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MATHEMATICAL QUESTIONS

Question 1
Show that if the periodic signal x(t + T0) = x(t) passes through an LTI system with the fre-
quency responseH(f), then the power spectral density of the output signal equals

Sy(f) =
∞∑

n=−∞
|xn|2|H(n/T0)|2δ(f − n/T0)

.
Note: Consult the slides on the calculation of the autocorrelation of the periodic signals.

As we know from the course lecture, the autocorrelation of the periodic signal x(t+ T0) =
x(t) equals

Rx(τ) =

∞∑
n=−∞

|xn|2ej2πnτ/T0

, where xn’s are the coefficient of the Fourier series expansion of x(t). Since Sx(f) =
F{Rx(τ)} and Sy(f) = Sx(f)|H(f)|2. So,

Sy(f) = Sx(f)|H(f)|2 = F{Rx(τ)}|H(f)|2

= |H(f)|2
∞∑

n=−∞
|xn|2δ(f −

n

T0
)

=

∞∑
n=−∞

|xn|2|H(
n

T0
)|2δ(f − n

T0
)

.

Question 2
Although the solution of this question has been already posted to the course Telegram chan-
nel, it deserves to be repeated again due to its involved intuition. The real bandpass signal
x(t), whose frequency components are in the neighborhood of some f0 (and −f0), is passed
through a filter with the transfer function H(f), and the output is denoted by y(t). The mag-
nitude of the transfer function is denoted by A(f), and its phase is denoted by θ(f). Assume
that the transfer function of the filter is so smooth that in the bandwidth of the input signal, the
magnitude of the transfer function is essentially constant and its phase can be approximated
by its first-order Taylor-series expansion, i.e.,

A(f) ≈ A(f0)

and
θ(f) ≈ θ(f0) + (f − f0)θ′(f0)

Question 2 continued on next page. . . Page 1 of 11
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(a) Show that Yl(f), the Fourier transform of the lowpass equivalent of the output, can be written
as

Yl(f) ≈ Xl(f)A(f0)ej(θ(f0)+fθ′(f0))

, whereXl(f) is the Fourier transform of the lowpass equivalent of the input x(t).

The spectrum of the output signal y(t) is the product ofX(f) andH(f). Thus,

Y (f) = H(f)X(f) ≈ X(f)A(f0)ej(θ(f0)+(f−f0)θ′(f0))

. y(t) is a bandpass signal centered at frequencies f = ±f0. To obtain the lowpass equiv-
alent signal, we have to shift the right side spectrum of y(t) to the left by f0 and multiply it
by 2. Hence,

Yl(f) ≈ 2u(f + f0)X(f + f0)A(f0)ej(θ(f0)+fθ′(f0)) = Xl(f)A(f0)ej(θ(f0)+fθ′(f0))

(b) Calculate that

y(t) ≈ A(f0)Vx(t− tg) cos(2πf0(t− tp) + Θx(t− tg))

, where Vx(t) and Θx(t) are the envelop and phase of the input x(t), tg = −θ′(f0)/(2π), and tp =
−θ(f0)/(2πf0).

Taking the inverse Fourier transform of Yl(f) obtained in the previous part,

yl(t) ≈ F−1[Xl(f)A(f0)ejθ(f0)ejfθ
′(f0)] = A(f0)ejθ(f0)xl(t+

1

2π
θ′(f0))

. With y(t) = Re[yl(t)e
j2πf0t] and xl(t) = Vx(t)ejΘx(t),

y(t) = Re[yl(t)e
j2πf0t]

≈ Re[A(f0)xl(t+
1

2π
θ′(f0)) ejθ(f0) ej2πf0t]

≈ Re[A(f0)Vx(t+
1

2π
θ′(f0)) ejθ(f0) ej2πf0t ejΘx(t+ 1

2π
θ′(f0))]

= A(f0)Vx(t− tg) cos[2πf0t+ θ(f0) + Θx(t− tg)]

= A(f0)Vx(t− tg) cos[2πf0(t+
θ(f0)

2πf0
) + Θx(t− tg)]

= A(f0)Vx(t− tg) cos[2πf0(t− tp) + Θx(t− tg)]

, where tg = − θ′(f0)
2π and tp− = θ(f0)

2πf0
.

(c) The quantities tg and tp are called envelope delay (or group delay) and phase delay, respectively.
Can you interpret their role and justify this nomenclature?

tg can be considered as the time lag of the envelope of the signal, whereas tp is the time
corresponding to a phase delay of θ(f0)

2πf0
.

