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MATHEMATICAL QUESTIONS

Question 1
Use the definitions of the unit step, unit impulse, and unit doublet function to prove the follow-
ing identities.
Hint: Obviously, if

∫ +∞
−∞ f(t)x(t)dt =

∫ +∞
−∞ g(t)x(t)dt for any test function x(t), the singular

functions f(t) and g(t) are equal.

(a) u′−1(t) = u0(t).

Integration by parts yields∫ +∞

−∞
u′−1(t)x(t)dt = u−1(t)x(t)

∣∣+∞
−∞ −

∫ +∞

−∞
u−1(t)x

′(t)dt

= −
∫ +∞

−∞
u−1(t)x

′(t)dt = −
∫ +∞

0
x′(t)dt = −x(t)

∣∣+∞
0

= x(0) (1)

. On the other hand,

x(0) =

∫ +∞

−∞
u0(t)x(t)dt (2)

Equating (1) and (2) ∫ +∞

−∞
u0(t)x(t)dt =

∫ +∞

−∞
u′−1(t)x(t)dt (3)

results in u′−1(t) = u0(t) by the definition of the equality of singular functions.

(b) u′0(t) = u1(t).

Integration by parts yields∫ +∞

−∞
u′0(t)x(t)dt = u0(t)x(t)

∣∣+∞
−∞ −

∫ +∞

−∞
u0(t)x

′(t)dt = −
∫ +∞

−∞
u0(t)x

′(t)dt = −x′(0)

(4)
. On the other hand,

− x′(0) =
∫ +∞

−∞
u1(t)x(t)dt (5)

Equating (4) and (5) ∫ +∞

−∞
u1(t)x(t)dt =

∫ +∞

−∞
u′0(t)x(t)dt (6)

leads to u1(t) = u′0(t) by the definition of the equality of singular functions.
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(c) δ(at) = 1
|a|δ(t), a 6= 0.

Assume that a > 0. We have∫ +∞

−∞
u0(at)x(t)dt =

1

a

∫ +∞

−∞
u0(v)x(

v

a
)dv =

1

a
x(

0

a
) =

1

a
x(0) (7)

. On the other hand,
1

a
x(0) =

∫ +∞

−∞
u0(t)

1

a
x(t)dt (8)

Equating (7) and (8) ∫ +∞

−∞
u0(t)

1

a
x(t)dt =

∫ +∞

−∞
u0(at)x(t)dt (9)

results in δ(at) = 1
|a|δ(t), a > 0 by the definition of the equality of singular functions. The

same method can be used to prove δ(at) = 1
−aδ(t), a < 0.

Question 2

Take the Fourier transform of x(t) = Ae−
t2

σ2 , where A and σ are given real values.

F{x(t)} = X(f) =

∫ ∞
−∞

Ae−
t2

σ2 e−j2πftdt = A

∫ ∞
−∞

e−(
t2

σ2
+j2πft)dt

⇒ F{x(t)} = A

∫ ∞
−∞

e−
1
σ2

(t2+j2πσ2ft+π2f2σ4−π2f2σ4)dt = Ae−π
2f2σ2

∫ ∞
−∞

e−(
t+jπfσ2

σ
)2dt

Assuming t+jπfσ2

σ = s, we have ds = dt
σ . Thus,

X(f) = Ae−π
2f2σ2

∫ ∞
−∞

e−s
2
σds = Aσe−π

2f2σ2

∫ ∞
−∞

e−s
2
ds

To compute I =
∫∞
−∞ e

−s2ds, we note that

I2 =

∫ ∞
−∞

∫ ∞
−∞

e−(u
2+v2)dudv

Using the rectangular-polar variable change, u2 + v2 = r2, dudv = rdrdθ, and

I2 =

∫ 2π

0

∫ ∞
0

e−r
2
rdrdθ = 2π(−1

2
er

2
)
∣∣∞
0

= π

⇒ F{x(t)} = X(f) = Aσ
√
πe−π

2f2σ2

Question 3
The analytic signal xa(t) of the real signal x(t) is a signal with the spectrum 2X(f)u(f), where
X(f) is the Fourier transform of x(t).

