e^{-\frac{t^{2}}{\sigma^{2}}}$, where A and σ are given real values.

$$
\begin{gathered}
\mathcal{F}\{x(t)\}=X(f)=\int_{-\infty}^{\infty} A e^{-\frac{t^{2}}{\sigma^{2}}} e^{-j 2 \pi f t} d t=A \int_{-\infty}^{\infty} e^{-\left(\frac{t^{2}}{\sigma^{2}}+j 2 \pi f t\right)} d t \\
\Rightarrow \mathcal{F}\{x(t)\}=A \int_{-\infty}^{\infty} e^{-\frac{1}{\sigma^{2}}\left(t^{2}+j 2 \pi \sigma^{2} f t+\pi^{2} f^{2} \sigma^{4}-\pi^{2} f^{2} \sigma^{4}\right)} d t=A e^{-\pi^{2} f^{2} \sigma^{2}} \int_{-\infty}^{\infty} e^{-\left(\frac{t+j \pi f \sigma^{2}}{\sigma}\right)^{2}} d t
\end{gathered}
$$

Assuming $\frac{t+j \pi f \sigma^{2}}{\sigma}=s$, we have $d s=\frac{d t}{\sigma}$. Thus,

$$
X(f)=A e^{-\pi^{2} f^{2} \sigma^{2}} \int_{-\infty}^{\infty} e^{-s^{2}} \sigma d s=A \sigma e^{-\pi^{2} f^{2} \sigma^{2}} \int_{-\infty}^{\infty} e^{-s^{2}} d s
$$

To compute $I=\int_{-\infty}^{\infty} e^{-s^{2}} d s$, we note that

$$
I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(u^{2}+v^{2}\right)} d u d v
$$

Using the rectangular-polar variable change, $u^{2}+v^{2}=r^{2}, d u d v=r d r d \theta$, and

$$
\begin{aligned}
I^{2}= & \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=\left.2 \pi\left(-\frac{1}{2} e^{r^{2}}\right)\right|_{0} ^{\infty}=\pi \\
& \Rightarrow F\{x(t)\}=X(f)=A \sigma \sqrt{\pi} e^{-\pi^{2} f^{2} \sigma^{2}}
\end{aligned}
$$

Question 3

The analytic signal $x_{a}(t)$ of the real signal $x(t)$ is a signal with the spectrum $2 X(f) u(f)$, where $X(f)$ is the Fourier transform of $x(t)$.
(a) Show that the real and imaginary parts of $x_{a}(t)$ relates to $x(t)$ and its Hilbert transform $\hat{x}(t)$.

$$
\begin{aligned}
& x_{a}(t) \leftrightarrow 2 X(f) u(f) \\
& x_{a}(t) \leftrightarrow X(f)(1+\operatorname{sgn}(f)) \\
& x_{a}(t) \leftrightarrow X(f)(1-j j \operatorname{sgn}(f)) \\
& x_{a}(t) \leftrightarrow X(f)+j[-j \operatorname{sgn}(f) X(f)]
\end{aligned}
$$

So,

$$
x_{a}(t)=x(t)+j \hat{x}(t)
$$

(b) Find the analytic signal of $x(t)=A \cos \left(2 \pi f_{0} t+\theta\right)$.

We know that $\hat{x}(t)=A \sin \left(2 \pi f_{0} t+\theta\right)$. So,

$$
x_{a}(t)=x(t)+j \hat{x}(t)=A \cos \left(2 \pi f_{0} t+\theta\right)+j A \sin \left(2 \pi f_{0} t+\theta\right)=A e^{j\left(2 \pi f_{0} t+\theta\right)}=A e^{j \theta} e^{j 2 \pi f_{0} t}
$$

(c) How does the analytic signal generalize the concept of phasors?

Clearly, for $x(t)=A \cos \left(2 \pi f_{0} t+\theta\right), x_{a}(t) e^{-j 2 \pi f_{0} t}$ equals the equivalent phasor of $x(t)$, i.e., $x_{l}=A e^{j \theta}$. This can be simply generalized to the real signal $x(t)=A(t) \cos \left(2 \pi f_{0} t+\theta(t)\right)$ with a time-varying amplitude and phase. In fact, the time-varying phasor of $x(t)$ is defined as $x_{l}(t)=x_{a}(t) e^{-j 2 \pi f_{0} t}$.

