MATHEMATICAL QUESTIONS

Question 1

For the circuit of Fig. 1,

Figure 1: A sample circuit.
(a) Draw the circuit graph.
(b) Find a reduced node-to-branch incident matrix \mathbf{A}
(c) Find a reduced mesh-to-branch incident matrix \mathbf{M}.

(d) Find a fundamental cut-set matrix \mathbf{Q}.
(e) Find a fundamental loop matrix \mathbf{B}.

(f) Can you introduce a tree for which the matrices \mathbf{A} and \mathbf{Q} are equal?
(g) Can you introduce a tree for which the matrices \mathbf{M} and \mathbf{B} are equal?

Question 2

Prove that the branch voltages of a tree of a given circuit graph provide a set of linearly independent voltages.

Question 3

The circuit of Fig. 2 includes LTI resistors and a voltage source. In an experimental measurement, we set $R_{2}=1 \Omega$, and find that $v_{1}=4 \mathbf{V}, i_{1}=1 \mathbf{A}$, and $v_{2}=1 \mathbf{V}$. In a second measurement, we set $R_{2}=2 \Omega$, and find that $v_{1}=2 \mathbf{V}$ and $i_{1}=1.2 \mathbf{A}$, but we forget to measure v_{2}. Can you determine the value of v_{2} in the second experiment? The inside of the sub-circuit N remains unchanged for the two experiments.

Figure 2: An LTI resistive network with a driving voltage source.

Question 4

Draw the dual circuit of the circuit shown in Fig. 3 and write at least two dual circuit equations for the two circuits.

Figure 3: A circuit for which the dual network is required.

Question 5

Write the KCL and KVL equations corresponding to the fundamental cut sets and loops of the circuit graph shown in Fig. 4 having the highlighted tree.

Figure 4: A circuit graph and one of its associated trees.

Question 6

Draw a directed graph whose node-to-branch incidence matrix \mathbf{A}_{a} is given by

$$
\mathbf{A}_{a}=\left[\begin{array}{cccccccccccc}
1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & -1 \\
0 & -1 & 0 & -1 & 0 & 1 & 0 & -1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 1
\end{array}\right]
$$

SOFTWARE QUESTIONS

Question 7

Dijkstra's conventional algorithm is a systematic method to find the shortest path between two given nodes of a weighted graph. However, a more common variant of the algorithm fixes a single node as the reference node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree. Implement Dijkstra's algorithm as a MATLAB function and use it to find a tree of a given connected circuit graph.
Note: A circuit graph is a special weighted graph, where all the edges have a same weight. Note: A graph can be represented by a matrix. In fact, for the graph $G(\mathbf{N}=\{1,2, \cdots, n\}, \mathbf{E})$ with n node, the representing matrix of the graph is $A_{n \times n \mid}=\left[a_{i j}\right]$, where $a_{i j}$ is 1 if $(i, j) \in \mathbf{E}$, and 0 otherwise.

BONUS QUESTIONS

Question 8

 schematic, you can draw it directly using TikZ package, or draw it in a secondary application such as Microsoft Visio and then, import it as a figure.

EXTRA QUESTIONS

Question 9

Feel free to solve the following questions from the book "Basic Circuit Theory" by C. Desoer and E. Kuh.

1. Chapter 9, question 1.
2. Chapter 9, question 3.
3. Chapter 9, question 4.
4. Chapter 9, question 9.
