MATHEMATICAL QUESTIONS

Question 1

For the circuit of Fig. 1 ,

Figure 1: A circuit for which the state equations are required.
(a) Write the matrix form of the state equations.
(b) Express $v_{x}(t)$ in terms of the state and input vectors.

Question 2

For the circuit of Fig. 2

Figure 2: A coupled circuit for which the state equations are required.
(a) Write the state equations if $M=0.5$.
\square
(b) Write the state equations if $M=1$.
(c) Find the transfer functions $H_{V}(s)=\left.\frac{V_{1}(s)}{V_{s}(s)}\right|_{I_{s}(s)=0}$ and $H_{I}(s)=\left.\frac{V_{1}(s)}{I_{s}(s)}\right|_{V_{s}(s)=0}$ if $M=1$.

(d) Solve the state equations if $M=1, i_{s}(t)=u(t), v_{s}(t)=0$, and the initial state vector \boldsymbol{X}_{0} is an all-one vector.

Question 3

Write the state equations for the linear time-varying RLC circuit shown in Fig. 3 where the element values are $R(t), L(t)$, and $C(t)$.

Figure 3: A linear time-varying RLC circuit.

SOFTWARE QUESTIONS

Question 4

Write a MATLAB function that plots the approximated state trajectory corresponding to the state equation

$$
\boldsymbol{X}^{\prime}(t)=\boldsymbol{A} \boldsymbol{X}(t), \quad \boldsymbol{X}(0)=\boldsymbol{X}_{0}
$$

. Compare the state trajectories for a certain coefficient matrix A, a certain initial state vector X_{0}, and different values of the time step Δt.

BONUS QUESTIONS

Question 5

Return your answers by filling the $\mathbb{L T}_{\mathrm{E} X}$ Xtemplate of the assignment. If you want to add a circuit schematic, you can draw it directly using TikZ package, or draw it in a secondary application such as Microsoft Visio and then, import it as a figure.

EXTRA QUESTIONS

Question 6

eel free to solve the following questions from the book "Basic Circuit Theory" by C. Desoer and E. Kuh.

1. Chapter 12, question 3.
2. Chapter 12, question 4
3. Chapter 12, question 5.
4. Chapter 12, question 7.
