MATHEMATICAL QUESTIONS

Question 1

Find the equivalent resistance of the ladder network in Fig. 1.

Figure 1: Ladder resistor network.

Question 2

How are Δ and T resistor networks in Fig. 2 equivalent? (Hint: If two circuits are equivalent, the terminal voltages and currents must be equal.)

(a)

Figure 2: Two well-known equivalent resistor circuits. (a) Δ network. (b) T network.

Question 3

Determine the Thevenin equivalent seen by $-j 10 \Omega$ impedance of Fig. 3 and use this to compute V_{1}.

Figure 3: A circuit for which Thevenin equivalent seen by $-j 10 \Omega$ impedance is desired.

Question 4

Household electrical voltages are typically quoted as 220 V in Iran. However, these values do not represent the peak ac voltage. Rather, they represent what is known as the root mean square of the voltage, defined as

$$
V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} V_{m}^{2} \cos ^{2}(\omega t) d t}
$$

where $T=\frac{1}{f}$ is the period of the waveform, V_{m} is the peak voltage, and $\omega=2 \pi f$ is the waveform angular frequency, where $f=50 \mathrm{~Hz}$ in Iran.
(a) Perform the indicated integration, and show that for a sinusoidal voltage $V_{r m s}=\frac{V_{m}}{\sqrt{2}}$.
(b) Compute the peak voltages corresponding to the rms voltage 220 V .

Question 5

Consider the circuit shown in Fig. 4, where $V_{r e f}$ is provided by a regulated voltage source. Show that the circuit can act like a current source and find the constant current I_{s} flowing to the resistive load R_{L}.

Figure 4: An Op Amp-based current source.

Question 6

Find the differential equation relating $i_{x}(t)$ to $v_{s}(t)$ for the circuit displayed in Fig. 5 and obtain the corresponding impulse and step responses.

Figure 5: A circuit whose impulse and step responses are intended.

Question 7

Consider a series RL circuit driven with the voltage source $v(t)$, where the loop current $i(t)$ should be calculated.
(a) Find the zero-input response if the initial current is $i(0)=I_{0}$.
(b) Find the step response.
\square
(c) Find the impulse response.
\square
(d) Find the zero-state response if $v(t)=V_{0} e^{-t} u(t)$.
\square
(e) Find the complete response if $v(t)=V_{0} e^{-t} u(t)$ and $i(0)=I_{0}$.
(f) Find the complete response if $v(t)=V_{0} \cos (\omega t+\theta) u(t)$ and $i(0)=I_{0}$. How does the complete response relate to the sinusoidal steady state response?

SOFTWARE QUESTIONS

BONUS QUESTIONS

Question 8

