MATHEMATICAL QUESTIONS

Question 1

For the circuit of Fig. 1,

(g) Can you introduce a tree for which the matrices \mathbf{M} and \mathbf{B} are equal?

Question 2

Prove that the branch voltages of a tree of a given circuit graph provide a set of linearly independent voltages.

Question 3

The circuit of Fig. 2 includes LTI resistors and a voltage source. In an experimental measurement, we set $R_2 = 1 \Omega$, and find that $v_1 = 4 V$, $i_1 = 1 A$, and $v_2 = 1 V$. In a second measurement, we set $R_2 = 2 \Omega$, and find that $v_1 = 2 V$ and $i_1 = 1.2 A$, but we forget to measure v_2 . Can you determine the value of v_2 in the second experiment? The inside of the sub-circuit N remains unchanged for the two experiments.

Figure 2: An LTI resistive network with a driving voltage source.

Question 4

Draw the dual circuit of the circuit shown in Fig. 3 and write at least two dual circuit equations for the two circuits.

Figure 3: A circuit for which the dual network is required.

Question 5

Write the KCL and KVL equations corresponding to the fundamental cut sets and loops of the circuit graph shown in Fig. 4 having the highlighted tree.

Question 6

Draw a directed graph whose node-to-branch incidence matrix A_a is given by

$\mathbf{A}_a =$	Γ1	1	-1	0	0	0	0	0	0	0	0	0]
	0	0	0	0	-1	-1	1	0	0	0	0	0
	-1	0	0	0	0	0	0	0	-1	1	0	0
$\mathbf{A}_a =$	0	0	1	1	1	0	0	0	0	0	0	0
	0	0	0	0	0	0	-1	1	0	0	0	-1
	0	-1	0	-1	0	1	0	-1	1	0	1	0
	0	0	0	0	0	0	0	0	0	-1	-1	1

SOFTWARE QUESTIONS

Question 7

Dijkstra's conventional algorithm is a systematic method to find the shortest path between two given nodes of a weighted graph. However, a more common variant of the algorithm fixes a single node as the reference node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree. Implement Dijkstra's algorithm as a MATLAB function and use it to find a tree of a given connected circuit graph.

Note: A circuit graph is a special weighted graph, where all the edges have a same weight. Note: A graph can be represented by a matrix. In fact, for the graph $G(\mathbf{N} = \{1, 2, \dots, n\}, \mathbf{E})$ with n node, the representing matrix of the graph is $A_{n \times n|} = [a_{ij}]$, where a_{ij} is 1 if $(i, j) \in \mathbf{E}$, and 0 otherwise.

Question 8

Return your answers by filling the LaTeXtemplate of the assignment. If you want to add a circuit schematic, you can draw it directly using TikZ package, or draw it in a secondary application such as Microsoft Visio and then, import it as a figure.

EXTRA QUESTIONS

Question 9

Feel free to solve the following questions from the book *"Basic Circuit Theory"* by C. Desoer and E. Kuh.

- 1. Chapter 9, question 1.
- 2. Chapter 9, question 3.
- 3. Chapter 9, question 4.
- 4. Chapter 9, question 9.