Question 3 continued on next page. . . Page 2 of 10



M
oh

am
m

ad
Had

i

Communication Systems (Taught by Mohammad Hadi)
Assignment 1 (Due on DDD., mmm. dd, yyyy)

Student Name
Student Number

(a) Show that the real and imaginary parts of xa(t) relates to x(t) and its Hilbert transform x̂(t).

xa(t)↔ 2X(f)u(f)

xa(t)↔ X(f)(1 + sgn(f))

xa(t)↔ X(f)(1− jj sgn(f))
xa(t)↔ X(f) + j

[
− j sgn(f)X(f)

]
So,

xa(t) = x(t) + jx̂(t)

(b) Find the analytic signal of x(t) = A cos(2πf0t+ θ).

We know that x̂(t) = A sin(2πf0t+ θ). So,

xa(t) = x(t) + jx̂(t) = A cos(2πf0t+ θ) + jA sin(2πf0t+ θ) = Aej(2πf0t+θ) = Aejθej2πf0t

(c) How does the analytic signal generalize the concept of phasors?

Clearly, for x(t) = A cos(2πf0t+ θ), xa(t)e−j2πf0t equals the equivalent phasor of x(t), i.e.,
xl = Aejθ. This can be simply generalized to the real signal x(t) = A(t) cos(2πf0t + θ(t))
with a time-varying amplitude and phase. In fact, the time-varying phasor of x(t) is defined
as xl(t) = xa(t)e

−j2πf0t.

Question 4
Let {φi(t)}Ni=1 be an orthogonal set of N signals, i.e.,∫ ∞

−∞
φi(t)φ

∗
j (t)dt = 0, 1 ≤ i, j ≤ N, i 6= j

and ∫ ∞
−∞
|φi(t)|2 = 1, 1 ≤ i ≤ N

. Let x̂(t) =
∑N

i=1 αiφi(t) be the linear approximation of an arbitrary signal x(t) in terms of
{φi(t)}Ni=1, where αi’s are chosen such that

ε2 =

∫ ∞
−∞
|x(t)− x̂(t)|2dt

is minimized.

(a) Show that the minimizing αi’s satisfy

αi =

∫ ∞
−∞

x(t)φ∗i (t)dt

Question 4 continued on next page. . . Page 3 of 10
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ε2 =

∫ ∞
−∞
|x(t)−

N∑
i=1

αiφi(t)|2dt =
∫ ∞
−∞

(x(t)−
N∑
i=1

αiφi(t))(x
∗(t)−

N∑
j=1

α∗jφ
∗
j (t)dt)

=

∫ ∞
−∞
|x(t)|2dt−

N∑
i=1

αi

∫ ∞
−∞

φi(t)x
∗(t)dt−

N∑
j=1

α∗j

∫ ∞
−∞

x(t)φ∗j (t)dt

+

N∑
i=1

N∑
j=1

αiα
∗
j

∫ ∞
−∞

φi(t)φ
∗
j (t)dt

=

∫ ∞
−∞
|x(t)|2dt+

N∑
i=1

|αi|2 −
N∑
i=1

αi

∫ ∞
−∞

φi(t)x
∗(t)dt−

N∑
j=1

α∗j

∫ ∞
−∞

x(t)φ∗j (t)dt

Completing the square in terms of αi, we obtain

ε2 =

∫ ∞
−∞
|x(t)|2dt−

N∑
i=1

∣∣ ∫ ∞
−∞

φ∗i (t)x(t)dt
∣∣2 + N∑

i=1

∣∣αi − ∫ ∞
−∞

φ∗i (t)x(t)dt
∣∣2 (10)

The first two terms are independent of αi and the last term is always positive. Therefore
the minimum is achieved for

αi =

∫ ∞
−∞

x(t)φ∗i (t)dt

(b) Show that

ε2min =

∫ ∞
−∞
|x(t)|2dt−

N∑
i=1

|αi|2

With this choice of αi, the last term of (10) vanishes and we get

ε2min =

∫ ∞
−∞
|x(t)|2dt−

N∑
i=1

∣∣ ∫ ∞
−∞

φ∗i (t)x(t)dt
∣∣2 = ∫ ∞

−∞
|x(t)|2dt−

N∑
i=1

∣∣αi|2

(c) How does this general linear approximation relate to the Fourier series expansion?

Taking φi(t) = ej2πit/T0 , x̂(t) roughly takes the form of the Fourier series expansion while
the minimizing αi’s are very similar to the coefficients of the Fourier series expansion.

Question 5 continued on next page. . . Page 4 of 10
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Question 5
The generalized Fourier transform of the singular function y(t) is defined as the function Y (f)
satisfying the integral equation∫ ∞

−∞
Y (α)x(α)dα =

∫ ∞
−∞

y(β)X(β)dβ

, where x(t) is any test function such that the existence of its Fourier transformX(f) is guar-
anteed under Dirichlet sufficient conditions.
Hint: It can be shown that the properties of the normal Fourier transform remain valid for the
generalized Fourier transform.