Question 4

Let $\left\{\phi_{i}(t)\right\}_{i=1}^{N}$ be an orthogonal set of N signals, i.e.,

$$
\phi_{i}(t) \phi_{j}^{*}(t) d t=0, \quad 1 \leq i, j \leq N, \quad i \neq j
$$

and

$$
\int_{-\infty}^{\infty}\left|\phi_{i}(t)\right|^{2}=1, \quad 1 \leq i \leq N
$$

. Let $\hat{x}(t)=\sum_{i=1}^{N} \alpha_{i} \phi_{i}(t)$ be the linear approximation of an arbitrary signal $x(t)$ in terms of $\left\{\phi_{i}(t)\right\}_{i=1}^{N}$, where α_{i} 's are chosen such that

$$
\epsilon^{2}=\int_{-\infty}^{\infty}|x(t)-\hat{x}(t)|^{2} d t
$$

is minimized.
(a) Show that the minimizing α_{i} 's satisfy

$$
\alpha_{i}=\int_{-\infty}^{\infty} x(t) \phi_{i}^{*}(t) d t
$$

$$
\begin{gathered}
\epsilon^{2}=\int_{-\infty}^{\infty}\left|x(t)-\sum_{i=1}^{N} \alpha_{i} \phi_{i}(t)\right|^{2} d t=\int_{-\infty}^{\infty}\left(x(t)-\sum_{i=1}^{N} \alpha_{i} \phi_{i}(t)\right)\left(x^{*}(t)-\sum_{j=1}^{N} \alpha_{j}^{*} \phi_{j}^{*}(t) d t\right) \\
=\int_{-\infty}^{\infty}|x(t)|^{2} d t-\sum_{i=1}^{N} \alpha_{i} \int_{-\infty}^{\infty} \phi_{i}(t) x^{*}(t) d t-\sum_{j=1}^{N} \alpha_{j}^{*} \int_{-\infty}^{\infty} x(t) \phi_{j}^{*}(t) d t \\
\quad+\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j}^{*} \int_{-\infty}^{\infty} \phi_{i}(t) \phi_{j}^{*}(t) d t \\
=\int_{-\infty}^{\infty}|x(t)|^{2} d t+\sum_{i=1}^{N}\left|\alpha_{i}\right|^{2}-\sum_{i=1}^{N} \alpha_{i} \int_{-\infty}^{\infty} \phi_{i}(t) x^{*}(t) d t-\sum_{j=1}^{N} \alpha_{j}^{*} \int_{-\infty}^{\infty} x(t) \phi_{j}^{*}(t) d t
\end{gathered}
$$

Completing the square in terms of α_{i}, we obtain

$$
\begin{equation*}
\epsilon^{2}=\int_{-\infty}^{\infty}|x(t)|^{2} d t-\sum_{i=1}^{N}\left|\int_{-\infty}^{\infty} \phi_{i}^{*}(t) x(t) d t\right|^{2}+\sum_{i=1}^{N}\left|\alpha_{i}-\int_{-\infty}^{\infty} \phi_{i}^{*}(t) x(t) d t\right|^{2} \tag{10}
\end{equation*}
$$

The first two terms are independent of α_{i} and the last term is always positive. Therefore the minimum is achieved for

$$
\alpha_{i}=\int_{-\infty}^{\infty} x(t) \phi_{i}^{*}(t) d t
$$

(b) Show that

$$
\epsilon_{\min }^{2}=\int_{-\infty}^{\infty}|x(t)|^{2} d t-\sum_{i=1}^{N}\left|\alpha_{i}\right|^{2}
$$

With this choice of α_{i}, the last term of vanishes and we get

$$
\epsilon_{\min }^{2}=\int_{-\infty}^{\infty}|x(t)|^{2} d t-\sum_{i=1}^{N}\left|\int_{-\infty}^{\infty} \phi_{i}^{*}(t) x(t) d t\right|^{2}=\int_{-\infty}^{\infty}|x(t)|^{2} d t-\sum_{i=1}^{N}\left|\alpha_{i}\right|^{2}
$$

(c) How does this general linear approximation relate to the Fourier series expansion?