Question 3 continued on next page. . . Page 2 of 11
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Question 3
Intuitively, the bandwidth measures for the extent of significant spectral content of the real
signal for positive frequencies. Different mathematical definitions might be used to calculate
the bandwidth of the signal |X(f)|. Here are some of the common definitions:

1. Absolute bandwidth is the smallest positive frequency band, where, for frequencies out-
side it, |X(f)| is zero.

2. 3-dB or half-power bandwidth is the positive frequency band, where, for frequencies out-
side it, |X(f)| is never greater than 1/

√
2 times its maximum value.

3. Null-to-null or zero-crossing bandwidth is the frequency band, where the band edge fre-
quencies create the first spectrum nulls. For the lowpass signals, the right side edge
frequency only creates the null.

4. Power bandwidth is the positive frequency band in which 49.5% of the total power (or
energy) resides.

5. TheRootMeanSquare (RMS) bandwidth is defined as
√∫ +∞

0 f2|X(f)|2df/
∫ +∞

0 |X(f)|2df

for a lowpass signal and 2
√∫ +∞

0 (f − f0)2|X(f)|2df/
∫ +∞

0 |X(f)|2df for a bandpass sig-
nal centered around f0.

Fig. 1 shows a typical illustration of these definitions.
Note: If you need to numerically evaluate an integral or a function while answering the ques-

Figure 1: Various ways to define bandwidth for a real-valued signal.

Question 3 continued on next page. . . Page 3 of 11
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tions below, feel free to consult online calculators such as Symbolab.

(a) Find the defined bandwidths for the signalX(f) = A u ( fB ).

1. X(f) is zero for the frequencies outside [−B
2 ,+

B
2 ]. Therefore,Wabs = B

2 .

2. |X(f)| = A when |f | < B
2 while for the frequencies outside [−B

2 ,+
B
2 ], we have

|X(f)| = 0 < 1/
√

2 max{|X(f)|} = A. So,W3db = B
2 .

3. The first spectrum null occurs at f = B
2 . Thus,Wn2n = B

2 .

4. The energy content ofX(f) is∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
|X(f)|2 df =

∫ +B
2

−B
2

A2 df = BA2

Therefore, the power bandwidthWpow is∫ Wpow

0
A2 df = WpowA

2 =
49.5

100
BA2 ⇒Wpow = 0.495B

5. The RMS bandwidth is calculated as

Wrms =

√√√√∫ +∞
0 f2|X(f)|2df∫ +∞

0 |X(f)|2df
=

√√√√√∫ B
2

0 f2A2df∫ B
2

0 A2df
=

√√√√ B3

24 A
2

B
2 A

2
=

B√
12

= 0.287B

(b) Find the defined bandwidths for the signalX(f) = A sinc( fB ).

1. X(f) has nonzero values even for f →∞. So, Babs =∞.

2. The 3-dB bandwidth ofX(f) is calculated as

|X(f)| = A| sinc(
W3db

B
)| = max{|X(f)|}√

2
=

A√
2

Let u = W3db
B . We should find the positive root of | sinc(u)| = 1/

√
2. Numerical

solution of the equation gives u = 0.443, and therefore,W3db = 0.443B.

3. The first positive spectrum null of X(f) = A sinc( fB ) occurs at f = B and conse-
quently,Wn2n = B.

4. The energy content ofX(f) is∫ +∞

−∞
|X(f)|2 df =

∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
A2B2 u2 (Bt)dt =

∫ + 1
2B

− 1
2B

A2B2dt = A2B

Question 3 continued on next page. . . Page 4 of 11
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Therefore, the power bandwidth is obtained as∫ Wpow

0
A2 sinc2(

f

B
) df =

49.5

100
A2B ⇒

∫ Wpow
B

0
BA2 sinc2(v) dv =

49.5

100
A2B

Now, we should find the value of u =
Wpow

B such that
∫ u

0 sinc2(v)dv = 0.495. This
equation can be numerically solved to obtain u = 10.2, or equivalentlyWpow = 10.2B.

5. The RMS bandwidth is calculated as

Wrms =

√√√√∫ +∞
0 f2|X(f)|2df∫ +∞

0 |X(f)|2df
=

√√√√∫ +∞
0 f2A2 sinc2( fB ) df∫ +∞

0 A2 sinc2( fB ) df
=

√∫ +∞
0

B2A2

π2 sin2(πfB ) df

A2B/2

=

√
2B

π2

∫ +∞

0
sin2(

πf

B
) df =

√
2B2

π3

∫ +∞

0
sin2(u)du =∞

(c) Which definition is better and more applicable? Why?

The applicability of a definition depends on the type of the involved signal. For example, for
X(f) = Au ( fB ), the absolute bandwidth seems acceptable while the absolute bandwidth
is not a suitable choice for X(f) = A sinc( fB ). For real practical signals such as audio
signals, 3-dB bandwidth is usually used.