(a) Discuss the reasons behind the definition.

Assume thatX(f) and Y (f), the Fourier transform of x(t) and y(t), exist. We have∫ ∞
−∞

Y (α)x(α)dα

=

∫ ∞
α=−∞

Y (α)

∫ ∞
β=−∞

X(β)ej2πβαdβdα

=

∫ ∞
α=−∞

∫ ∞
β=−∞

Y (α)X(β)ej2πβαdβdα

=

∫ ∞
β=−∞

X(β)

∫ ∞
α=−∞

Y (α)ej2πβαdαdβ

=

∫ ∞
−∞

X(β)y(β)dβ

=

∫ ∞
−∞

y(β)X(β)dβ

, which is another form of the Parseval’s theorem.
Now, let y(t) be a singular function, which does not satisfy Dirichlet sufficient conditions.
Further, assume that x(t) is an arbitrary signal, whose Fourier transform exists under
Dirichlet sufficient conditions. Obviously, if this integral equation holds for all pairs of
x(t)↔ X(f), Y (f) can be considered as the generalized Fourier transform of y(t).

(b) Use the definition to find the Fourier transform of δ(t).

∫ ∞
−∞

Y (α)x(α)dα =

∫ ∞
−∞

y(β)X(β)dβ

=

∫ ∞
−∞

δ(β)X(β)dβ = X(0) =

∫ ∞
−∞

x(α)dα

So, Y (f) = F{δ(t)} = 1 by the definition of the equality of singular functions. Using the
duality property, we conclude that F{1} = δ(−f) = δ(f).

Question 5 continued on next page. . . Page 5 of 10
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(c) Use the definition to find the Fourier transform of u(t).

We know that
u(t) + u(−t) = 1⇒ U(f) + U(−f) = F{1} = δ(f)

. Let U(f) = B(f) + kδ(f). We have

δ(f) = U(f) + U(−f) = B(f) +B(−f) + kδ(f) + kδ(−f) = B(f) +B(−f) + 2kδ(f)

Therefore,
k =

1

2
, B(f) = −B(−f)

. To find B(f),

1 = F{δ(t)} = F{u′(t)} = j2πfF{u(t)} = j2πf(B(f) +
1

2
δ(f)) = j2πfB(f)

So, B(f) = 1
j2πf and

U(f) = B(f) + kδ(f) =
1

j2πf
+

1

2
δ(f)

.

SOFTWARE QUESTIONS

Question 6
Validate the performance of the tapped delay-line microwave equalizer using MATLAB simu-
lation. To do this,

(a) Develop a function, which simulates the point-to-point microwave radio channel.

Here is a sample time-domain implementation of the channel.
1 f unc t i on [ s_out , t _ou t ] = p2pmrc_chn ( s_ in , t _ i n , A1 , D1 , A2 , D2 )
2 % time step
3 Dt = t _ i n ( 2 ) − t _ i n ( 1 ) ;
4 % sh i f t e d time ax is
5 t _ou t = t _ i n ( 1 ) : Dt : t _ i n ( end ) +( c e i l (max ( [ D1 D2 ] ) / Dt ) +1 ) *Dt ;
6 % l i n e of s i gh t s i gna l
7 s_ los = zeros ( s i ze ( t _ou t ) ) ;
8 s_ los ( c e i l ( D1 / Dt ) + 1 : c e i l ( D1 / Dt ) + leng th ( s _ i n ) ) = A1 * s_ i n ;
9 %r e f l e c t s i gna l

10 s _ r e f = zeros ( s i ze ( t _ou t ) ) ;
11 s _ r e f ( c e i l (D2/ Dt ) + 1 : c e i l (D2/ Dt ) + leng th ( s _ i n ) ) = A2* s_ i n ;
12 % rece ived s i gna l
13 s_out = s_ los+ s _ r e f ;
14 end

Question 6 continued on next page. . . Page 6 of 10
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(b) Develop a function, which simulates the taped delay line microwave equalizer.