Taking $\phi_{i}(t)=e^{j 2 \pi i t / T_{0}}, \hat{x}(t)$ roughly takes the form of the Fourier series expansion while the minimizing α_{i} 's are very similar to the coefficients of the Fourier series expansion.

Question 5

The generalized Fourier transform of the singular function $y(t)$ is defined as the function $Y(f)$ satisfying the integral equation

$$
\int_{-\infty}^{\infty} Y(\alpha) x(\alpha) d \alpha=\int_{-\infty}^{\infty} y(\beta) X(\beta) d \beta
$$

, where $x(t)$ is any test function such that the existence of its Fourier transform $X(f)$ is guaranteed under Dirichlet sufficient conditions.
Hint: It can be shown that the properties of the normal Fourier transform remain valid for the generalized Fourier transform.
(a) Discuss the reasons behind the definition.

Assume that $X(f)$ and $Y(f)$, the Fourier transform of $x(t)$ and $y(t)$, exist. We have

$$
\begin{aligned}
& \int_{-\infty}^{\infty} Y(\alpha) x(\alpha) d \alpha \\
= & \int_{\alpha=-\infty}^{\infty} Y(\alpha) \int_{\beta=-\infty}^{\infty} X(\beta) e^{j 2 \pi \beta \alpha} d \beta d \alpha \\
= & \int_{\alpha=-\infty}^{\infty} \int_{\beta=-\infty}^{\infty} Y(\alpha) X(\beta) e^{j 2 \pi \beta \alpha} d \beta d \alpha \\
= & \int_{\beta=-\infty}^{\infty} X(\beta) \int_{\alpha=-\infty}^{\infty} Y(\alpha) e^{j 2 \pi \beta \alpha} d \alpha d \beta \\
= & \int_{-\infty}^{\infty} X(\beta) y(\beta) d \beta \\
= & \int_{-\infty}^{\infty} y(\beta) X(\beta) d \beta
\end{aligned}
$$

, which is another form of the Parseval's theorem.
Now, let $y(t)$ be a singular function, which does not satisfy Dirichlet sufficient conditions. Further, assume that $x(t)$ is an arbitrary signal, whose Fourier transform exists under Dirichlet sufficient conditions. Obviously, if this integral equation holds for all pairs of $x(t) \leftrightarrow X(f), Y(f)$ can be considered as the generalized Fourier transform of $y(t)$.
(b) Use the definition to find the Fourier transform of $\delta(t)$.

$$
\begin{aligned}
\int_{-\infty}^{\infty} Y(\alpha) x(\alpha) d \alpha=\int_{-\infty}^{\infty} y(\beta) X(\beta) d \beta \\
=\int_{-\infty}^{\infty} \delta(\beta) X(\beta) d \beta=X(0)=\int_{-\infty}^{\infty} x(\alpha) d \alpha
\end{aligned}
$$

So, $Y(f)=\mathcal{F}\{\delta(t)\}=1$ by the definition of the equality of singular functions. Using the duality property, we conclude that $\mathcal{F}\{1\}=\delta(-f)=\delta(f)$.
(c) Use the definition to find the Fourier transform of $u(t)$.

We know that

$$
u(t)+u(-t)=1 \Rightarrow U(f)+U(-f)=\mathcal{F}\{1\}=\delta(f)
$$

Let $U(f)=B(f)+k \delta(f)$. We have

$$
\delta(f)=U(f)+U(-f)=B(f)+B(-f)+k \delta(f)+k \delta(-f)=B(f)+B(-f)+2 k \delta(f)
$$

Therefore,

$$
k=\frac{1}{2}, \quad B(f)=-B(-f)
$$

To find $B(f)$,

$$
1=\mathcal{F}\{\delta(t)\}=\mathcal{F}\left\{u^{\prime}(t)\right\}=j 2 \pi f \mathcal{F}\{u(t)\}=j 2 \pi f\left(B(f)+\frac{1}{2} \delta(f)\right)=j 2 \pi f B(f)
$$

