MATHEMATICAL QUESTIONS

Question 1

Find the unidirectional Laplace transform of the following functions.
(a) $f(t)=2|K| e^{-a t} \cos (\beta t+\angle K) u(t)$.

(b) $f(t)=2|K| t e^{-a t} \cos (\beta t+\lfloor K) u(t)$.
(c) $f(t)=g(t) u(t), \quad g(t)=a t[u(t)-u(t-a)], g(t-a)=g(t)$.

(d) $f(t)=e^{-a t^{2}}$.

Question 2

Find the inverse unidirectional Laplace transform of the following functions.
(a) $F(s)=a \frac{-a s-1+e^{a s}}{s^{2}\left(e^{a s}-1\right)}$.
\square
(b) $F(s)=\frac{1}{s(s+1)^{2}\left(s^{2}+1\right)^{2}}$
\square
(c) $F(s)=\frac{s}{\left(s^{2}+2 s+2\right)^{3}}$

Question 3

Calculate the time-domain mesh currents for the circuit of Fig. 1.

Figure 1: A coupled circuit for which the mesh currents are required.

Question 4

Obtain the time-domain node voltages for the circuit of Fig. 2.

Figure 2: A coupled circuit for which the node voltages are required.

Question 5

Find an expression for $v(t)$ valid for all times in the circuit of Fig. 3 .

Figure 3: A circuit with a switch opened at $t=1$.

SOFTWARE QUESTIONS

Question 6

Use AC analysis of PSpice to investigate the frequency response $H(j \omega)=\frac{V_{o}(j \omega)}{V_{s}(j \omega)}$ of the doubletuned circuit shown in Fig. 4. Analyze the impact of each parameter on the frequency response.

Figure 4: Double-tuned circuit.

BONUS QUESTIONS

Question 7

Return your answers by filling the $\mathbb{A T}_{\mathrm{T}} \mathrm{XXtemplate}$ of the assignment. If you want to add a circuit schematic, you can draw it directly using TikZ package, or draw it in a secondary application such as Microsoft Visio and then, import it as a figure.

EXTRA QUESTIONS

Question 8

Feel free to solve the following questions from the book "Engineering Circuit Analysis" by W. Hayt, J. Kemmerly, and S. Durbin.

1. Chapter 15, question 14.
2. Chapter 15, question 19.
3. Chapter 15, question 22.
4. Chapter 15, question 24.
5. Chapter 15, question 27.