Here is a sample time-domain implementation of the equalizer.
1 f unc t i on [ s_out , t _ou t ] = p2pmrc_eql ( s_ in , t _ i n , A1 , D1 , A2 , D2 , N)
2 % equa l i z e r parameters
3 A= A2/A1 ;
4 D=D2−D1 ;
5 % time step
6 Dt = t _ i n ( 2 ) − t _ i n ( 1 ) ;
7 % sh i f t e d time ax is
8 t _ou t = t _ i n ( 1 ) : Dt : t _ i n ( end ) +( c e i l (N*D/ Dt ) +N) *Dt ;
9 % tap s igna l s

10 s_tap=zeros (N+1 , l eng th ( t _ou t ) ) ;
11 f o r i =0 :N
12 s_tap ( i +1 , i * c e i l (D/ Dt ) + 1 : i * c e i l (D/ Dt ) + leng th ( s _ i n ) ) =( −1) ^ i *A^ i * s_ i n ;
13 end
14 % equa l i zed s i gna l
15 s_out = sum( s_tap , 1 ) ;
16 end

(c) Observe the output of the channel before and after the equalizer and discuss the observations
for different number of taps.

To validate the performance, the mfile below can be used.
1 c l ea r a l l
2 c lose a l l
3
4 % parameters
5 A1 = 1 ;
6 D1 = 1 ;
7 D2 = 1 . 7 ;
8 A2=0 . 8 ;
9 N=5 ;

10
11 % channel i npu t
12 t _ i n =0 : 0 . 0 0 1 : 1 0 ;
13 s_ i n =5* s inc ( 2 * ( t _ i n −0 .5 ) ) ;
14 % channel output
15 [ chn_s , chn_t ] = p2pmrc_chn ( s_ in , t _ i n , A1 , D1 , A2 , D2 ) ;
16 % equa l i z e r output
17 [ eq l_s , e q l _ t ] = p2pmrc_eql ( chn_s , chn_t , A1 , D1 , A2 , D2 , N) ;
18
19 % p lo t
20 subp lot ( 3 , 1 , 1 ) ;
21 p l o t ( t _ i n , s_ in , ’ b ’ , ’ L ineWidth ’ , 1 . 5 )
22 t i t l e ( ’ channel i npu t ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
23 x l im ( [ min ( e q l _ t ) max( e q l _ t ) ] )
24 box on
25 g r i d on
26
27 subp lot ( 3 , 1 , 2 ) ;
28 p l o t ( chn_t , chn_s , ’ r ’ , ’ L ineWidth ’ , 1 . 5 )
29 t i t l e ( ’ channel output ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
30 x l im ( [ min ( e q l _ t ) max( e q l _ t ) ] )
31 box on
32 g r i d on
33
34 subp lot ( 3 , 1 , 3 ) ;
35 p l o t ( eq l _ t , eq l_s , ’ b lack ’ , ’ L ineWidth ’ , 1 . 5 )
36 t i t l e ( ’ e qua l i z e r output ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
37 x l im ( [ min ( e q l _ t ) max( e q l _ t ) ] )
38 box on
39 g r i d on

Question 6 continued on next page. . . Page 7 of 10
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Figure 1: Simulation results for N = 1 delay elements.
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Figure 2: Simulation results for N = 5 delay elements.

. Let A1 = 1, D1 = 1, D2 = 1.7, and A2 = 0.8. Fig. 1 shows the involved signals for N = 1
delay element. As you can see, the equalizer could not mitigate the distortion. However,
for N = 5 the performance seems acceptable, as shown in Fig. 2.

Question 6 continued on next page. . . Page 8 of 10
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Figure 3: Cross-correlation curves for N = 1.
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Figure 4: Cross-correlation curves for N = 5.

(d) How can we measure the distortion before and after the equalizer. Do you know any suitable
metric?

Cross-correlation, Rxy(τ) = x(τ) ∗ y∗(−τ) =
∫ +∞
−∞ x(t)y∗(t− τ)dtmeasures the similarity

betweenx(t) and shifted (lagged) copies of y(t) as a function of the lag τ . Cross-correlation
might be used to measure the (phase) distortion. When distortion is mitigated, the cross-
correlation achieves a higher and narrower peak value. Figs. 3 and 4 show the cross-
correlation of the channel input with respect to the channel output and equalizer output

Question 6 continued on next page. . . Page 9 of 10
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for N = 1 and N = 5. Clearly, the cross-correlation gets a lower and wider peak after the
channel. The peak increases and tapers after the equalization, where a more acceptable
curve is obtained for N = 5.

BONUS QUESTIONS

Question 7
Return your answers by filling the LATEXtemplate of the assignment.
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