So, $B(f)=\frac{1}{j 2 \pi f}$ and

$$
U(f)=B(f)+k \delta(f)=\frac{1}{j 2 \pi f}+\frac{1}{2} \delta(f)
$$

SOFTWARE QUESTIONS

Question 6

Validate the performance of the tapped delay-line microwave equalizer using MATLAB simulation. To do this,
(a) Develop a function, which simulates the point-to-point microwave radio channel.

```
Here is a sample time-domain implementation of the channel.
function [s_out, t_out] = p2pmrc_chn(s_in, t_in, A1, D1, A2, D2)
% time step
Dt = t_in (2)-t_in (1);
% shifted time axis
t_out = t_in (1):Dt:t_in(end)+(ceil (max([D1 D2])/Dt)+1)*Dt;
% line of sight signal
s_los = zeros(size(t_out));
s_los(ceil(D1/Dt) +1: ceil(D1/Dt)+length(s_in)) = A1*s_in;
%reflect signal
s_ref = zeros(size(t_out));
s_ref(ceil(D2/Dt) +1:ceil(D2/Dt)+length(s_in)) = A2*s_in;
% received signal
s_out = s_los+s_ref;
end
```

(b) Develop a function, which simulates the taped delay line microwave equalizer.

```
Here is a sample time-domain implementation of the equalizer.
function [s_out, t_out] = p2pmrc_eql(s_in, t_in, A1, D1, A2, D2, N)
% equalizer parameters
A= A2/A1;
D=D2-D1;
% time step
Dt = t_in(2)-t_in (1)
% shifted time axis
t_out = t_in(1):Dt:t_in(end)+(ceil (N*D/Dt)+N)*Dt;
% tap signals
s_tap=zeros(N+1,length(t_out));
for i=0:N
    s_tap(i+1,i*ceil(D/Dt)+1:i*ceil(D/Dt)+length(s_in))=(-1)^i**A^i*s_in;
end
% equalized signal
s_out = sum(s_tap,1);
end
```

(c) Observe the output of the channel before and after the equalizer and discuss the observations for different number of taps.

To validate the performance, the mfile below can be used.

```
clear all
close all
% parameters
A1=1;
D1=1;
D2 = 1.7;
A2 = 0.8;
N=5;
% channel input
t_in = 0:0.001:10;
s_in=5*sinc(2*(t_in - 0.5));
% channel output
[chn_s, chn_t]=p2pmrc_chn(s_in, t_in, A1, D1, A2, D2);
% equalizer output
[eql_s, eq|_t] = p2pmrc_eql(chn_s, chn_t, A1, D1, A2, D2, N);
% plot
subplot (3,1,1);
plot(t_in, s_in, 'b', 'LineWidth', 1.5)
title('channel input ','Interpreter','Iatex');
xlim ([min(eq|_t) max(eq|_t)])
box on
grid on
subplot (3,1,2);
plot(chn_t,chn_s, 'r', 'LineWidth', 1.5)
title ('channel output','Interpreter','latex')
xlim ([min(eq|_t) max(eq|_t)])
box on
grid on
subplot (3,1,3);
plot(eql_t,eql_s, 'black', 'LineWidth', 1.5)
title('equalizer output','Interpreter','Iatex')
xlim ([min(eq|_t) max(eq|_t)])
box on
grid on
```


Figure 1: Simulation results for $N=1$ delay elements.

Figure 2: Simulation results for $N=5$ delay elements.

Let $A_{1}=1, D_{1}=1, D_{2}=1.7$, and $A_{2}=0.8$. Fig. 1 lishows the involved signals for $N=1$ delay element. As you can see, the equalizer could not mitigate the distortion. However, for $N=5$ the performance seems acceptable, as shown in Fig. 2

Figure 3: Cross-correlation curves for $N=1$.

Figure 4: Cross-correlation curves for $N=5$.
(d) How can we measure the distortion before and after the equalizer. Do you know any suitable metric?

Cross-correlation, $R_{x y}(\tau)=x(\tau) * y^{*}(-\tau)=\int_{-\infty}^{+\infty} x(t) y^{*}(t-\tau) d t$ measures the similarity between $x(t)$ and shifted (lagged) copies of $y(t)$ as a function of the lag τ. Cross-correlation might be used to measure the (phase) distortion. When distortion is mitigated, the crosscorrelation achieves a higher and narrower peak value. Figs. 3 and 4 show the crosscorrelation of the channel input with respect to the channel output and equalizer output
for $N=1$ and $N=5$. Clearly, the cross-correlation gets a lower and wider peak after the channel. The peak increases and tapers after the equalization, where a more acceptable curve is obtained for $N=5$.

BONUS QUESTIONS

Question 7