Question 4
Let Y be a positive-valued random variable, i.e., fY (y) = 0 for y < 0. Youmight consult Google
to prove the following useful inequalities.

(a) Let α be any positive constant, and prove the Markov inequality P (Y > α) ≤ E(Y )
α .

E[Y ] =

∫ ∞
0

yfY (y)dy ≥
∫ ∞
α

yfY (y)dy ≥ α
∫ ∞
α

fY (y)dy = αP (Y ≥ α)

. Thus, P (Y ≥ α) ≤ E[Y ]/α.

(b) Let X be any random variable with variance σ2, and define Y = (X − E[X])2 and α = ε2 for
some positive ε. Derive the Chebychev inequality P (|X − E(X)| > ε) ≤ σ2

ε2
.

We have
P (|X − E[X]| > ε) = P

(
(X − E[X])2 > ε2

)

Question 4 continued on next page. . . Page 5 of 11
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. Now, Y = (X − E[X])2 and α = ε2 satisfy the requirements of the Markov inequality.
Therefore,

P (Y > α) = P (|X − E[X]| > ε) = P
(
(X − E[X])2 > ε2

)
≤
E
[
(X − E[X])2

]
ε2

=
σ2

ε2

Question 5
The characteristic function provides an alternative way for describing a random variable, sim-
ilar to the CDF, which completely determines the behavior and properties of a random variable.
The characteristic function of the random variable X is defined as

φX(t) = E
{
ejtX

}
. Take a look at the free encyclopedia of wikipedia to answer the following questions.

(a) How does the characteristic function relate to the Fourier transform of the PDF fX(x)?

From the definition of the Fourier Transform, the Fourier Transform of the PDF fX(x)
equals

X(t) =

∫ ∞
−∞

fX(x)e−j2πtx dx

Also we have,
φX(t) = E

{
ejtX

}
=

∫ ∞
−∞

fX(x)ejtx dx

ComparingX(t) and φX(t) we conclude that

φX(t) = X(
−t
2π

)

(b) How can we find the mean and variance using the characteristic function?

Using the Taylor series expansion of the exponential function, we can rewrite the charac-
teristic function as

φX(t) = E
{
ejtX

}
= E

{ ∞∑
k=0

(jtX)k

k!

}
=

∞∑
k=0

jk
E(Xk)

k!
tk = 1 + jE(X)t+ j2E(X2)

2!
t2 + · · ·+ jk

E(Xk)

k!
tk + · · ·

Taking the first derivative of the expression above at t = 0, we get

∂φX(t)

∂t

∣∣∣
t=0

= jE(X)⇒ µ = E(X) =
1

j

∂φX(t)

∂t

∣∣∣
t=0

Similarly, the second derivative of the aforesaid expression gives

E(X2) =
1

j2

∂2φX(t)

∂t2

∣∣∣
t=0

Question 5 continued on next page. . . Page 6 of 11
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So, we can calculate the variance as

σ2 = E(X2)− (E(X))2 =
1

j2

∂2φX(t)

∂t2

∣∣∣
t=0
−
(

1

j

∂φX(t)

∂t

∣∣∣
t=0

)2

(c) Calculate the characteristic function of the normal distributionN (µ, σ2) and use it to derive the
mean and variance of the normal distribution.

The PDF of the normal distribution is

fX(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

To derive the Fourier Transform of the PDF, we use the following trick. Let g(x) =

e−
1
2(x−µσ )

2

. So,

g′(x) = −x− µ
σ

1

σ
e−

1
2(x−µσ )

2

= −x− µ
σ2

g(x) = − 1

σ2
xg(x) +

µ

σ2
g(x)

Assuming that G(t) is the Fourier Transform of g(x), we have

j2πtG(t) = − 1

σ2

j

2π
G′(t)+

µ

σ2
G(t)⇒ dG(t)

dt
=

2πσ2

j
(
µ

σ2
−j2πt)G(t) = −(2jπµ+4π2σ2t)G(t)

To solve the obtained first-order differential equation,

dG(t)

G(t)
= −(2jπµ+ 4π2σ2t)dt⇒ ln(G(t)) = −(2jπµt+ 2π2σ2t2) + C1

⇒ G(t) = C2e
−(2jπµt+2π2σ2t2)

Since G(0) =
∫∞
−∞ g(x)dx = σ

√
2π
∫∞
−∞ fX(x)dx = σ

√
2π, we have C2 = σ

√
2π and

consequently,
G(t) = σ

√
2πe−2πjµt−2π2σ2t2

. Now,
φX(t) = X(

−t
2π

) =
1

σ
√

2π
G(
−t
2π

) = e−
1
2
σ2t2+jµt

and therefore,

E(X) =
1

j

∂φX(t)

∂t

∣∣∣
t=0

=
1

j

(
(−σ2t+ jµ)e−

1
2
σ2t2+jµt

) ∣∣∣
t=0

= µ

E(X2)− (E(X))2 =
1

j2

∂2φX(t)

∂t2

∣∣∣
t=0
− µ2 =

1

j2

(
−σ2 − µ2

)
− µ2 = σ2

SOFTWARE QUESTIONS

Page 7 of 11
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Question 6
MATLAB provides a useful function named hilbert(). Refer to the help page of the MATLAB
software to learn more about hilbert() command and answer the questions below.

(a) How does the command of hibert() differ from the Hilbert transform introduced in the course
lectures?

x = hilbert(xr) returns a complex helical sequence, sometimes called the analytic signal,
from a real data sequence. The analytic signal x = xr + j*xi has a real part, xr, which is the
original data, and an imaginary part, xi, which contains theHilbert transform. The imaginary
part is a version of the original real sequence with a 90° phase shift.

(b) What is Fast Fourier Transform and how does MATLAB use it to calculate the hilbert() com-
mand?

For the vectorsX and Y of length n, Discrete Fourier Transform (DFT) and inverse DFT are
defined as

Y (k) =

n∑
j=1

X(j)W (j−1)(k−1)
n

X(j) =
1

n

n∑
k=1

Y (k)W−(j−1)(k−1)
n

, where Wn = e−j2π/n. When n is a power of 2, the DFT is referred to as Fast Fourier
Transform (FFT) because the DFT can be computed efficiently when n is a power of 2.
FFT has many applications in communication systems and mathematical computation.
For instance, FFT is a main block of Orthogonal Frequency division Multiplexing (OFDM)
modulation in 5G mobile systems.
As another example, FFT (or DFT) can be used to approximate the Fourier transform of a
signal. If so, we can obtain the spectrum 2X(f)u(f) for a given real signal x(t) using the
FFT (or DFT) and then take the inverse FFT (or inverse DFT) from 2X(f)u(f) to obtain the
analytic signal xa(t) = x(t) + jx̂(t), whose imaginary part is the Hilbert transform of x(t).

(c) Code an mfile, which takes an arbitrary signal as its input and plots the time- and frequency-
domain graphs of the Hilbert transform of its input signal. Feel free to use MATLAB internal func-
tions such as hilbert().

Here is a sample implementation.
1 f unc t i on h i l b e r t _ p l o t ( t , x )
2
3 c lose a l l
4
5 % take the h i l b e r t t ransform
6 x_hat = imag ( h i l b e r t ( x ) ) ;
7
8 % take the DFT and approximate the spectrum using the DFT
9 Fs = 1/ abs ( t ( 2 ) − t ( 1 ) ) ;

10 L = length ( t ) ;
11 f = Fs * ( ( 1 : L ) −L /2 ) /L ;

Question 6 continued on next page. . . Page 8 of 11
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Figure 2: Sample time-domain plot for x(t).
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Figure 3: Sample time-domain plot for x̂(t).

12 X_hat = f f t s h i f t ( f f t ( x_hat ) ) / L ;
13 X = f f t s h i f t ( f f t ( x ) ) / L ;
14
15 % p lo t time−domin curves
16 f i g u r e
17 p l o t ( t , x )
18 box on
19 g r i d on
20 y l a b e l ( ’ $ | x ( t ) | $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
21 x l a be l ( ’ t ( s ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )

Question 6 continued on next page. . . Page 9 of 11
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Figure 4: Sample frequency-domain plot forX(f).
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Figure 5: Sample frequency-domain plot for X̂(f).

22 f i g u r e
23 p l o t ( t , x_hat )
24 box on
25 g r i d on
26 y l a b e l ( ’ $ | \ hat { x } ( t ) | $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
27 x l a be l ( ’ t ( s ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
28
29 % p lo t frequency −domin curves
30 f i g u r e
31 hold on
32 p l o t ( f , abs (X ) )

Question 6 continued on next page. . . Page 10 of 11
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33 p l o t ( f , imag (X ) , ’ r ’ )
34 box on
35 g r i d on
36 y l a b e l ( ’ $ | X ( f ) | $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
37 x l a be l ( ’ f (Hz ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
38 f i g u r e
39 hold on
40 p l o t ( f , r e a l ( X_hat ) )
41 p l o t ( f , imag ( X_hat ) , ’ r ’ )
42 box on
43 g r i d on
44 y l a b e l ( ’ $ | \ hat {X } ( f ) | $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )
45 x l a be l ( ’ f (Hz ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ )

We have used the coded function to plot time-domain and frequency-domain curves of
x(t) = cos(40πt) + cos(80πt) in Figs. 2-5.

BONUS QUESTIONS

Question 7
Return your answers by filling the LATEXtemplate of the assignment.
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